

Preliminary Site Investigation into Per- and Polyfluoroalkyl Substances (PFAS)

Norfolk Island Airport

Prepared for:

Department for Infrastructure, Transport, Regional Development and Communications 111 Alinga Street Canberra, ACT, 2601

Distribution

Preliminary Site Investigation into Per- and Polyfluoroalkyl Substances (PFAS) **Norfolk Island Airport**

3 February 2021

Copies	Recipient	Copies	Recipient
1 PDF	Department for Infrastructure, Transport, Regional Development and Communications 111 Alinga Street Canberra, ACT, 2601	1 PDF	Senversa Project File

- 1 Reliance This document has been prepared solely for the use of Department for Infrastructure, Transport, Regional Development and Communications. No responsibility or liability is accepted for any damages arising out of the use of this document by any third party.
- 2 Copyright and Intellectual Property © Senversa Pty Ltd. Intellectual property in relation to the methodology undertaken during the creation of this document remains the property of Senversa.
- 3 Principles and Limitations of Investigation This document is issued subject to the technical principles, limitations and assumptions provided in Section 8.0.
- 4 Privacy and Confidentiality This report was prepared for Department for Infrastructure, Transport, Regional Development and Communications and may contain confidential information. Permission from Senversa and the Department for Infrastructure, Transport, Regional Development and Communications should be sought before any written reference to the contents of this report is made public that identifies any people, person, address or location named within or involved in the preparation of this report.

Senversa Pty Ltd

ABN: 89 132 231 380

Level 6, 15 William Street, Melbourne VIC 3000 tel: + 61 3 9606 0070; fax: + 61 3 9606 0074

www.senversa.com.au

Executive Summary

Senversa was engaged by the Department of Infrastructure, Transport, Cities and Regional Development (DITCRD) now the Department for Infrastructure, Transport, Regional Development and Communications (DITRDC) to prepare a Detailed Environmental Investigation of per- and polyfluoroalkyl substances (PFAS) site conditions at Norfolk Island Airport (the site) and surrounding catchments.

The investigation was initiated after a CSIRO led investigation identified elevated levels of PFAS in the Mission Creek surface water catchment in December 2019.

This report is the preliminary site investigation (PSI) which has been completed to report on the identification of PFAS sources, contaminant transport pathways and receptors and to present the finding of the initial, targeted investigation into the nature and extent of PFAS Norfolk Island Airport at the Norfolk Island Airport and surrounding catchments.

The objectives of this Preliminary Site Investigation (PSI) included investigation of potential PFAS source areas: identification of PFAS migration pathways and sensitive receptors; and the targeted assessment of drinking water sources across the island.

The scope of work included a two week on-island investigation undertaken in January 2020 to meet with the community and identify potential PFAS source areas; assess sensitive human and ecological receptors; and confirm key drinking water sources that should be assessed for PFAS impact. The targeted sampling undertaken included the collection of 172 samples consisting of 25 groundwater samples, 17 surface water samples, 41 sediment samples and 89 soil samples both on the airport and across the wider island.

Through the completion of the PSI and targeted groundwater, surface water, soil and sediment assessment works, Senversa was able to achieve the objectives outlined in Section 1.2 and draw the following conclusions:

PFAS Source Areas

- Six significant potential PFAS primary source areas (Group 1 Source Areas) were identified within the Airport that may have contributed to the elevated PFAS concentrations identified within the Mission Creek catchment.
- All six sources were associated with the training, storage and maintenance of fire trucks that historically used PFAS containing agueous film-forming foam (AFFF).
- A further 11 lower significant potential PFAS source areas (Groups 2 4 Source Areas) were identified on and outside the airport within the Mission Creek and other catchments.

PFAS Impact to Utilised Water

- All privately owned drinking water sources that were sampled by Senversa were found to have concentrations below the adopted health based guidance value (HBGV) for PFAS (sum of PFOS + PFHxS). The privately owned drinking water sources assessed included three of five known water carters and tanks / groundwater bores within the Mission Creek catchment.
- Concentrations of PFAS above the adopted HBGV was identified in three public facilities (hospital, works depot and fire station) at internal water taps and groundwater tanks. Upon confirmation of the analytical results alternative drinking water supplies were implemented at these locations and other potentially impacted public facilities (including the airport, which is understood to have previously used the same water source as the facilities mentioned above). The elevated PFAS concentrations at all three public facilities was linked to supply of water from the same "Airport Bore" within the Mission Creek catchment that was identified by CSIRO in December 2019 as having elevated concentrations of PFAS.

- It is understood that "Airport Bore" water is also utilised in public toilets across the island but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, the limited potential for PFAS adsorption through the skin and the non-volatile nature of PFAS. Signage is understood to be at place at toilet facilities across the island to indicate the water should not be drunk. These measures will effectively manage potential exposures to PFAS within public toilets. As a number of the public toilets run septic systems there is the potential for the use of PFAS impacted water at these facilities to pose a secondary source of PFAS impacts to groundwater. However, it is noted that the mass and concentrations of PFAS associated with these uses is likely to be very small when compared with primary sources associated with the onsite direct use of AFFF.
- PFAS was identified in three water sources used for the watering of stock, chicken eggs and vegetables within the Mission Creek catchment. Exposure to the measured concentrations of PFAS is unlikely to impact upon the health or condition of cattle. However, where PFAS is present in water used for stock watering and/or irrigation, it can be taken up into meat, eggs and produce and people who consume the produce can be subsequently exposed. It is noted that there is no available regulatory screening level specifically for these pathways; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required. It is noted that when cattle source their water from a variety of sources (i.e. not all of the water they drink is from the PFAS impacted source) this will reduce the potential exposures via this pathway.

PFAS Impact to Surface and Groundwater

- Concentrations of PFAS above the HBGV in groundwater was restricted to the Mission Creek surface water catchment. The 11 groundwater samples obtained in five other surface water catchments on the island were all below laboratory detection limits with the exception of one groundwater sample obtained adjacent Headstone Creek, which was above laboratory detection limits but below the HBGV.
- Elevated concentrations of PFAS above the HBGV was identified within the surface waters of
 Mission Creek and Watermill Creek. Concentrations above laboratory detection limits but below
 the HBGV was identified in Headstone Creek, with the one surface water sample obtained from
 Broken Bridge Creek below detection limits.

Data Gaps and Further Investigation

- Following a qualitative assessment of source-pathway receptor linkages, eight data gaps requiring further assessment and / or completion of a Tier 2 or 3 risk assessment were identified.
- A detailed site investigation is proposed to address the identified data gaps relating to the nature and extent PFAS in groundwater, surface water, soil and sediment and biota on Norfolk Island

Contents

List of	Acrony	ms	i)
1.0	Introdu	oction	1
1.1	Backg	ound	2
	1.1.1	Project Background	2
	1.1.2	Why is PFAS a Contaminant of Concern in the Airport Environment?	2
1.2	Object	ives	3
1.3	Scope	of Works	3
1.4	Regula	tory Framework	4
2.0	Site De	escription	5
2.1	Site De	tails	5
2.2		atures	
2.3	Surrou	nding Land Uses	6
3.0		nmental Setting	
3.1		al Setting	
3.1	3.1.1	Landscape Setting	
	3.1.2	Climate	
	3.1.3	Topography	
3.2		e Water	
3.2	3.2.1	Drainage	
	3.2.1	On-site Surface Water Features	
	3.2.3	Dams	
3.3		nd Fauna	
3.4		Jy	
3.5		geology	
3.5	3.5.1	Hydrogeological Units	
	3.5.2	Groundwater Depth and Flow Direction	
	3.5.3	Groundwater Use	
	3.5.4	Groundwater Issues and Vulnerability	
4.0	Histori	cal PFAS Source Identification	. 12
4.1		cal Aerial Photographs	
4.2		ation Searches	
	4.2.1	Norfolk Island Regional Council Records	
	4.2.2	Historical Site Photographs	
4.3	Previo	us Investigations	. 15
4.4	Senvei	sa On-Island Investigation – January 2020	. 16
	4.4.1	Interviews	. 16
	4.4.2	Water Use Survey	. 17
	4.4.3	Site Inspection	. 18
4.5	Summ	ary of Site History and On-island Investigation	. 18
5.0	Prelim	nary Targeted PFAS Sampling - January 2020	. 20

6.4	Receptors	
6.4	•	
	6.3.2 Ecological	
6.3	Exposure Pathways	
6.2	·	
	6.2.1 PFAS Source Areas 6.2.2 Impacted Environmental Media	
6.2	Sources of PFAS.	
6.1	Key PFAS of Interest	
6.0	Preliminary Conceptual Site Model	
• • • • • • • • • • • • • • • • • • • •		
5.14	Analysis of AFFF within Fire Truck	
5.13	Leachability of Soil & Sediment Results	
	5.12.2 Sediment Laboratory Results	
V. 14	5.12.1 Field Observations	
5.12	Targeted Sediment Investigation Results	
	5.11.2 Soil Laboratory Results	
J. 1 1	5.11.1 Field Observations	
5.11	Targeted Soil Investigation Results	
	5.10.3 Tap Water Laboratory Results	
	5.10.2 Tank Water Laboratory Results	
	5.10.1 Field Observations	
5.10	Tank / Tap Water Investigation Results	
	5.9.2 Surface Water Laboratory Results	
	5.9.1 Field Observations	
5.9	Surface Water Investigation Results	25
	5.8.2 Groundwater Laboratory Results	24
	5.8.1 Field Observations	24
5.8	Groundwater Investigation Results	24
5.7	Quality Assurance / Quality Control	24
5.6	Laboratory Analysis	23
5.5	Fieldwork Methodology	23
5.4	Investigation Rationale	22
5.3	Assessment Criteria	21
5.2	Relevant Standards, Guidelines and Criteria	21
5.1	Data Quality Objectives	
- 4		

Figures

Figure 1: Site Location and Layout

Figure 2: Site Topography and Drainage

Figure 3: Inferred Groundwater Flow Direction

Figure 4: On-Site Features and Potential PFAS Source Areas

Figure 5: Off-Site Features and Potential PFAS Source Areas

Figure 6: Island Wide PFAS Concentration Plan - Water

Figure 7: Mission Creek Catchment PFAS Concentration Plan - Water

Figure 8: Island Wide PFAS Concentration Plan - Soil and Sediment

Figure 9: Norfolk Island Airport PFAS Concentration Plan - Soil and Sediment

Figure 10: Conceptual Site Model - Hydrogeological Cross Section

Tables

Table 1: Potential PFAS Source Areas

Table 2: Water Results Summary Table

Table 3: Water Analytical Results

Table 4a: On-Site Soil and Sediment Analytical Results

Table 4b: Off-Site Soil and Sediment Analytical Results

Table 5: Soil and Sediment Leachability Analytical Results

Appendix A: PFAS Fact Sheets

Appendix B: Norfolk Island Zoning Map

Appendix C: Norfolk Island Soil Map

Appendix D: Historical Aerial Photographs

Appendix E: Council Provided Maps

Appendix F: Interview Records

Appendix G: Water Use Survey

Appendix H: Site Inspection Record

Appendix I: Site Photographs

Appendix J: Fieldwork Methodology

Appendix K: Laboratory Analytical Results

Appendix L: Data Validation

Appendix M: Water Field Parameters

In text Plates and Tables:

Plate 1: Site Location	1
Table 2-1: Site Planning Information	5
Table 2-2: Site Layout and Features	5
Table 2-3: Surrounding Land Uses	6
Plate 2: Topographical Model of Norfolk Island (Mission Creek Catchment in Purple – See Figure 2 catchments)	
Plate 3: Hydrological Cycle of Norfolk Island (from Abell, 1993)	9
Plate 4: Piper plot detailing ionic balance of groundwater	10
Table 4-1: Historical Aerial Photograph Review	12
Plate 5: 1997 Aerial Photograph	12
Plate 6: 2006 Aerial Photograph	13
Plate 7: 2019 Aerial Photograph	14
Plate 8: Firefighting Drill – Historical Photographs	15
Table 4-2: Water Use Survey Results	17
Plate 9: Group 1 Potential PFAS Source Areas (from Figure 4)	19
Table 4-2: Data Quality Objectives – Seven Step Process	20
Table 5-1: Adopted Assessment Criteria	22
Table 5-2: Laboratory Analysis	23
Table 5-3: Summary of Groundwater Analytical Results	25
Table 5-4: Summary of Surface Water Analytical Results	26
Table 5-5A: Summary of Tank Water Analytical Results	27
Table 5-6B: Summary of Tap Water Analytical Results	28
Plate 10: Hospital Water Filtration System	29
Table 5-7A: Summary of On-Site Surface Soil Analytical Results	30
Table 5-7B: Summary of Off-Site Surface Soil Analytical Results	31
Table 5-8: Summary of Sediment Analytical Results	32
Plate 11: Preliminary Conceptual Site Model Flow Chart	37
Table 6-1: Risk Ranking of Potentially Complete Source-Pathway-Receptor Linkages	38
Table 6-2: Data Gaps	43

List of Acronyms

Acronym	Definition		
AFFF	Aqueous Film Forming Foam		
AHD	Australian Height Datum		
AMG	Australian Map Grid		
ANZECC	Australian and New Zealand Environment and Conservation Council		
ВоМ	Bureau of Meteorology		
СЅМ	Conceptual site model		
CSIRO	Commonwealth Scientific and Industrial Research Organisation		
DITRDC	The Department for Infrastructure, Transport, Regional Development and Communications		
DoH	Department of Health		
HBGV	Health based guidance value		
HHSV	Human Health Screening Values		
IBC	Intermediate bulk containers		
LOR	Limit of reporting		
m AHD	Metres Australian Height Datum		
m bgl	Metres below ground level		
NEPC	National Environment Protection Council		
NEPM	National Environment Protection Measure		
NHMRC	National Health and Medical Research Council		
NIFS	Norfolk Island Fire Service		
PFAS	Per- and poly-fluoroalkyl substances		
PFOA	Perfluorooctanoic acid		
PFOS	Perfluorooctane sulfonate		
PFHxS	Perfluorohexane sulfonate		
PSI	Preliminary Site Investigation		
QA/QC	Quality Assurance / Quality Control		
SPR	Source Pathway Receptor (Linkage)		
TDS	Total dissolved solids		
USEPA	United States Environmental Protection Agency		
μg/kg	Micrograms per kilogram		
μg/L	Micrograms per litre		

1.0 Introduction

Senversa was engaged by the Department of Infrastructure, Transport, Cities and Regional Development (DITCRD) now the Department for Infrastructure, Transport, Regional Development and Communications (DITRDC) to prepare a Detailed Environmental Investigation of per- and polyfluoroalkyl substances (PFAS) site conditions at Norfolk Island Airport (the site) and surrounding catchments. The PFAS detailed environmental investigation process consists of three main steps:

- A. Preliminary Site Investigation (i.e. this report).
- B. Detailed Site Investigation.
- C. Human Health & Ecological Risk Assessment (if deemed necessary).

This report is the preliminary site investigation (PSI) which has been completed to report on the identification of PFAS sources, contaminant transport pathways and receptors and to present the finding of the initial, targeted investigation into the nature and extent of PFAS Norfolk Island Airport at the Norfolk Island Airport and surrounding catchments. The description of the source-pathway-receptor linkages is presented within the Conceptual Site Model (CSM), a subsection of this report.

The investigation was initiated after a CSIRO led investigation in relation to a separate water resource assessment project identified elevated levels of PFAS in the Mission Creek surface water catchment in December 2019.

The location of the airport (in black) and the Mission Creek surface water catchment (in yellow) with reference to the wider Norfolk Island is shown on **Plate 1** below and is detailed on **Figure 1** (all figures appended at the end of the main report body).

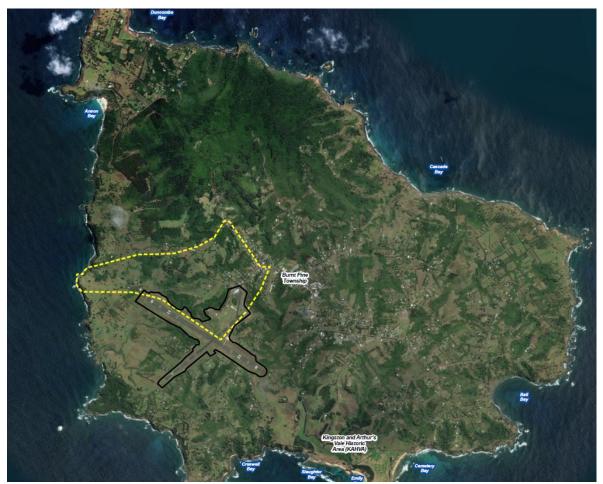


Plate 1: Site Location

1.1 Background

1.1.1 Project Background

Norfolk Island experienced drought conditions between 2016 and early 2020, with anecdotal reports of groundwater levels dropping across the island as a result of increased reliance on groundwater for drinking and other water uses. Water carting from groundwater bores that remained operational was being undertaken across the island both prior to and during January 2020 and in February 2020 a temporary desalination plant was commissioned by the Australian Government and Army on Norfolk Island.

In December 2019, as a part of a wider water resource assessment, CSIRO sampled three sources of water both on and in close proximity to the Norfolk Island Airport. The sampling indicated the presence of PFAS in three samples within the headwaters of the Mission Creek catchment directly below the aviation fire services drill ground, adjacent to the Airport.

Upon review of the findings of the CSIRO work, DITRDC initiated the PFAS environmental investigation at Norfolk Island. The DITRDC strategic aim is to manage potential risks to human health, or the ecological environment posed by the legacy PFAS contamination from the Norfolk Island Airport and surrounding catchment. The specific objectives of the PSI are presented in **Section 1.2** below.

In response to the CSIRO's findings, DITRDC prepared three initial fact sheets to share information on presence of PFAS on Norfolk Island and the status of this investigation. These initial fact sheets are provided in **Appendix A** of this report.

1.1.2 Why is PFAS a Contaminant of Concern in the Airport Environment?

Nationally, airports have been identified in the PFAS National Environmental Management Plan (HEPA, 2018) as sites with the potential for PFAS impacts. The main source of PFAS at airports is the historical use of aqueous film-forming foams (AFFFs) containing PFAS as active ingredients . AFFFs are 'Class B' firefighting foams that are used to prevent or extinguish flammable liquid fires by forming a barrier that inhibits oxygen from feeding the fire, while limiting volatilisation of flammable vapours from fuels.

Historically (from the 1970s), Airports used AFFF that contained perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) (herein referred to as legacy AFFF), as distinct from currently produced AFFF formulations that do not contain PFAS as active ingredients. From 2004, the Australian Government commenced phasing out legacy AFFF, however the chemical characteristics of PFOS and PFOA make them highly resistant to degradation. These and some other PFAS compounds may persist in environmental media such as soil, groundwater or surface water for many years after the release/s occurred.

PFAS are a large group of fluorinated compounds which were first manufactured in the 1940's and have been widely used for a number of industrial applications and consumer products since. PFAS form strong surfactants which are utilised in applications requiring heat resistance, dispersion of liquids, and surface protection (NICNAS, 2016).

PFAS are characterised by fluorinated carbon chains where hydrogen atoms have been replaced with fluorine atoms; the resulting carbon-fluorine bond is the strongest in organic chemistry and PFAS are subsequently highly resistant to degradation (Grijalva & Manuel, 2009). The fluorinated carbon forms a hydrophobic linear chain (typically C₄ to C₁₆) and an attached functional group creating a hydrophilic component. This structure results in variable surface active (polar and non-polar) properties.

PFOS (C₈F₁₇SO₃) is the most common PFAS encountered during environmental investigations undertaken in Australia, due to its widespread historic use and its physico-chemical characteristics. PFOS is also the ultimate degradation or metabolic perfluorinated compound for a number of longer chain PFAS. PFOS is listed as a persistent organic pollutant (POP) under the Stockholm Convention.

It is understood that legacy AFFF containing PFAS as active ingredients was used on Norfolk Island from the early 1980s until 2015 to supress liquid fuel fires and for fire training activities.

1.2 Objectives

This PSI constitutes the first stage of an assessment of potential risk to human health and the environment associated with the presence of PFAS in the environment at the airport and in surrounding areas. The PSI was conducted in accordance with guidance provided in the National Environment Protection (Assessment of Site Contamination) Measure, 1999 (NEPC, 2013 amendment), 'the NEPM'.

The objectives of this PSI are to:

- Identify potential sources of PFAS contamination associated with the former uses, storage and waste management of historical AFFF products.
- Identify key sources and pathways of PFAS contamination.
- Identify and consider off-property land and water uses that may be associated with food production related to the human food chain.

In conjunction with these PSI objectives, DITRDC requested that Senversa undertake a preliminary targeted assessment of PFAS, focussed particularly on drinking water sources. Key objectives included:

- Identify what drinking water sources (i.e. carted water, groundwater) are impacted by PFAS.
- Assessment of the airport property and surrounding area to confirm that the on-property and offproperty community stakeholders have access to safe drinking water that has not been affected by PFAS contamination.
- Opportunistically assess the nature and extent of PFAS in groundwater utilising existing groundwater bores to better understand the risk to receptors.

All information collected during the preliminary targeted investigation was to be captured and retained for use by DITRDC, CSIRO and other stakeholders that are currently investigating water supply alternatives.

In conjunction with these works, Senversa was to provide support to DITRDC-led stakeholder and community engagement activities proactively and appropriately inform stakeholders .

1.3 Scope of Works

To achieve the above objectives, Senversa completed the following scope of work:

- Collation of site identification information (Section 2.0).
- Review of environmental setting information for on and off-site areas (Section 3.0).
- Research historical activities, particularly as they relate to legacy AFFF use at the site (Section 4.0).
- Site inspection to assess potential activities or infrastructure that used or stored legacy AFFF, including completion of interviews with long term staff, knowledgeable in the use of AFFF at the site (Section 4.3).
- Preliminary water use survey of surrounding landowners to assess how water is used in the vicinity of the airport (**Appendix G**).
- Collection and analysis of 172 targeted samples including 25 groundwater samples, 17 surface water samples, 41 sediment samples and 89 soil samples (**Section 5.0**).
- Sampling of public water supply sources including three water carriers that supply water across
 the Island and tank / tap water at high use public places including the hospital and the school
 (Table 2).
- Development of a preliminary CSM (Section 7.0).

1.4 Regulatory Framework

Senversa adopted federal legislation and guidance to provide the primary framework for the assessment for the airport, which included the following:

- National Environment Protection (Assessment of Site Contamination) 1999, as amended 2013, NEPC (2013).
- PFAS National Environmental Management Plan (NEMP) 2.0, Heads of EPAs (HEPA) Australia and New Zealand (2019).
- Australian guidance values for assessing exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), Commonwealth Department of Health (3 April 2017).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, ANZG (2018). These
 guidelines update the Australian Water Quality Guidelines for Fresh and Marine Waters
 (ANZECC/ARMCANZ, 2000).

2.0 Site Description

This section defines the parcel of land identified as the Norfolk Island Airport and describes the land use characteristics of on- and off-site areas being assessed in this PSI.

2.1 Site Details

Site identifying details are summarised below.

Table 2-1: Site Planning Information

Item	Relevant Site Information	
Site Location and Size	The Norfolk Island Airport site is approximately 120 ha in size and is in the south wester portion of Norfolk Island. Norfolk Island is situated in the Pacific Ocean, approximately 6 km north east of Sydney, NSW.	
	See Figure 1 for an overview of the site location and layout.	
Site Use	The site is the Norfolk Island Airport which comprises two runways and associated terminal buildings, maintenance and cargo sheds and carparks. The first runway of the airport was constructed on 25 December 1942 with the assistance of the United States Air Force to assist with war efforts.	
Site Zoning	The site is zoned for light industry use with surrounding land zoned for rural and rural residential land use.	

The Norfolk Island land use zoning map is provided in **Appendix B**.

2.2 Site Features

Current site infrastructure, operations and facilities, as identified during a site inspection on 22 January 2020, are summarised below.

Table 2-2: Site Layout and Features

Item	Observations	
Current Use	The site is primarily used for aviation purposes with an average of 3 - 5 flights arriving per week.	
Current Site Features	Key site features include:	
	Operational airport with two runways.	
	 Aircraft and airport operational infrastructure in the north east portion of the site, including terminals, storage and cargo facilities. 	
	Maintenance facilities in the mid-eastern portion of the site.	
	• Fire station in the mid-eastern portion of the site, south of the maintenance facilities.	
	 Waste Management facility and Bureau of Meteorology (BOM) facility in the northern portion of the site. 	
	 The fire training facility was currently occupied by Boral in the north western portion of the site. Boral were temporarily using the space for airport runway upgrade works in early 2020. 	
Visual Evidence of PFAS Impacts	During the inspection, there was no visual evidence of PFAS-containing impacts such as staining around areas where PFAS was known to have been used or stored.	

Item	Observations	
Surface Waste / Stockpiled Material	Stockpiles were evident on the site in the Waste Management Facility located on the northern portion of the site that was also the former fire training area.	
Chemical Storage Areas	The site historically used for AFFF concentrate storage was largely unsealed with no bunding or overflow catchment or treatment system evident. The fire station currently has Ansulite AFFF remaining on-site in un-bunded intermediary bulk containers (IBCs) on a mezzanine level.	
	Identified storage areas considered to represent potential PFAS sources zones are discussed in Table 1 .	
Water Supply	On-site water is understood to be a combination of rainwater capture and/or groundwater bore water stored in several large tanks across the site.	
	The groundwater bore that CSIRO identified as being impacted by PFAS, known as the "Airport Bore", has historically been the source of site water (for airport infrastructure and the council office and fire station), which is pumped into a large concrete holding tank.	

2.3 Surrounding Land Uses

The site is in a rural area west of Burnt Pine township, with land surrounding the site zoned as either 'Rural' or 'Rural Residential' (refer to **Appendix B**). The surrounding land use is predominantly residential and agricultural.

Table 2-3: Surrounding Land Uses

Direction	Land Uses	
North	Mission Creek is located to the immediate north-west of the site followed by St Barnabas Chapel, rural properties and Headstone Reserve. The Norfolk Island National Park is located approximately 2 km to the north of the site.	
East	North east of the site is the township of Burnt Pine, consisting of mixed land use. The land to the immediate east consists of rural and rural residential land.	
South	Rural residential properties, Point Ross and Bombara Reserves followed by the South Pacific Ocean approximately 400 m from the most southern point of the site.	
West	Rural residential properties, Rocky Point and 100 Acres Reserve followed by the South Pacific Ocean approximately 400 m from the most western point of the site.	

3.0 Environmental Setting

Information from several sources, including a site inspection and public reports on regional information were reviewed to establish the environmental setting of the site.

Knowledge of the site's environmental setting is critical to understanding potential PFAS migration pathways and the sensitivity of the receiving environment (i.e. human and ecological receptors).

3.1 Regional Setting

3.1.1 Landscape Setting

The site is located on Norfolk Island, in the South Pacific Ocean north east of Sydney, NSW, and covers an area of approximately 35 square kilometres. Norfolk Island is volcanic in origin with an average elevation of 110 m above sea level rising steeply to 319 m above sea level at the peak of Mount Bates in the north western portion of the island. The island undulates rapidly with several water catchment zones creating steep valleys and low-lying creeks.

Prior to European settlement in 1788, the vegetation on Norfolk Island was a dense subtropical forest of palms, ferns and pines. Following settlement, a large portion of the Island was cleared for cultivation and cattle grazing (Abell & Falkland, 1991).

3.1.2 Climate

Norfolk Island is classified as a sub-tropical climate which is primarily affected by high-pressure systems which fluctuate over the island annually. The mean maximum temperatures on the island range from 19°C in winter to 25°C in summer with a high average relative humidity of 74% to 79% (BoM, 2019).

Norfolk Island's median annual rainfall is 1,302 mm with the highest rainfall between May to August, with monthly means of approximately 130 to 147 mm. The driest month is typically November with an average rainfall of 75 mm (BoM, 2019). Rainfall on the island between 2016 and early 2020 was below average and little to no rain fell on the island between October 2019 and January 2020 (ABC, 2020). However above average rainfall was recorded for the remainder of 2020.

Winds are predominantly from the east to south east during the summer and autumn, becoming south to south westerly in the winter months. Tropical cyclones occasionally influence the island in the early months of the year (BoM, 2019).

3.1.3 Topography

The airport site is generally flat however, the surrounding area undulates with steep gullies and surface water bodies in every direction around the site. The airport is between 95 and 115 m above sea level (Geoscience Australia, 2020).

The topography of the site and surrounding land is detailed on **Figure 2** attached with a sub-section focussed on the airport and Mission Creek Catchment (in purple) provided on **Plate 2** below. A hydrogeological cross section showing the airport relative to the Mission Creek surface water catchment is also provided as **Figure 10**.

Plate 2: Topographical Model of Norfolk Island (Mission Creek Catchment in Purple – See Figure 2 for details on other catchments)

3.2 Surface Water

3.2.1 Drainage

The site is located on the southern plateau of the island with drainage occurring in all directions into four different catchments (Refer to **Figure 2** for catchment detail).

The surface water catchment to the north of the site is known as the Mission Creek Catchment which receives all surface water runoff from the north western portion of the airport. Town Creek surface water catchment is located to the east of the site, with Rocky Point surface water catchment to the south and Headstone Creek Catchment to the west. All four catchments received surface water runoff from the site. During periods of heavy rain, surface water runoff enters a network of creeks and eventually discharges into the ocean.

3.2.2 On-site Surface Water Features

No significant surface water bodies were identified within the boundary of the airport.

3.2.3 Dams

No significant dams or surface water storage bodies were identified within the boundary of the airport.

Several dams are present on properties surrounding the site, including the Headstone Dam and Mission Pool to the north of the site, both are major public sources of water used for cattle watering purposes in particular.

3.3 Flora and Fauna

Limited flora and fauna are present due to the highly modified nature of the airport environment. As an airport, birds are excluded where possible, and any unpaved areas of the site is generally covered in grass with the exception of the large Banyan Tree present south west of the main terminal and visible on **Figure 4** as the darker green colour immediately south east of the "Former Flushing Area (PS02)".

Low lying areas near the site boundary have limited thick vegetation. These vegetated areas generally coincide with natural drainage lines such as creek beds.

3.4 Geology

Norfolk Island is the erosional remnant of Pliocene aged volcanic centres located on a north trending continental ridge between New Zealand and North Caledonia (Abell, R S & Falkland A C, 1991). The island consists of the former shield volcano (Mt Pitt) and horizontal basalt flows. The major formations are summarised below:

- Tertiary volcanic sequences are comprised of a series of generally flat lying basalts. Basalt flows
 are unconformably overlain by and interbedded with pyroclastics (generally tuffs), indicating
 periods of erosion between cycles of eruption.
- Quaternary aged sedimentary deposits comprising unconsolidated clays and silts are present to the south of the island and along drainage channels and adjacent surface water bodies.
 Calcarenite limestone is exposed along the coastline near the Kingston Jetty.
- The humid, sub-tropical climate has resulted in deep weathering of the basaltic sheet lavas. The
 weathered mantle is up to 80 m thick in some sections. The basalt flows generally have
 fragmental tops which have weathered to clay.
- The prominent soil type found at and surrounding the site is the Rooty Hill Clay. A soil type map of Norfolk Island is provided in **Appendix C**.

3.5 Hydrogeology

The water table on Norfolk Island is within the weathered and fractured rock profile in a ring around Mt Pitt. Recharge is dominated by rainfall and as a result shallow groundwater is generally fresh and slightly acidic.

Plate 3 shows the main features of Norfolk's hydrological cycle including the brackish zone which occurs where seawater mixes with the freshwater lens (Abell, 1993).

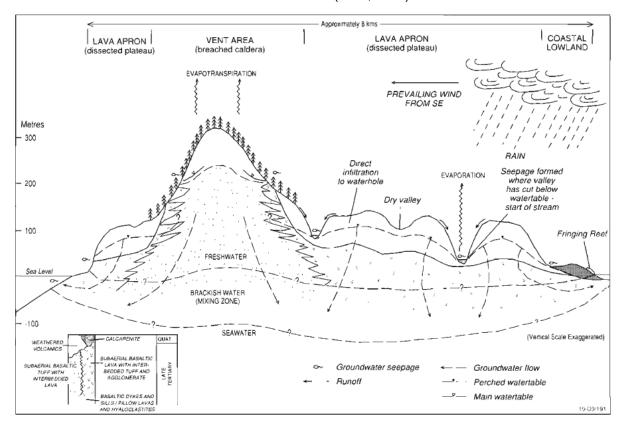


Plate 3: Hydrological Cycle of Norfolk Island (from Abell, 1993)

3.5.1 Hydrogeological Units

Based on research undertaken by Abell (1993), the following hydrostratigraphic sequence is likely to be present beneath the island:

- Weathered volcanic mantle: Major aquifer on the island, porous but clayey. The upper water table on Norfolk sits within the weathered mantle.
- Basaltic lavas: Heterogeneous water-bearing systems, dominated by water movement through fractures, joints and bedding.
- Vertical movement of groundwater through fractures in the basalt likely form localised, semiconfined aquifers within tuff beds and fragmented layers.

To assess groundwater provenance, cations and anions were analysed from groundwater samples obtained during this investigation with the results provided in **Table 3**. A piper plot prepared from the samples obtained (see **Plate 4** below), shows the ionic balance of the aquifers sampled. The piper plot indicates that sodium and potassium are the dominant cations and chloride is the dominant anion indicating that the groundwater on Norfolk Island falls within the sodium chloride type, which is expected given the source of island recharge (i.e. rainfall).

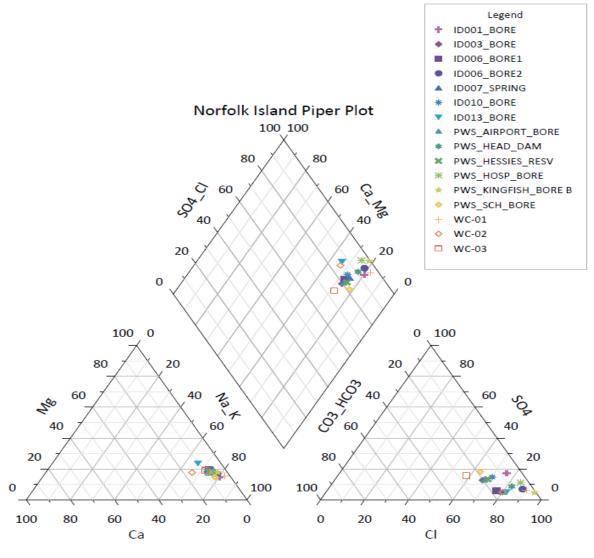


Plate 4: Piper plot detailing ionic balance of groundwater

3.5.2 Groundwater Depth and Flow Direction

The heterogeneous nature of basaltic aquifers results in a complex groundwater flow regime. In general, groundwater flow follows, to a subdued degree, topographic features, discharging to surface water bodies and further towards the coastline (refer to **Figure 3**). Preferential flow pathways are created by water following the fracture orientation in the basalt.

Expressions of groundwater are present across the island. Seepages are formed where the valley has cut below the water table.

There is uncertainty as to whether there are a distinct and potentially separated shallow and deeper aquifer systems on the island. There are a number of existing groundwater bores drilled beneath the sea level that appear to have different characteristics to more shallow bores. Further investigation into the extent of this groundwater is currently being undertaken by CSIRO.

3.5.3 Groundwater Use

Council provided survey data indicated that there are 228 active groundwater bores, 38 dry bores and 10 "contaminated" bores across the island. Other sources indicate approximately 450 bores exist across the island (Abell, 1993). It is understood that not all bores on the island are registered with the Norfolk Island Regional Council or surveyed for height or location.

On the airport there is one known groundwater well (small shed and well body approximately 1 m diameter) that was not in use at the time of the investigation that was sampled by Senversa (Senversa sample A_BORE1). This well is located south west of the banyan tree and should not be confused with the "Airport Bore" that was found to be PFAS impacted by CSIRO that is located just off-site near the head waters of Mission Creek.

This Airport Bore is used to pump water into a large concrete holding tank on site adjacent to the current council office. This water is used across the site and accessed by the public for offsite use via a fill point near the waste management centre access track just off Douglas Drive. There was also anecdotal evidence (see **Section 4.4**) of this bore being used to supply off-site public buildings in times of low rainfall including the hospital and works depot.

3.5.4 Groundwater Issues and Vulnerability

Overreliance on groundwater resulting in pumping from bores in excess of recharge can result in a thickening of the brackish water zone (see **Plate 3** above). This issue is exacerbated in times of low recharge (e.g. during summer months or in times of drought). In January 2020 this was anecdotally observed to be occurring in a number groundwater bores near the perimeter of the island where groundwater bores had shown increasing salinity.

The shallow, unconfined aquifer is vulnerable to bacteriological and chemical pollution associated with land use practices including domestic and livestock waste (e.g. septic systems and agricultural practices). Based on a digital data set provided by the Norfolk Island Regional Council and reviewed by Senversa, 10 bores predominately around the Burnt Pine area were identified as being "contaminated" by the council was considered likely to be a result of the positioning of the bores close to septic systems / poor maintenance of septic systems, however this could not be confirmed at the time of this investigation. Deeper groundwater is considered potentially less vulnerable to polluting surface activities, however, is anecdotally considered more vulnerable to seawater intrusion based on on-island discussions held in January 2020.

4.0 Historical PFAS Source Identification

This section of the PSI presents the information used to establish historical activities at the site, with focus on the storage, handling and use of legacy PFAS-containing AFFF. Additional information sources, including public records and previous site investigations were reviewed to provide a general overview of the site history and land uses. Interviews with long-term firefighters knowledgeable about legacy AFFF use, and with other Norfolk Island residents were also conducted.

4.1 Historical Aerial Photographs

Available historical aerial photographs dating back to 1978 were obtained from Lotsearch and are provided in **Appendix D**. Review of these photographs can assist in identifying relevant site developments, features and changes over time.

The land use surrounding the site did not appear to significantly change from 1978 to 2019 with the land primarily used for agricultural purposes with low density rural residential properties also present. The key changes in land use observed on-site are detailed in **Table 4-1** below.

Table 4-1: Historical Aerial Photograph Review

Year Observations

1978 - 1997 The northeast portion of the site contained several buildings as shown on Plate 5 and further discussed below.

Plate 5: 1997 Aerial Photograph

- One main terminal building with associated carparking is visible.
- Two smaller buildings to the west of the terminal with associated sheds and drainage features (known to be the former fire station) are visible.
- A large building with multiple smaller buildings is visible approximately 250 m to the south west of the main terminal building.
- Thick vegetation and surface water bodies approximately 300 m to the southwest of the terminal buildings. A clearing in the vegetation is noticeable with an unsealed driveway leading to this area.
- Several small buildings to the south east of the terminal on the opposite side of the runway are present.
 What appears to be above ground storage tanks were located adjacent to these buildings. This area is known to be the maintenance and refuelling area.

Year Observations

1978 - 1997

Remainder of the site:

- Two intersecting runways occupied majority of the site.
- The north and north western portions of the site were vegetated with cleared areas along the northern site boundary.
- Two small buildings were in the northern portion of the site adjacent to the cleared vegetation.

A small portion in the south east of the site appears to have contained housing with up to seven properties obvious in the aerial photograph.

2006

The infrastructure on-site remained consistent except for the following changes in the northeast portion of the site, as shown below in **Plate 6.**

Plate 6: 2006 Aerial Photograph

- The terminal building appears to have been redeveloped, now covering a larger footprint, as shown in the top right corner of the image below.
- A large shed with two smaller sheds had been constructed in the clearing approximately 300 m southwest
 of the terminal building. This is known to currently be used as the islands waste management facility.
- A new building to the east of the waste management facility had been constructed, this building is currently known as the Bureau of Meteorology (BoM) centre.

Year Observations

2016 - 2019

The infrastructure on-site remained consistent except for the following changes in the northeast portion of the site and the addition of the new fire station in the centre of the site, as shown below in **Plate 7**.

Plate 7: 2019 Aerial Photograph

- A new building with associated concrete hardstand had been constructed to the south of the terminal building.
- A second new building with associated concrete hardstand had been constructed along the eastern site boundary. This building is known as the new fire station building and can be accessed from both on-site and off-site.

The aerial photographs indicate that the general site layout, including location of the runways and the areas developed with buildings, has remained largely unchanged since 1978. Photographs from 1978 to 1997 show the former fire station adjacent to the terminal building in the north east corner of the site. Photographs post 2006 show the upgrades to the terminal building with the new fire station visible in the 2016 photograph.

4.2 Information Searches

These other information searches are presented for completeness and were conducted with consideration of the NEPM guidance for PSI information sources. While these searches can provide useful information on site history and general sources of impacts to the environment, limited information relating to legacy AFFF use or PFAS was available from both online and on-island resources.

4.2.1 Norfolk Island Regional Council Records

The Norfolk Island Regional Council archives were searched on 15 January 2020. Documents found in the council archives are provided in **Appendix E** and include a survey plan of the airport and historical contour maps from 1968 and 1988. The airport survey plan demonstrates the location of the terminal building, the refuelling area, the electrical and waste administration areas and the airport fire drill ground boundary.

4.2.2 Historical Site Photographs

Historical photographs were accessed through the Norfolk Island Living Library (http://www.livinglibrary.edu.nf/ /Fire Services.html). Two relevant site photographs were viewed, which included images of firefighting training activities where AFFF appeared to have been used. The photographs obtained are shown below.

Plate 8: Firefighting Drill - Historical Photographs

4.3 Previous Investigations

Initial water sampling in three locations was undertaken by CSIRO in December 2019, with the results reported within Fact Sheet 3 (see **Appendix A**). The sampling indicated the presence of PFAS within the headwaters of the Mission Creek catchment directly below the aviation fire services training ground, adjacent to Norfolk Island Airport. These sample locations were all on public land and included two surface water samples (the World War II Dam in the headwaters of Mission Creek, and from Mission Creek where it crosses Douglas Drive) and one groundwater sample (the Airport "Bore").

Given the presence of PFAS in these sampling locations, and prior to the engagement of Senversa, the CSIRO's Norfolk Island Water Resource Assessment (NIWRA) project scope was expanded temporarily to ensure sampling and testing commenced as soon as possible in the Mission Creek catchment area. CSIRO conducted testing of a number of properties within the Mission Creek catchment on 21 to 23 December 2019, with a focus on drinking water, specifically taps and tanks on the properties, along with some bores. Senversa was then engaged to undertake the detailed environmental investigation and the CSIRO's NIWRA project has now returned to an exclusive focus on an assessment of hydrology and hydrogeology and options for enhancing the community's water security.

The results of the CSIRO additional sampling were not formally reported by CSIRO, however review of the analytical results provided by CSIRO to DITRDC identified five properties sampled within the Mission Creek catchment where detected PFAS concentrations were above the screening value for drinking water. The water sampled at the five properties was understood to be either groundwater bought to the surface via a bore or surface water pumped to the property directly out of Mission Creek. It is understood that the water is primarily used for cattle watering.

Three out of these five private properties were resampled by Senversa in January 2020 with results discussed further in **Section 5.10**. For the other two private properties that were not resampled by Senversa during this preliminary phase, discussions where held regarding the management of PFAS impacted water, and further sampling of these properties is proposed to take place during the next phase of investigation.

All other properties sampled by CSIRO reported concentrations of PFAS below the laboratory limit of reporting (LOR).

4.4 Senversa On-Island Investigation – January 2020

Senversa was on island between the 12 and 26 of January 2020 and during this time undertook a number of activities to assist in the identification of historical PFAS sources, including:

- · conducting interviews;
- documenting water use surveys; and
- undertaking site inspections.

The section below summarises the results of these investigation activities.

4.4.1 Interviews

Interviews were conducted with a number of long-term Norfolk Island Fire Service (NIFS) employees and Norfolk Island Residents on 13 and 17 January 2020. NIFS staff interviewed included personnel from the former fire station who were responsible for maintenance and flushing out of fire trucks and associated infrastructure. Interview records are provided in **Appendix F**.

The current Chief Fire Officer from the NIFS who has been involved in responding to fires and undertaking firefighting training was interviewed. The Chief Fire Officer provided site-specific knowledge relating to legacy AFFF use, firefighting practices, and general maintenance activities at the site. The following key information was obtained from the interview:

- Protein foam was utilised until the introduction of 3M Lightwater® in the early 1980s.
- PFAS containing 3M Lightwater® was used by the NIFS for approximately 20 years (from the early 1980s) until the change to Tyco Ansulite® (also PFAS-containing but with a lower PFAS concentration) occurred in 2004.
- The use of PFAS containing products ceased in 2015. Tyco Ansulite® is still present in the current fire station and in fire vehicles which were sampled during the investigation to assist with off-island disposal.
- Flush outs of the fire trucks occurred up to three times a week. This historically took place in the
 unsealed area to the south of the former fire station where it would runoff towards Mission Creek.
- A large-scale annual training drill historically took place in the vacant land behind St Barnabas Chapel located approximately 250 m north west of the western extent of the east-west runway.

CSIRO Representatives, who were also involved in the CSIRO sampling in December 2019 were interviewed to discuss areas of interest both at and surrounding the airport. The following key items were discussed:

- The current drill area has only been used since the mid 1990's, prior to this all fire training
 occurred in the area that is now occupied by the waste management facility.
- The former fire station was located adjacent to the terminal building, the infrastructure is still present including a small wooden shed that was used to store 3M Lightwater® concentrate.
- A drainage culvert drains surface water from the new fire station under the runway back towards Mission Creek.
- Water from the airport bore was historically used to fill the water tanks at the hospital. It was also noted that during refill events, water would overflow from the tanks and run downhill into Broken Bridge Creek.

Anecdotal information recorded during conversations with Islanders indicated that:

- AFFF was used on multiple occasions to 'foam up' (spraying of foams to provide coverage) an
 area as a display or exhibition for staff or the public. This was conducted at many locations but
 was mainly on the grassed area in Kingston known as 'The Common' oval and the area to the
 west of St Barnabas Chapel where annual training also occurred.
- AFFF was used up to three times per year in a residential backyard on Webb Adams Road for training purposes.

Based on the information obtained through these interviews, a number of potential source areas were identified. These areas are shown on **Figures 4** and **5** and information on the sources is summarised in **Table 1**.

In general, it was reported that chemical and waste management practices relating to legacy AFFF use were historically quite limited, given that at the time, AFFF was generally considered inert and without special handling requirements. It is understood that excess volumes of concentrate and/or foam were often disposed of onto bare earth or to stormwater, and foams were repeatedly applied to a number of unsealed locations as part of regular equipment testing and maintenance within the airport. In addition, off-site fire training activities, community events and incidents requiring AFFF application (e.g. vehicle crashes / petroleum based fires) were reported, which may have resulted in the limited use of AFFF in 11 locations outside of the airport.

4.4.2 Water Use Survey

A Water Use Survey (provided in **Appendix G**) was developed to investigate water supply and patterns of use at off-site private properties.

A total of 7 water use surveys were completed in conjunction with private property sampling between 14 and 23 January. The key findings of the survey are summarised in the table below:

Table 4-2: Water Use Survey Results

Question	Response Summary		
Land use	Residential – 6		
	 Growing produce / raising livestock – 4 		
	Other (build site) – 1		
Primary drinking water	Rainwater tank - 4		
source	Bore water - 1		
	 Other (surface water spring) – 1 		
	No drinking water currently on property - 1		
Bore on property	• Yes – 5		
	• No – 2		
Bore uses	Drinking water – 1		
	 Indoor domestic uses – 1 		
	Outdoor domestic uses - 4		
	 Irrigation of fruit and vegetables – 3 		
	Stock watering - 1		
Surface water bodies on	• Yes - 6		
property	• No – 1		
Food production on	• Yes – 5		
property (fruit, vegetables)	 1 property with commercial gardens 		
	 4 properties grow produce for private use 1 property does not currently grow produce but has plans to in future 		
	- I property does not currently grow produce but has plans to in future		
Livestock	• Chickens – 2		
	• Livestock – 4*		
	*3 properties noted that neighbouring cattle utilise drinking water on their property (bore, surface water bodies)		

4.4.3 Site Inspection

Senversa inspected the airport on 22 January 2020. Site inspection documentation is provided in **Appendix H**, and photographs collected during the inspection are provided in **Appendix I**.

The following key observations were made during the site inspection:

- The former fire station comprised several small weatherboard buildings with concrete hardstand (Photograph 1 to 4). These buildings are still present and are currently used for general storage.
- A concrete trough was located to the south of the former fire station (Photograph 6) known as the flushing out area. This was historically used to clean firefighting hoses. Water from the trough drained to the west underground for approximately 30 m where a drain outlet was located.
- All surface water runoff from the former fire station and flushing out area drained to the west (Photograph 5).
- Soil in the waste management area (former drill ground) appeared to have been pushed to the boundary to make way for infrastructure and rubbish stockpiles. A small flammable goods storage shed was located at the rear of the waste management facility (Photographs 8 and 9).
- The current drill ground area is now occupied by Boral. Boral have set up asphalt batching plant machinery and stockpiles of raw materials. Evidence of the firefighting training was only evident by a small pile of burnt cars and buses along the site boundary (Photograph 10).
- The maintenance depot in the north eastern portion of the site is composed of several storage buildings and workshops. Fire trucks were historically serviced in this area which included flushing out and general maintenance (Photographs 11 and 12). Water from this area is collected in a network of drains which flows into a sump at the rear of the workshop.
- The current fire station appears to be well maintained with concrete hardstand. Fire hydrants to the north of the building are used to fill fire trucks. This water is pumped out of two underground tanks that are believed to contain airport bore water. Flushing out of fire trucks occurs on the grassed area adjacent to the fire hydrants (Photographs 13 15).

4.5 Summary of Site History and On-island Investigation

The site has operated as an airport with training facilities since 1942. The site layout includes two runways intersecting in the centre of the site and airport operation infrastructure in the northeast including terminal building, storage and cargo facilities. Maintenance facilities and a fire station are in the eastern portion of the site and a waste management facility in the northern portion of the site (**Figure 4**). The general site layout has remained largely unchanged since it was constructed except for the terminal upgrades and the relocation of the fire station in the early 2000's.

Legacy AFFF containing PFAS as an active ingredient was reportedly introduced at the site in the early 1980s and was used widely both on-site and across the entire island until 2015. The first AFFF product used on the site was 3M Lightwater®. 3M Lightwater® was used for approximately 20 years until the change to Tyco Ansulite® occurred in 2004. Tyco Ansulite® AFFF was then used predominately for fire training activities up until 2015 when the Norfolk Island Fire Station voluntarily stopped its use in fire drills. AFFF with PFAS as an active ingredients appears to have been used for a shorter time (and likely in smaller volumes) than for many similar mainland airports. The remaining stocks of Ansulite® are currently held at the fire station and are proposed to be taken off-island in the near future.

Through review of historical land use and activities that utilised legacy AFFF a total of 17 potential PFAS source areas were identified and are detailed in **Table 1**. On-site potential PFAS source areas are shown on **Figure 4**, with off-site potential PFAS source areas on public land shown on **Figure 5**. Areas on-site where heavier application occurred for several years are considered to be represent the Group 1 Source Areas and includes the following areas:

- Former fire station and adjacent former flushing area (Potential PFAS Source Areas 01 and 02).
- Former drill area (Potential PFAS Source Area 03).

- Current fire station (Potential PFAS Source Area 04).
- Maintenance depot (Potential PFAS Source Area 05).
- Current fire drill area (Potential PFAS Source Area 06).

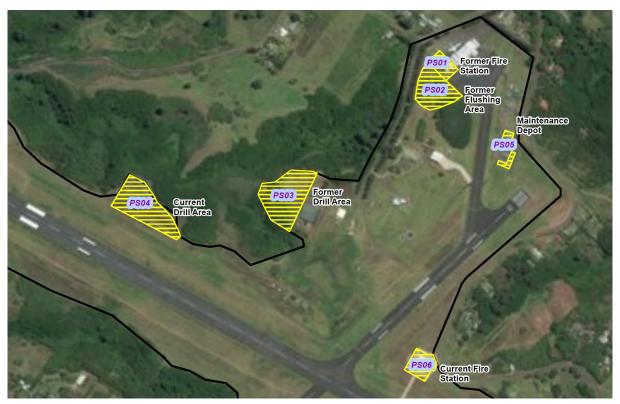


Plate 9: Group 1 Potential PFAS Source Areas (from Figure 4)

Other areas identified as potential sources were legacy AFFF was identified as being used included the off-site training area at St Barnabas Chapel (Potential PFAS Source Area 08), the council works depot where historical fire truck maintenance took place (Potential PFAS Source Area 09) and other areas where foam was applied as a single event (Potential PFAS Source Areas 12-15). These potential PFAS source areas were generally in response to incidents on or off the site, would be less significant potential sources of PFAS, due to the lower volume of AFFF applied over time.

Areas where no AFFF is known to have been used, however where water containing elevated concentrations of PFAS has been identified, or where it was understood that water containing PFAS may have been used include the public toilets across the island (Potential PFAS Source Area 16) and within hospital water tanks historically filled by the Airport Bore (Potential PFAS Source Area 17).

The location of the off-site identified potential PFAS source areas on public land is provided on **Figure 5**, with further details on each of the potential PFAS source areas provided in **Table 1**.

5.0 Preliminary Targeted PFAS Sampling - January 2020

The following section presents the findings of preliminary, targeted PFAS sampling conducted on both public and private land on- and off-site. In response to privacy requests, the figures only show sampling locations where residents agreed to this (**Figures 6 – 9**). Sample results not presented on figures described in the discussion below and presented in **Tables 2 – 4**.

5.1 Data Quality Objectives

Senversa adopted quality assurance procedures to provide a consistent approach to evaluation of whether the data quality objectives (DQOs) required by the project have been achieved. The approach, detailed in a seven-step process, was consistent with NEPM DQO process, as outlined in Schedule B2 *Guideline on Site Characterisation*. The approach focusses on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated.

The approach taken by Senversa in accordance with the seven-step DQO process is presented in the following table.

Table 4-1: Data Quality Objectives - Seven Step Process

DQO Seven-Step Process

1. State the Problem

In December 2019, as a part of a wider water resource assessment, CSIRO sampled three sources of water both on and in close proximity to the Norfolk Island Airport. The sampling indicated the presence of PFAS in three samples within the headwaters of the Mission Creek catchment directly below the aviation fire services drill ground, adjacent to the Airport.

Given the results of the CSIRO study and remoteness of the island, it was determined that targeted preliminary sampling should be undertaken as a part of the PSI to principally assess the presence of PFAS in drinking water sources across the island, the Mission Creek Catchment and potential PFAS source areas on the airport.

2. Identify the Decision/Goal of the Study

The primary goal of the preliminary targeted sampling was to investigate the presence of PFAS from legacy AFFF emissions within on and off-site environment. This information will be used to assess the following:

- What is the extent of presence of PFAS in drinking water sources across the island?
- What is the extent of PFAS in soils and sediments within the Mission Creek Catchment?
- What is the extent of PFAS in soils and sediments within potential PFAS source areas at the airport?

3. Identify the Information Inputs

To assess the required decisions, collection and analysis of environmental media (Section 4.1) included:

- Soil samples.
- Groundwater samples.
- Sediment and surface water samples.
- Select private property rainwater tanks and extraction bores.

The results of the sample analysis, and the location and depth of the samples will be used to prepare a CSM, which includes environmental setting (geology, hydrogeology, topography, surface water movement) and the sources, pathways and receptors of potential PFAS impacts.

Adopted screening criteria for the protected beneficial uses of soil/sediment, groundwater and surface water were based on a range of current sources, as detailed in **Section 5.3**.

4. Define the Boundaries of the Study

The investigation area includes the on-site areas as defined in **Figure 1** and off-site areas as defined by the sampling locations presented on figures throughout this report, which typically targeted linear surface water features suspected of being off-site contaminant migration pathways (i.e. creeks and drains leading away from the airport).

Decisions have been assessed based on the point in time of sampling. Further consideration of temporal variability of groundwater and surface water impacts, where identified, have been established as an area of uncertainty for consideration of future investigations or as part of routine site monitoring.

DQO Seven-Step Process

5. Develop the Analytical Approach/Decision Rule

The decision rule for the data quality objective of the DSI is do measured concentrations of PFAS exceed the adopted Tier 1 screening criteria (**Section 3**)? If they do, then further consideration of risk will be required in a human health and ecological risk assessment, which may require further sampling and assessment of receptors.

To enable the decision to be analysed, the primary chemicals of interest are PFAS (full 28-analyte suite). PFAS compounds were measured at all sampling locations proposed for investigation in this DSI stage of works. NATA accredited laboratories were used for the given analytes and media. Appropriate laboratory limits of reporting (LOR) to meet the relevant adopted criteria were requested, where achievable, from the primary and secondary laboratories for the assessment of PFAS. Further details are provided in **Section 5.3**.

6. Specify Performance or Acceptance Criteria

The overall goal of the study is to identify the presence of PFAS at concentrations which may be of concern to health or the environment. The statistical hypotheses to be tested are therefore:

- Ho: the true mean concentration of PFAS in any given 'exposure unit' to which a human or ecological receptor is
 exposed is at or above the relevant health- or ecological-based screening level.
- Ha: the true mean concentration in any given exposure unit is below the relevant screening level.

Given the preliminary / targeted nature of the investigation a detailed statistical analysis to estimate confidence or tolerance intervals and/or likelihood of Type 1 or Type 2 errors for individual exposure units is not feasible at this stage of the investigation.

The maximum reported PFAS concentrations in individual exposure areas or units will therefore be compared to relevant screening levels. Where any individual result exceeds the screening level, the null hypothesis will be accepted, and the exposure area and associated receptors will be identified as requiring further assessment.

7. Develop the Plan for Obtaining Data

The scope of works, strategy and methodology for investigation are detailed in Section 1.3.

5.2 Relevant Standards, Guidelines and Criteria

The ASC NEPM (NEPC, 2013) sets the national framework for the assessment of site contamination. The Tier 1 assessment criteria contained within these guidelines form the basis of a screening risk assessment. Given the absence of PFAS criteria in the NEMP, assessment criteria have been adopted from the following recently released publications:

- HEPA (2018) PFAS National Environmental Management Plan (PFAS NEMP) January 2018; and
- Department of Health (DoH) (2017) Final Health Based Guidance Values for PFAS for use in site investigations in Australia, developed by Food Standards Australia New Zealand (FSANZ), 2017.

The PFAS NEMP was developed by the heads of EPA (HEPA) to establish a practical basis for nationally consistent environmental guidance and standards for managing PFAS contamination. The plan has been developed by all jurisdictions and recognises the need for implementation of best practice regulation through individual jurisdictional mechanisms.

The following sections describe the assessment criteria adopted for this investigation to be used to assess the soil, sediment, groundwater and surface water quality data.

5.3 Assessment Criteria

Assessment criteria for PFAS are not presented in guideline sources such as the ASC NEPM (NEPC, 2013), relevant State environment protection policies or the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018). The health based guidance values below are referenced in the PFAS National Environmental Management Plan (NEMP) 2.0 (HEPA 2019) and have been adopted for comparison with results.

The NEMP aims to provide governments with a consistent, practical, risk-based framework for the environmental regulation of PFAS-contaminated materials and sites. The NEMP was originally released in 2018 (HEPA, 2018) and was developed collaboratively by the Heads of EPAs Australia and New Zealand and the Commonwealth Department of Environment and Energy (DoEE) and has been endorsed by the Commonwealth Government. More recently, the New Draft NEMP 2.0 (HEPA, 2019) guidelines have been released. While this guidance remains in draft, it has been endorsed by the Department of Agriculture, Water and the Environment (DAWE). The health based guidance values below are selected from the NEMP 2.0 (HEPA, 2019), and it is noted that there are only minor changes when compared with the health based guidance values presented in the earlier version of the NEMP (HEPA, 2018).

Senversa has not adopted guidance values for ecosystems criteria at this PSI stage of the investigation as it was not identified as being the key pathway of concern. However, potential pathways to ecosystem receptors are discussed and qualitatively assessed in Section 6 (CSM) and Table 6-1 draws conclusions around the need for further assessment of these pathways.

Table 5-2: Adopted Assessment Criteria

Media	Receptor	Assessment Criteria	Source and Justification
Groundwater Surface Water / Dam /	Drinking Water	PFOS + PFHxS (sum) – 0.07 μg/L	Health Based Guidance Values (HBGV) sourced from the Australian Government Department of Health, 2017. For use in health-based guidance values for use in site investigations
Rain Tank Water		PFOA – 0.56 μg/L	in Australia. Also referenced in the NEMP (HEPA, 2018).
			The water collected during this preliminary targeted assessment is used for a combination of domestic purposes, watering of stock and poultry, and watering edible and nonedible plants and grasses.
			For the purposes of this investigation all water samples from every source has conservatively been compared to drinking water criteria (irrespective of whether the water sampled is actually used for drinking purposes).
Soil and/or Sediment	On-site: Human Health –	PFOS + PFHxS (sum) – 20 mg/kg	Human Health Screening Values (HHSV) sourced from the NEMP 2.0 (HEPA, 2019).
	Commercial Industrial	PFOA – 50 mg/kg	All on-site soil and sediments were compared to health based commercial guidelines (see Table 4a). All off-site soils and sediments collected during the targeted assessment (see Table 4b) were compared to residential guidelines as a conservative approach which is considered appropriate in
	Off-site: Human Health –	PFOS + PFHxS (sum) – 0.01 mg/kg	meeting the project objectives. The approach is particularly conservative for sediments, where the potential for exposure will be much lower than for soils in residential back yards.
	Residential with Garden/Accessible Soil	PFOA – 0.3 mg/kg	It is noted that the residential value considers uptake into home-grown produce (fruit and vegetables) but does not consider consumption of home-grown poultry/egg or livestock products.

5.4 Investigation Rationale

The overall approach to sampling comprised a:

- 1. Targeted off-site investigation within areas suspected to potentially be PFAS impacted based on: water use; proximity to source areas and the local drainage features; and to confirm CSIRO results
- Targeted on-site assessment of areas identified as potential source zones from the site history review.

The rationale for the targeted investigation was as follows:

- Assess potable water sources used by water carters to assess whether water being transported around the island as potable water may be impacted by PFAS.
- Assess potential PFAS presence in publicly accessible water sources that have potential to be used for potable water.
- Assess private property water sources where concern of contamination exists.
- Confirm CSIRO results by resampling a select number of locations.

The rationale for the background sampling included:

- Soil and sediment sampling in areas identified as potential sources both on-site and off-site.
- Surface water and sediment sampling off-site in areas down-gradient of identified source areas.

5.5 Fieldwork Methodology

Field work methodology adopted during the preliminary PFAS investigation is provided in Appendix J.

5.6 Laboratory Analysis

The analytical schedule completed during the investigation is summarised in the table below. The primary laboratory used for the water, soil and sediment analysis was ALS Environmental and the secondary laboratory was Eurofins.

Table 5-3: Laboratory Analysis

Matrix	Number of Samples	Analytical Regime
Water	42 water samples	All 42 primary water samples analysed for the following:
	25 Groundwater7 surface water	PFAS Full Suite (28 analytes)*
	7 surface water	A sub-set of 16 groundwater samples from across the island were also analysed for the following:
		 Major anions and cations including alkalinity, sulfate, chloride, calcium, magnesium, sodium, potassium, total anions and total cations.
Soil and Sediment	130 soil/sediment samples 89 soil 41 sediment	All 130 primary water samples analysed for the following:
		PFAS Full Suite (28 analytes) *
		A sub-set of an additional 26 primary soil and sediment samples of primary samples from within different sources areas and within the Mission Creek were also analysed for the following:
		ASLP Leachability for PFAS Full Suite (28 analytes) *
Quality Control	36 Quality Control Samples	36 secondary samples (18 pairs) (water, soil and sediment) for the following
Samples		PFAS Full Suite (28 analytes) *
		Analysis of 4 secondary soil and sediment samples for the following:
		ASLP Leachability for PFAS Full Suite (28 analytes)

*PFAS Full Suite (28 analytes) includes – perfluorobutane sulfonic acid (PFBS), perfluoropentane sulfonic acid (PFPeS), perfluorohexane sulfonic acid (PFHxS), perfluorohexane sulfonic acid (PFHxS), perfluorohexane sulfonic acid (PFDS), perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluorohexanoic acid (PFHxA), perfluorohexanoic acid (PFHxA), perfluorononanoic acid (PFDA), perfluorononanoic acid (PFDA), perfluorodecanoic acid (PFDA), perfluorothidecanoic acid (PFTeDA), perfluorot

The laboratory certificates of analysis and accompanying chain of custody information are provided in **Appendix K**.

5.7 Quality Assurance / Quality Control

The data QA/QC procedures were adopted by Senversa to provide a consistent approach to evaluate whether the data quality objectives (**Section 5.1**) of the project have been achieved. The process focused on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the elements of the environment being investigated. The approach was generally based on guidance from the following sources:

- Australian Standard AS4482.1 Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds (2005).
- NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils, Canberra: National Environment Protection Council.
- United States Environmental Protection Agency (USEPA) Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4 (2006).
- USEPA Guidance on Environmental Data Verification and Data Validation EPA QA/G-8 (2002).

Documentation of the data QA/QC assessment is presented within **Appendix L**. The majority of the results conformed to acceptance criteria and the data was considered to be representative of chemical concentrations in the environmental media sampled and therefore useable for their intended purpose of gaining an understanding of the contamination status of soil, groundwater, surface water and sediment at and surrounding the site.

5.8 Groundwater Investigation Results

Groundwater analytical results compared to adopted screening levels are summarised in **Table 3**. Laboratory certificates of analysis are provided in **Appendix K**. Investigation locations with analytical results screened against human health screening levels are shown on **Figures 6** and **7**.

5.8.1 Field Observations

Groundwater across the site and surrounding area contained low total dissolved solids (TDS) ranging from 269 to 769 mg/L with a slightly acidic to neutral pH ranging from 4.81 to 7.09 confirming groundwater to be fresh (i.e. not saline) and that groundwater recharge in the upper aquifer occurs predominantly via rainwater infiltration. Groundwater was observed to be clear with low turbidity and no odour. Groundwater observations and parameters collected in the field are provided in **Appendix M.**

5.8.2 Groundwater Laboratory Results

The key findings of the water sampling are presented below:

- Senversa sampling confirmed the CSIRO identified impact at the "Airport Bore" (Sample ID PWS_AIRPORT_BORE), which was also found to contain the highest recorded concentration of sum of PFHxS + PFOS (44.5 μg/L) when compared to other groundwater samples.
- All groundwater bores used for water carting (WC_01 WC_03) did not report detectable concentrations of PFAS.
- With exception of low-level PFAS detections at three properties, all private property groundwater drinking bores did not report detectable concentrations of PFAS. These results were from two properties within the Mission Creek catchment (ID014 and ID015) and one property within the Headstone Creek catchment (ID003).
- Two locations where privately owned bore water reported PFAS in concentrations above drinking water HBGV were found to be used for stock watering (i.e. for cattle drinking water) and were not used for potable drinking water. Exposure to the measured concentrations of PFAS is unlikely to impact upon the health or condition of cattle. However, cattle can accumulate PFAS from the water that they drink, resulting in PFAS concentrations in their tissues, including in meat which can then be consumed by people.

It is noted that there is no available regulatory screening level specifically for this pathway; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required. It is noted that where cattle source their water from a variety of sources (i.e. not all of the water they drink is from the PFAS impacted source) this will reduce the potential exposures via this pathway.

- The exceedance of the drinking water HBGV does not necessarily indicate that potential risks are posed via two specific pathways:
 - Human consumption of crops or eggs from chickens watered with this water.
 - Human consumption of stock that have used this water for their drinking water. Cattle
 source their water from a variety of sources (i.e. not all of the water they drink is from the
 PFAS impacted source) and this reduces the potential exposures via this pathway.

However, the presence of elevated concentrations of PFAS in this water indicated that further assessment of these pathways is required.

 Groundwater within the Mission Creek catchment reported concentrations for sum of PFHxS + PFOS above HBGVs at three locations (PWS_AIRPORT_BORE, ID014 and ID015).

In summary, PFAS was reported in concentrations above the adopted HBGV from groundwater in samples collected within the Mission Creek Catchment, down-gradient of the former fire station and drill area. All groundwater samples collected outside of the Mission Creek Catchment did not report PFAS in concentrations above the HBGVs.

A summary of the exceedances of the adopted assessment values are summarised in **Table 5.3**.

Table 5-4: Summary of Groundwater Analytical Results

Analyte	Screening Value (µg/L)	No. of Samples ¹	Detectable Concentration Range (μg/L)	Number of Detections ¹	Number of Exceedances
PFOA	0.56 ²	25	0.02 – 0.57	7	1
PFOS	NA		0.46 – 33.1	7	-
PFHxS	NA		0.04 – 11.4	9	-
Sum of PFOS + PFHxS	0.072		0.004 – 44.5	9	3

¹ Includes field quality control duplicate and triplicate samples

NA = No Australian screening values available

5.9 Surface Water Investigation Results

Surface water analytical results compared to adopted screening levels are summarised in **Table 3**. Laboratory certificates of analysis are provided in **Appendix K**. Investigation locations of samples obtained on public land (or private land with permission to display the results) with analytical results screened against HBGVs are shown on **Figures 6** and **7**.

5.9.1 Field Observations

The surface water bodies that were sampled included two dams, one reservoir, six creeks and one spring. The dams (headstone and watermill dam) and reservoir (Hessies reservoir) contained large volumes of water with relatively low TDS and neutral pH.

All but one creek contained stagnant pools of water with slight brown colouring and organic odours. The only creek that was flowing was Watermill Creek (sample IDs TC_SW02 and TC_SW02). Water quality parameters and observations are provided in **Appendix M**.

²PFAS National Environmental Management Plan – Drinking Water Guidelines (HEPA, 2018)

5.9.2 Surface Water Laboratory Results

The key findings of the water sampling are presented below:

- Surface water collected at WWII Dam (Sample ID PWS_WWII_DAM) confirmed CSIRO identified PFAS, and this location reported the highest detectable PFAS concentrations of sum of PFHxS + PFOS (67.2 µg/L) when compared to other surface water samples.
- Surface water collected from public water supply points exceeded the adopted HBGVs for sum of PFHxS + PFOS at one location (PWS DUCK DAM) with a concentration of 0.12 µg/L.
- Surface water sampled from Cascade Creek, down gradient of the council works depot (ID012_SW01) exceeded the adopted HBGVs for sum of PFHxS + PFOS with a concentration of 0.18 µg/L.
- Surface water sampled from Watermill Creek (TC_SW02), down gradient of the site and upgradient of watermill Dam (PWS_DUCK_DAM) exceeded the adopted HBGVs for sum of PFHxS + PFOS with a concentration of 0.09 µg/L.
- Surface water sampled from Mission Creek (ID013_SW01), down gradient of the site exceeded the adopted HBGVs for sum of PFHxS + PFOS with a concentration of 4.50 μg/L. This water was sampled from a hose pumping water up from the creek onto the residential property where the water is understood to be used for watering crops and poultry. Exposure to the measured concentrations of PFAS is unlikely to impact upon the health or condition of produce or chickens. However, chickens can accumulate PFAS from the water that they drink, resulting in PFAS concentrations in their tissues, including in eggs which can then be consumed by people. Plants can also take up PFAS from the water they are irrigated with, and potentially accumulate it in their roots, leaves and fruit (which can then be consumed by people). It is noted that there is no available regulatory screening level specifically for this pathway; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required.

In summary, surface water collected from Mission Creek, Watermill Creek, Cascade Creek and Watermill Dam exceeded the adopted HBGVs for drinking water.

Exceedances of the adopted HBGVs are summarised in Table 5.4 below.

Table 5-5: Summary of Surface Water Analytical Results

Analyte	Screening Value (µg/L)	No. of Samples ¹	Detectable Concentration Range (μg/L)	Number of Detections	Number of Exceedances
PFOA	0.562	17	0.07 – 1.13	2	1
PFOS	NA		0.01 – 44.6	11	-
PFHxS	NA		0.02 – 22.6	8	-
PFOS + PFHxS	0.072		0.01 – 67.2	12	5

¹ Includes field quality control duplicate and triplicate samples

NA = No screening values available

5.10 Tank / Tap Water Investigation Results

Water tank and tap water analytical results compared to adopted HBGVs are summarised in **Table 3**. Laboratory certificates of analysis are provided in **Appendix K**. Investigation locations with analytical results screened against adopted HBGVs are shown on **Figures 6** and **7**.

² PFAS National Environmental Management Plan – Drinking Water Guidelines (HEPA, 2018)

5.10.1 Field Observations

The water tanks sampled during the targeted assessment included tanks containing site derived rainwater and tanks that have historically been filled using airport bore water and water provided by water carriers. Any tank known to contain only bore water was labelled as a bore with these results discussed in **Section 5.7** above.

Eleven tanks were sampled during the targeted investigation. Tanks across the island are predominantly constructed out of high-density polyethylene (HDPE), however some older tanks on the island are of concrete construction. Seven taps were sampled during the investigation. Tap samples were of filtered water plumbed directly from tanks. Filtration systems varied between locations.

5.10.2 Tank Water Laboratory Results

The key findings of the water sampling are presented below:

 All tanks sampled did not report detectable concentrations of PFAS, except for one council depot tank (DEPOT_TANK2) and the one tap sampled inside together with the concrete underground tank at the Hospital (PWS_HOSP_TANK2). The council depot tank 2 (DEPOT_TANK2) was the only tank with water that exceeded the adopted HBGVs for sum of PFHxS + PFOS with a concentration of 9.01 μg/L.

Tank water samples in which PFAS was not detected included rainwater used for the supply of bottled water / water cooler water, and private rainwater tanks. The private rainwater tanks sampled included a tank known to have been historically filled from a water carter supply which was unable to be sampled directly; the absence of detectable PFAS in this water provides indirect evidence that this water carter supply is unlikely to be impacted by PFAS.A summary of the exceedances of the adopted assessment values are summarised in **Table 5.5A** below.

Table 5-6A: Summary of Tank Water Analytical Results

Analyte	Screening Value (µg/L)	No. of Samples ¹	Detectable Concentration Range (μg/L)	Number of Detections	Number of Exceedances
PFOA	0.56 ²	15	0.17	1	0
PFOS	NA		0.02 – 5.54	2	-
PFHxS	NA		3.47	1	-
PFOS + PFHxS	0.072		0.02 – 9.01	2	1

¹ Includes field quality control duplicate and triplicate samples

NA = No screening values available

5.10.3 Tap Water Laboratory Results

Taps at the chapel, hospital, school, council works depot and fire station were sampled as part of the targeted investigation. The water from all taps sampled was tank water following filtration. The key findings of the water sampling are presented below:

- The council depot tap (DEPOT_TAP) exceeded the adopted HBGV for sum of PFHxS + PFOS with a concentration of 8.79 µg/L.
- Both the indoor and outdoor tap at the fire station (FRE_TAP1 and FRE_TAP2) exceeded the adopted HBGV for sum of PFOS + PFHxS with concentrations of 8.63 and 22.3 μg/L respectively.
- The hospital tap (PWS_HOSP_TAP1) exceeded the adopted HBGV for sum of PFHxS + PFOS with a concentration of 0.50 μg/L.

² PFAS National Environmental Management Plan – Drinking Water Guidelines (HEPA, 2018)

The water sampled from the depot tap reported elevated PFAS concentrations, consistent with the concentrations measured in DEPOT_TANK2 (one of the tanks supplying the facility). A replacement drinking water supply has been put in place at the depot, and advice has been provided that the tap water should not be used for drinking, cooking or other uses where it may be consumed (e.g. cleaning teeth).

The water sampled from the hospital and depot taps reported elevated concentrations of PFAS that was not observed in the tank in which the water was sourced. The elevated concentrations of PFAS were considered to come from either the pipework or filtration system between the tank and the tap. Further investigation to the source of this PFAS was subsequently undertaken and is discussed below in **Section 5.9.4**.

Table 5-7B: Summary of Tap Water Analytical Results

Analyte	Screening Value (µg/L)	No. of Samples ¹	Detectable Concentration Range (μg/L)	Number of Detections	Number of Exceedances
PFOA	0.56 ²	7	0.16 – 0.44	3	0
PFOS	NA		0.45 – 15.0	4	-
PFHxS	NA		0.05 – 7.30	4	-
PFOS + PFHxS	0.072		0.5 – 22.3	4	4

¹ Includes field quality control duplicate and triplicate samples

5.10.4 Further Hospital Tap Assessment

Following receipt of the elevated PFAS concentrations in the hospital tap (PWS_HOSP_TAP1), Senversa requested ALS (the primary laboratory) re-analyse the sample. The result was found to be within the same order of magnitude with the concentration of sum of PFOS + PFHxS being between 0.41 μ g/L and 0.40 μ g/L (see **Appendix K** for the laboratory report). This is slightly lower than the previous result of 0.50 μ g/L but above the adopted HBGV (0.07 μ g/L).

As shown on the picture below, the sample PWS_HOSP_TAP1 was obtained from a tap at the base of one of two "filtration cannisters", immediately after water passed through the hospital's filtration system. An inset within **Figure 7** shows the location of all the samples obtained from the hospital, including surrounding tanks and bores.

² PFAS National Environmental Management Plan – Drinking Water Guidelines (HEPA, 2018) NA = No screening values available

Plate 10: Hospital Water Filtration System

The hospital has seven water tanks and anecdotal evidence suggested that two of the older tanks at the rear of the hospital, (one concrete and one HDPE) were previously topped up with bore water from the airport bore (Senversa sampling ID: PWS_AIRPORT_BORE). However, all tanks were understood to be full of rain water with no bore water top ups occurring over the past two years.

All tanks are connected to a master tank (sample ID: PWS_HOSP_TANK1 taken from master tank did not detect PFAS), with water then transferred directly into the hospital water treatment system in a small building adjacent to the tank.

After passing through the water filtration system, water is then circulated through at least some or potentially all hospital buildings. However, we understand the water supply to the hospital laundry is separate, with this water coming from the bore at the rear of the property (sample ID: PWS_HOSP_BORE taken from this bore).

As PFAS was not detected in the tank supplying the filter and tap, it was identified that the source of the elevated concentrations reported in sample "PWS_HOSP_TAP1" may be attributed to PFAS being sorbed onto filtration substrate contained within the hospital filtration system that was deposited on occasions when the PFAS impacted airport bore was being used to supply water to the hospital. It was additionally identified that other taps within the hospital connected to the hospital's water filtration system may contain similar PFAS concentrations.

Based on these results, the hospital was placed on an alternative drinking water supply. Subsequently, parts of the filtration system were replaced, and the system purged. Senversa undertook further sampling on 13 February 2020 following these works. Samples were collected as follows:

- HOSP_TAP1 is a repeat of the previously collected sample (collected from the right-hand filtration system following the full filtration process).
- HOSP_TAP2 is collected from part-way through this right-hand filtration chain (the filtration system contains several filters in series, and this was collected after the first filter, but before the second).

- HOSP_TAP3 was collected from the right-hand filtration system following the full filtration process (i.e. this sample is analogous to HOSP_TAP1, but from the left hand side).
- HOSP_TAP4 is from the tap in the kitchen, this is water which has passed through the filtration system which is being used utilised within the hospital.

With the exception of HOSP_TAP2, the measured concentrations in all of these samples (0.34-0.58 µg/L PFOS +PFHxS) exceeded the adopted HBGV, and were similar to those previously measured in HOSP_TAP1. As the results remained above the drinking water HBGV, the alternative drinking water supply should continue to be used for drinking and cooking within the hospital. These results indicate that part of the hospital filtration system may be a source for the identified PFAS, even following replacement of parts of the system and purging. PFOS +PFHxS concentrations were below laboratory detection limits in HOSP_TAP2 (collected after the first filter, but before the second), indicating that the second filter in the filtration system is the most likely source for the identified PFAS.

5.11 Targeted Soil Investigation Results

Soil analytical results compared to adopted screening values are summarised in **Table 4**. Laboratory certificates of analysis are provided in **Appendix K**. Investigation locations with analytical results screened against human health screening values are shown on **Figures 8** and **9**.

5.11.1 Field Observations

The soil observed across the site and surrounding area generally comprised of a grassed surface coverage underlain by dry, hard, brown silky clay with trace roots. Photographs of select sample locations and lithology are provided in **Appendix I**.

5.11.2 Soil Laboratory Results

The key findings of the soil sampling are presented below:

- All soil samples collected off-site (Ball Bay, St Barnabas Chapel and Webb Adams property) reported detectable concentrations of PFAS, but all were below the adopted human health screening values (HHSV) for residential land use.
- All 64 soil samples collected on-site from potential source zones contained concentrations of PFHxS + PFOS below the adopted commercial HHSV assessment criteria.

In summary, all targeted soil samples collected on and off-site were below the adopted HHSV relevant for the location sampled, however the soils with detectable PFAS present represent a potential ongoing source of surface water and groundwater contamination. Further investigation is recommended to further assess the identified soil source areas and to delineate the impacted areas.

A summary of the results is provided in **Table 5.7A** (on-site soils) and **Table 5.7B** (off-site soils) below.

Table 5-8A: Summary of On-Site Surface Soil Analytical Results

Analyte	Screening Value (mg/kg)	No. of Samples Analysed ¹	Detectable Concentration Range (mg/kg)	Number of Detections ¹	Number of Exceedances
PFOA	50 ²	87	0.0002 - 0.025	55	0
PFOS	NA	_	0.0002 – 0.986	86	-
PFHxS	NA	_	0.0002 - 0.0746	64	-
PFOS + PFHxS	20 ²	_	0.0002 -1.04	0	0

¹ Includes field quality control duplicate and triplicate samples

² based on 20% of FSANZ TDI, i.e. up to 80% exposure is assumed to come from other pathways. NA = No screening values available

Table 5-9B: Summary of Off-Site Surface Soil Analytical Results

Analyte	Screening Value (mg/kg)	No. of Samples ¹	Detectable Concentration Range (mg/kg)	Number of Detections ¹	Number of Exceedances
PFOA	0.3 ²	43	0.0002 - 0.058	13	0
PFOS	NA		0.0002 - 0.456	13	-
PFHxS	NA		0.0002 - 0.0692	27	-
PFOS + PFHxS	0.012		0.0002 -0.521	39	17

¹ Includes field quality control duplicate and triplicate samples

5.12 Targeted Sediment Investigation Results

Sediment analytical results compared to adopted screening levels are summarised in **Table 4**. Laboratory certificates of analysis are provided in **Appendix K**. Investigation locations with analytical results screened against human health screening levels are shown on **Figures 8** and **9**.

5.12.1 Field Observations

The sediment within the open drainage network both on and surrounding the site comprised of dry, brown gravelly silt. Sediment in off-site water bodies including Mission Creek and Mission Pool comprised of wet, brown silty clay. All sediment samples were dry with the exception of sediment collected from Cascade Creek where surface water was present. Photographs are provided in **Appendix I**, with a photograph showing the location of the Mission Pool samples provided as Photo 29.

5.12.2 Sediment Laboratory Results

The key findings of the sediment sampling are presented below:

- Sediment samples collected from on-site drains reported detectable concentrations of PFHxS+ PFOS in all samples with four samples (A_SD01, A_SD02, A_SD05 and A_SD07), but were below the adopted commercial HHSV.
- Samples collected from surface water drains surrounding the site (i.e. drains collecting surface
 water run-off from site) were generally below the adopted HHSV with the exception of two
 samples (AD_SD09 and AD_SD10), which were samples collected off-site adjacent to the
 maintenance facility.
- All samples collected off-site from within the Mission Creek and Mission Pool north of the Chapel (MCSD01 – MCSD10) reported elevated concentrations of sum of PFHxS + PFOS exceeding the adopted residential HHSV.
- One sediment sample collected from Cascade Creek (ID012), down gradient of the council works depot reported elevated concentrations of sum of PFHxS + PFOS exceeding the adopted residential HHSV. Elevated concentrations of PFAS was also found in surface water at this location.

While exceedances of the residential HHSV were noted in a number of locations, it is emphasised that the use of these HHSV for comparison with sediment concentrations is very conservative. The adopted HHSV consider that fruit and vegetables could be grown in soil for home consumption, as well as offering protection for people coming into daily contact with soil. PFAS concentrations in the sampled sediment are below the HHSV presented in the NEMP for all other land uses, including for public open space (PFOS+PFHxS = 1 mg/kg).

 $^{^{2}\,\}text{based}$ on 20% of FSANZ TDI, i.e. up to 80% exposure is assumed to come from other pathways.

NA = No screening values available

The public open space guidance values are derived on the basis that daily contact with soils could occur (but they assume that no produce is grown in the soils). The open space guidance values are considered conservative to assess the potential risks associated with incidental contact with these sediments (which is likely to occur infrequently).

Exceedances of the adopted assessment values are summarised in Table 6.2 below.

Table 5-10: Summary of Sediment Analytical Results

Analyte	Screening Value (mg/kg)	No. of Samples ¹	Detectable Concentration Range (mg/kg)	Number of Detections ¹	Number of Exceedances
PFOA	0.32	41	0.0002 - 0.0058	17	0
PFOS	NA		0.0002-0.456	38	-
PFHxS	NA		0.0002-0.0692	31	-
PFOS + PFHxS	0.012		0.0004-0.521	39	15

¹ Includes field quality control duplicate and triplicate samples

NA = No screening values available

5.13 Leachability of Soil & Sediment Results

A total of 26 soil and sediment samples from the Mission Creek, Watermill Creek and Headstone Creek surface water catchments were analysed for leachable PFAS and the results compared against the adopted HBGV for drinking water are presented in **Table 5**. The key findings from the assessment include:

- Leachable concentrations of PFAS were present in 25 of the 26 samples analysed, with sample ID012_SD01 (Total soils PFOS + PFHxS concentration: 0.0083 mg/kg) obtained from private land within the Watermill / Town Creek surface water catchment, being the only sample to have leachable PFAS concentrations below detection limits.
- 13 samples exceeded the HBGV for drinking water (sum of PFOS + PFHxS: 0.07 μg/L), with a highest concentration of 5.54 μg/L (sum of PFOS + PFHxS) present within sample obtained from the airport between the large Banyan Tree and airport apron at sample location A_SS54.

These results suggest that the soils / sediments where detectable PFAS was identified may represent an ongoing source of PFAS contamination to surface water and groundwater.

5.14 Analysis of AFFF within Fire Truck

For the purpose of assessing the concentration and ratio of PFAS in AFFF stocks remaining on island, one sample of AFFF ""FRE_UL_TENDER1"" was obtained directly from one of the airport fire fighting vehicles, with this location not shown on the figure.

- The concentration of PFOS + PFHxS in the remaining AFFF sampled from the aviation fire fighting trucks (Sample FRE_UL_TENDER1) was 683 μg/L. This concentration was considered indicative of the AFFF Ansulite being diluted with water from within the truck. The top five highest PFAS analyte concentrations within the potentially diluted AFFF formulation were:
- Perfluorohexanoic acid (PFHxA) 1,160 μg/L
- Perfluorobutanoic acid (PFBA) 662 μg/L
- 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 614 μg/L
- Perfluorooctanoic acid (PFOA) 539 μg/L
- PFOS 473 μg/L

² based on 20% of FSANZ TDI, i.e. up to 80% exposure is assumed to come from other pathways.

The compositional data collected for this AFFF sample will assist in assessing disposal options for AFFF. It is emphasised that these concentrations do not represent environmental concentrations of PFAS; these are concentrations present in residual AFFF stocks in fire fighting vehicles rather than concentrations in water which may be used for drinking or other purposes. As such, it is not relevant to compare these concentrations to water screening levels.

6.0 Preliminary Conceptual Site Model

Based on the information reviewed and summarised in the previous sections, the following sections outline the key sources, pathways and receptors of the CSM.

6.1 Key PFAS of Interest

Published health based guidance values (HBGVs) within the PFAS NEMP relates to PFOS, PFHxS and PFOA only, and as such are considered the key PFAS of interest for the purposes of the PSI.

Assessment of the nature and extent of other PFAS will be undertaken as a part of the DSI.

6.2 Sources of PFAS

6.2.1 PFAS Source Areas

A number of source areas where legacy AFFF was used and introduced into the environment were identified during the site history review and Senversa's on-island investigation (refer to **Section 4.0**). Details on each identified source area are provided in **Table 1** (attached) with their location shown on **Figure 4** and **Figure 5**.

Generally, the most significant source areas ('Group 1 Source Areas' identified in **Table 1**) were locations where there was repeated application of foams and concentrate. These Group 1 Source Areas include the following primary source areas:

Group 1 Source Areas:

- Primary Source Area 01: The former fire station and foam shed.
- Primary Source Area 02: Flushing out area in the northeast corner of the site.
- Primary Source Area 03: The former drill ground south west of the former fire station in the northeast portion of the site. This area is now utilised as the waste management facility.
- Primary Source Area 04: Current fire drill area along the northern site boundary. This area is currently utilised by Boral and was unable to be accessed during the targeted investigation.
- Primary Source Area 05: The maintenance depot where general maintenance of fire trucks historically occurred.
- Primary Source Area 06: The current fire station.

Other source areas that were considered to be less significant based on frequency of AFFF application, were identified and grouped as follows:

- Group 2 Source Areas (Potential Sources 7-11) Areas where legacy AFFF concentrate and / or foam was used or stored more than once, but with less frequent rates of application than Group 1.
 Also includes secondary source areas like the wastewater treatment plant on the Airport.
- Group 3 Source Areas (Potential Sources 12-15) Areas where a single application of foams occurred due to an incident or a one off event.
- Group 4 Source Areas (Sources 16 & 17) Areas where no AFFF is known to have been used, however water containing elevated concentrations of PFAS used.

Further information on potential PFAS Source Areas 7 through 17 is provided summarised in Table 1.

6.2.2 Impacted Environmental Media

Once released to the environment due to spills, leaks, application of foams, etc., AFFF can result in PFAS impacts to soil, surface water, groundwater and biota. The pathways by which PFAS may migrate through the environment, by processes such as desorption, adsorption, leaching, or bioaccumulation, are represented in the flow chart in **Plate 11** provided in **Section 6.5** below.

6.3 Exposure Pathways

Exposure pathways by which the above receptors may be exposed to PFAS in environmental media are listed below. The significance of these exposure pathways is dependent on a number of factors, such as the rate of exposure/intake, the concentrations within the impacted media at the point of exposure and characteristics of the receptor group.

6.3.1 Human Health

Human health receptors may be exposed to impacted environmental media through direct contact pathways. Generally, direct contact with soils is limited to the top 0.5 m, although construction or intrusive workers may disturb and be exposed to deeper soils. Groundwater may be accessible when extracted for uses such as domestic (non-potable), agricultural, or other purposes.

- Incidental ingestion shallow soil, extracted groundwater, surface water.
- Dermal contact shallow soil, extracted groundwater, surface water (noting that PFAS have very low/ negligible dermal absorption rates).
- Inhalation of dusts and aerosols.
- Bioaccumulation and ingestion via the food web agricultural or aquatic (fish, water birds).

6.3.2 Ecological

Ecological receptors may be exposed to impacted environmental media through direct contact and uptake pathways. Generally, habitat areas for terrestrial receptors (the root zone, burrowing animals, etc.) are assumed to extend to approximately 2 m depth.

- Direct uptake from surface water, sediments or soils.
- Bioaccumulation via the ecological food web.

6.4 Receptors

Potential receptors that may be exposed to PFAS on or off the site are divided into two categories, human health and ecological. While these receptors may not be at risk from PFAS impacts (i.e. exposure pathways may be incomplete), the investigation into potential PFAS impacts should ensure that such receptors are considered and the potential for exposure should be appropriately assessed.

Key identified human health and ecological receptors are shown on the cross-section presented as **Figure 10** and summarised below.

6.4.1 Human Health

Current receptors on-site comprise:

- · Airport and Council Office Workers.
- Fire Fighters.
- Waste Management Workers.
- Intrusive workers (including resurfacing workers).
- Airport visitors / travellers.

Current off-site receptors located in proximity to the site include:

- Residents / Farmers.
- Workers and intrusive workers.
- Recreational users of creeks / dams.
- Consumers of produce in which PFAS may accumulate (e.g. meat, eggs, fruit, and vegetables).

6.4.2 Ecological

Potential ecological receptors include the following:

- On-site environments:
 - Grassland surrounding the runway and aprons.
- Off-site environments:
 - Freshwater aquatic flora and fauna present in surface waters (including Mission Creek, Cascade Creek, Watermill Creek, Watermill Dam, and drainage and irrigation lines).
 - Terrestrial flora and fauna, including grasses/pasture, cattle and chickens.
 - Saltwater aquatic flora and fauna present at Mission Creek discharge.
- Higher trophic level organisms (e.g. predatory birds) consuming fauna from on- and/or off-site.

6.5 Qualitative Source – Pathway - Receptor Linkages Assessment

Due to the high solubility of PFAS, these substances can readily migrate in the following ways:

- Leaching from PFAS impacted soils/sediments/concrete.
- Transport to/from/via surface water drainage (drains, natural surface water (creeks, rivers, wetlands), irrigation networks, dams and areas of inundation.
- Transport in groundwater and discharge to surface water bodies, or groundwater recharge from PFAS impacted surface runoff.

Historical use of legacy AFFF is likely to have also resulted in aerosols or sorption onto dust particles which may have migrated and deposited onto other media.

In accordance with the sources, receptors, and pathways summarised above, the following conceptual site model flow chart was developed to provide a summary of the key potential exposure to PFAS on Norfolk Island. The flow chart in **Plate 11** below provides a diagrammatic representation of the key Norfolk Island Airport Source-Pathway-Receptor (SPR) linkages. This summary CSM considers the key SPR linkages associated with the most significant source areas ('Group 1 Source Areas' identified in Table 1) where there was repeated application of foams and concentrate. Potential SPR linkages associated with all potential sources (including less significant Group 2, Group 3 and Group 4 sources) are discussed further in Table 6-1.

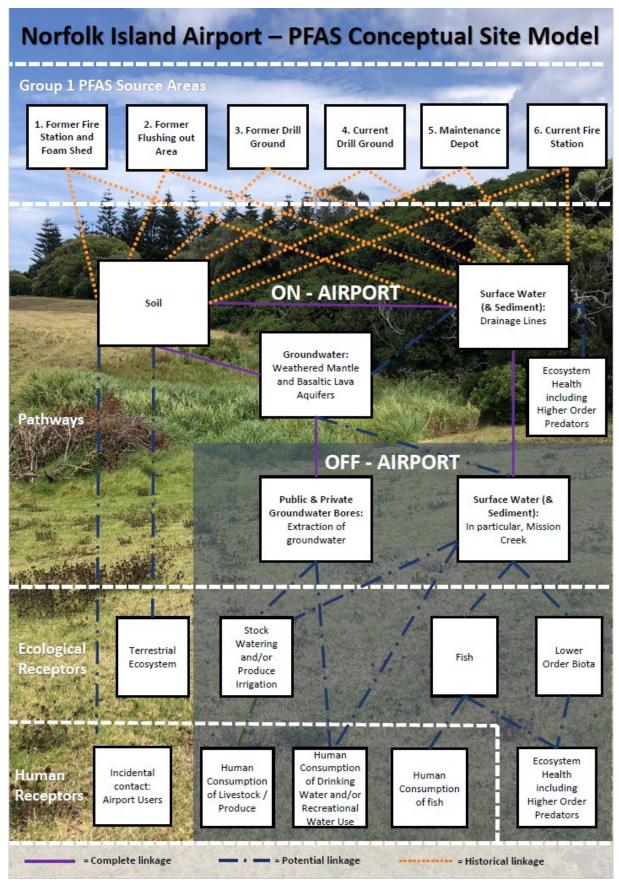


Plate 11: Preliminary Conceptual Site Model Flow Chart

Table 6-1: Risk Ranking of Potentially Complete Source-Pathway-Receptor Linkages

Area	Media of Potential Concern	Receptor	Potential Priority Level	Basis	Tier 2 Risk Assessmen t likely required?	
	Soil / Sediments	Airport and Council Office Workers	Low	Likelihood for general worker exposure to PFAS is considered to be low as majority of activities are not likely to involve soil disturbance.	No	No
		Airport Visitors	Low	Likelihood for visitor exposure to PFAS is considered to be low as the publicly accessible portions of the site generally contain hardstand and are not in areas of highest impact. Further, visitors only spend a very limited period of time at the airport, thereby limiting potential exposure.	No	No
		Current Fire Fighters	Medium	Likelihood for firefighter exposure to PFAS is considered to be medium as majority of activities are in high impact areas however are not likely to involve soil disturbance and fire fighters wear personal protective equipment during fire fighter activities.	No	Yes
		Waste Management Workers	Medium	Likelihood for Waste Management workers exposure to PFAS is considered to be medium as the Waste Management Facility is considered an area of high impact however general duties are not likely to involved soil disturbance.	No	Yes
		Intrusive workers (Incl. resurfacing workers)	High	Likelihood for intrusive workers including resurfacing workers exposure to PFAS is considered to be high due to the concentrations of PFAS in shallow surface soils in areas surrounding the runway and the high likelihood of the soil to be disturbed.	No	Yes
		Terrestrial ecological receptors	Medium	Given the nature of the airport site, the potential for sensitive ecosystems to be present is likely to be low. Additionally, it is unlikely that biota from within the impacted areas of the site would form a significant proportion of the diet of higher order predators (given the limited size of the area, and the limited biota which are likely to be present in these areas. Notwithstanding this, it is noted that that a number of the measured concentrations exceed the most conservative screening levels for terrestrial ecosystems presented in the NEMP, and as such, this pathway should be considered further in the next stages of assessment.	Potentially	No
	Surface / Tap Water (including from bore)	e / Tap Water Airport and Medium Likelihood for airport and council worker exposure to PFAS in water is considered to be medium as the water			Yes	Yes

Area	Media of Potential Concern	Receptor	Potential Priority Level	Basis	Tier 2 Risk Assessmen t likely required?	
		Airport Visitors	Low	Likelihood for elevated airport visitor exposure to PFAS is considered to be low as alternative supplies for potable water is provided (for both drinking water and in the café). Water from the Airport Bore continues to be utilised for the toilet facilities, but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin.	Yes	No
		Fire Fighters	Medium	Likelihood for fire fighter exposure to PFAS is considered to be high as regular contact with PFAS contaminated water is likely. The kitchen tap and outside hydrants both contain elevated concentrations of PFAS which would be used daily. The priority is not considered high as it is understood this water is not used for potable purposes, with alternate drinking water supplied. Water from the Airport Bore continues to be utilised for other (non-potable) uses, for example the toilet facilities, but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin.	Yes	Yes
		Waste Management Workers	Medium	Likelihood for waste management worker exposure to PFAS in water is considered to be medium as the water supplied to buildings is likely sourced from Airport Bore (not confirmed) which contains elevated concentrations of PFAS.	Yes	Yes
, , , , , , , , , , , , , , , , , , ,		Intrusive workers (Including resurfacing workers)	Medium	Likelihood for intrusive worker exposure to PFAS in water is considered to be medium as a portion of the water used for dust suppression / fire drill training / resurfacing and potentially other uses (access to current drilling ground / resurfacing works area was not gained during this PSI) may have been or may currently be sourced from the PFAS impacted Airport Bore. The exposure potential will be limited where water is not used for drinking given the limited potential for PFAS adsorption through the skin.	Yes	Yes
	Shallow Groundwater- Direct Contact	Fire Fighters	Low	Likelihood for fire fighter exposure to PFAS in groundwater is considered low as there are no known fire fighter training activities that require excavation on site.	No	No
	Contact	Waste Management Workers	Low	Likelihood for waste management workers exposure to PFAS in groundwater is considered low as there is no bore on-site that is used at this facility.	No	No
		Intrusive & resurfacing workers.	Medium	Likelihood for intrusive works exposure to PFAS in shallow groundwater is considered medium however this is dependent on the type of intrusive works and the depth to groundwater. More information is required.	Potentially	No
		Terrestrial ecological receptors	Medium	Given the nature of the airport site, the potential for sensitive ecosystems to be present is likely to be low. Additionally, it is unlikely that biota from within the impacted areas of the site would form a significant proportion of the diet of higher order predators (given the limited size of the area, and the limited biota which are likely to be present in these areas. Notwithstanding this, it is noted that that the potential for PFAS uptake from groundwater via on-site plants has not currently been excluded, and as such, this pathway should be considered further in the next stages of assessment.	Potentially	No

Area	Media of Potential Concern	Receptor	Potential Priority Level	Basis	Tier 2 Risk Assessmen t likely required?	Further sampling likely required?
	Soil	Residents / Farmers	Medium	Potential for exposure if impacted groundwater used for irrigation of crops or gardens results in PFAS impacts to soil. Potential for exposure is greater in areas where contaminated groundwater has been identified.	Potentially	Yes
		All Workers	Medium	Potential for exposure if impacted groundwater used for irrigation of crops or gardens results in PFAS impacts to soil.	Potentially	Yes
_		Terrestrial ecological	Medium	Potential for exposure if impacted groundwater used for irrigation of pasture or gardens results in PFAS impacts to soil.	Potentially	Potentially
olk Island	Surface Water / Sediments	Residents / Medium Farmers Potential direct contact with off-site drains and surface water bodies for recreation and farming purposes. Investigations to date have indicated this water is unlikely to be used for drinking, and the potential for PFAS exposure will be much lower for other uses when compared with drinking water exposure.		Potentially	Yes	
r Norfc		Workers incl. Intrusive	Medium	Potential direct contact with off-site drains and surface water bodies and the potential for PFAS exposure will be much lower for other uses when compared with drinking water. exposure.	Potentially	Yes
Wide		Recreational creek users	Medium	Potential for direct contact pathways to be complete, however exposure would be intermittent/ occasional.	Yes	Yes
Off-Site: Wider Norfolk		Beef cattle, chickens, crops.	Medium- High	Likelihood of impacts in some surface water bodies/drains in grazing areas. Up to the time of the PSI, surface water is known to have been pumped from Mission Creek and used to water cattle and poultry and irrigate plants. It is noted that there is no available regulatory screening level specifically for these pathways; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required. It is noted that where e.g. cattle source their water from a variety of sources (i.e. not all of the water they drink is from the PFAS impacted source) this will reduce the potential exposures via this pathway.	Yes	Yes
		Freshwater aquatic ecological receptors	High	PFOS has been identified in off-site surface waters at concentrations exceeding NEMP screening levels for the protection of ecosystems. Further assessment of this potential pathway is required to assess the potential for sensitive freshwater ecosystems to be present, and to understand the potential for exposure to different receptors	Yes	Potentially

	Media of Potential	Receptor	Potential	Racie	Tier 2 Risk	Further
Area	Concern	receptor	Priority Level	Du313	Assessmen t likely required?	
		Saltwater aquatic ecological receptors	Low	A pathway of PFAS migration into the marine environment is potentially active, however given the relatively low flow rate along the creeks the mass of PFAS entering the marine environment will be relatively small. Additionally, the level of dilution which will occur in the marine environment will be very large. As such, PFAS concentrations will be rapidly reduced to negligible concentrations within the marine environment. On this basis, the potential for measurable PFAS impacts to be present within the marine environment is very low, and any such impacts would be very localised in extent. The potential for the marine ecosystem to be exposed to PFAS will therefore be very small, and in particular, the potential for bioaccumulation within the marine environment will be negligible. As such, it is qualitatively concluded that the risks to the marine environment are low, and further investigation and assessment is not considered warranted.	No	No
	Shallow Groundwater: Extraction or Direct Contact	Airport bore end users; off-site groundwater	Medium	A number of off-site water supplies are linked to current or historical use of Airport Bore water. Based on current investigations, these locations are known to include the works depot, the hospital and public toilets across the island. It is emphasised that PFAS impacts have not been identified in private drinking water supplies (including private rainwater tanks, or in water supplies utilised by water carters).	Yes	Potentially
lk Island		(impacted with the use of Airport Bore water)		At the works depot and the hospital, Airport Bore water was utilised historically but recent water supply has been from other sources. However, investigations to date have indicated that PFAS impacts remain (e.g. as a result of residual PFAS impacts within the tanks, filtration and plumbing systems). At these locations, alternate drinking water is supplied and advice has been given that the tap water should not be consumed (e.g. for drinking, cooking and cleaning teeth), effectively managing PFAS exposures. Water from the Airport Bore continues to be utilised for other (non-potable) uses at these facilities, for example the toilet facilities, but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, the non-volatile nature of PFAS, and the limited potential for PFAS adsorption through the skin.		
Off-Site: Wider Norfolk Island				At public toilets across the island, water from the Airport Bore continues to be utilised but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin. Signage is understood to be at place at toilet facilities across the island to indicate the water should not be drunk. These measures will effectively manage potential exposures to PFAS. It is understood that a number of the toilet facilities run septic systems; there is therefore the potential for the use of PFAS impacted water at these facilities to pose a secondary source of PFAS impacts to groundwater, although it is noted that the mass and concentrations of PFAS associated with these uses is likely to be very small when compared with primary sources associated with the on-site direct use of AFFF.		
		Residents / Farmers	Medium	Potential for direct contact with PFAS impacted extracted groundwater, noting preliminary results from public bores off-site were below adopted HBGV. Water considered unlikely to be used for drinking.	Yes	Potentially to confirm extent of PFAS impacted groundwater.
		Workers inc Intrusive	Medium	Potential for direct contact with extracted groundwater, noting preliminary results from public bores off-site were below criteria or <lor. contact="" excavations.<="" for="" groundwater="" in="" incidental="" potential="" shallow="" td="" with=""><td>Yes</td><td>Potentially</td></lor.>	Yes	Potentially

41

Area	Media of Potential Concern	Receptor	Potential Priority Level	Basis	Tier 2 Risk Assessmen t likely required?	
		Beef cattle, chickens, crops.	Medium- High	PFAS impacted groundwater has been identified in a small number of off-site bores which may be utilised for stock watering, and potentially other agricultural uses.	Yes	Potentially
		Terrestrial Low- Potential for direct contact with extracted groundwater, or exposure to occur within the root zone ecological medium receptors		Potential for direct contact with extracted groundwater, or exposure to occur within the root zone	Potentially	Potentially
	Bio-accumulation Consumers of fruit & High veg. Potential for exposure via consumption of home grown produce in areas where PFAS impacted water has be used for irrigation of fruit and vegetables. It is noted that there is no available regulatory screening level specifically for this pathway; the presence of PFAS in this water does not necessarily indicate potential risks does indicate that further assessment of these pathways is required.					Yes
פונס		Consumers of eggs	Medium- High	Potential for exposure via consumption of chicken eggs in areas where PFAS impacted water has been used for watering chickens. It is noted that there is no available regulatory screening level specifically for this pathway; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required.	Yes	Yes
OII-OIGE. WIGGE MOTION ISIBILIA		Meat / offal Consumers	Medium- High	Potential for exposure via consumption of meat and offal in areas where PFAS impacted water has been used for stock watering. It is noted that there is no available regulatory screening level specifically for this pathway; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required. It is noted that where e.g. cattle source their water from a variety of sources (i.e. not all of the water they drink is from the PFAS impacted source) this will reduce the potential exposures via this pathway.	Yes	Yes
		Fishing	Medium	Considered low exposure potential due to minimal recreational fishing observed to be undertaken in surface water bodies due to difficult access and low water levels. However, the risks cannot be excluded based on the available information, and further assessment is required.	Yes	No
		Terrestrial receptors	Low- medium	Identified PFAS concentrations in soil off-site require further investigation to confirm the potential for ecological impacts and bioaccumulation. However, current investigations indicate such impacts are likely to be very localised, reducing the potential for bioaccumulation.	Potentially	Potentially
		Aquatic receptors	High	Identified PFAS concentrations in water in the Mission Creek catchment likely to result in potential exposures through the aquatic food chain. Further investigations are required to better understand exposure potential.	Yes	Yes

6.6 Data Gaps

As presented in the preliminary CSM presented above, there are a number of potentially complete SPR linkages at the site and surrounds, which have arisen from the site's historical use of legacy AFFF. Further assessment of these pathways will be undertaken as part of the Detailed Site Investigation (DSI) to assess whether these pathways are complete and, if so, whether there is a potentially unacceptable risk to receptors. A qualitative priority ranking of data gaps based on potential risk level identified within the SPR linkages table in **Section 6.5.1**, and on the requirement to collect additional data to inform development of management options, is also provided.

Based on this PSI and CSM, the following data gaps have been identified:

Table 6-2: Data Gaps

Data Gap ID	Site Area / Catchment	Data Gap	Priority Ranking					
DG1	On-site and	Extent of Potential PFAS Source Areas	High					
	off-site	Further investigation of the vertical and horizontal extent of PFAS in soil and sediments in the six known Group 1 source areas on the airport. This will involve delineation of the extent of PFAS around each of the Group 1 source areas to enable development of management options for each of the source areas.						
		For the other Potential PFAS Source Areas considered less significant based on the available information (see Table 1), initial targeted investigation is required to determine if these sources present a risk to sensitive receptors and / or likely contribute a significant percentage of the PFAS mass present on the island and therefore require management.						
DG2	On-site and	Extent of PFAS Impacted Water Supplies						
	Off-site	Further investigation into on-site water supplies (e.g. within fire station and airport terminal) including all tanks and facility taps to identify impacted tank water and possible impacted pipework / filtration systems. These facilities were previously or currently supplied with Airport Bore water (known to be impacted with PFAS). Current exposures are effectively managed through the supply of alternate drinking water. Water from the Airport Bore continues to be utilised for other (non-potable) uses, for example the toilet facilities, but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin. Further investigations are required to confirm the requirement for ongoing management.						
		Further investigations are also required to confirm current concentrations of PFAS in off-site water supplies linked to current or historic use of Airport Bore water, and to understand ongoing management requirements. Based on current investigations, these locations are known to include the works depot, the hospital and public toilets across the island. It is emphasised that PFAS impacts have not been identified in private drinking water supplies, including private rainwater tanks, rainwater used for bottled water / water cooler supply, or from the water carter supplies tested during the investigation (which included supplies used by three of the five known water carters at the time of the investigation. Further investigation of unassessed water carter supplies (including from the two carters not currently assessed) is also required.						
		At the works depot and the hospital, Airport Bore water was utilised historically but recent water supply has been from other sources. However, investigations to date have indicated that PFAS impacts remain (e.g. as a result of residual PFAS impacts within the tanks, filtration and plumbing systems). At these locations, alternate drinking water is supplied and advice has been given that the tap water should not be consumed (e.g. for drinking, cooking and cleaning teeth), effectively managing PFAS exposures. Water from the Airport Bore continues to be utilised for other (non-potable) uses at these facilities, for example the toilet facilities, but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin. Further investigations at these locations is required to understand ongoing management requirements.						

Data Gap ID	Site Area / Catchment	Data Gap	Priority Ranking			
		At public toilets across the island, water from the Airport Bore continues to be utilised but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, and the limited potential for PFAS adsorption through the skin. Signage is understood to be at place at toilet facilities across the island to indicate the water should not be drunk. These measures will effectively manage potential exposures to PFAS.				
		It is understood that a number of the toilet facilities run septic systems; further investigations should therefore include further assessment of the potential for the use of PFAS impacted water at these facilities to pose a secondary source of PFAS impacts to groundwater (while noting that the that the mass and concentrations of PFAS associated with these uses is likely to be very small when compared with primary sources associated with the on-site direct use of AFFF.)				
DG3 Mission Creek Catchment Off-Site: PFAS Concentrations in Biota / Soil and Grass we catchment where PFAS impacted water and/or soil h		Off-Site: PFAS Concentrations in Biota / Soil and Grass in Mission Creek	High			
		Further assessment of biota and / or soil and grass within the Mission Creek catchment where PFAS impacted water and/or soil has been identified. Biota may include cattle, chicken eggs, grass, fruits and vegetables.				
DG4	Mission Creek	Off-Site: PFAS in Groundwater	Medium			
	Catchment	Further assessment and sampling of existing bores in Mission Creek catchment to delineate the extent of PFAS impacts.				
DG5	Mission	Off-Site: PFAS in Surface Water				
	Creek, Watermill Creek and Headstone	Further assessment into PFAS concentrations in Mission Creek, Watermill Creek and Headstone Creek where up-gradient potential primary sources are present and PFAS was detected as being present.				
	Creek	During the preliminary investigation, Mission Creek was dry in all areas accessed. Sampling following rainfall when the creek is running is also a priority. If this cannot be achieved, assessment of likely surface water concentrations will need to be made based on sediment total and leachable concentrations and comparison with results in other surface water bodies on the island.				
DG6	Mission Creek	Off-Site: Confirmation of CSIRO Results	Medium			
	Catchment	Resampling of two sample locations where elevated concentrations of PFAS were found during the CSIRO investigation.				
DG7	Mission,	Off-Site: PFAS Concentrations in Saline Sediment	Medium			
	Watermill & Cascade Creek Catchments	Investigation into PFAS concentrations in saline sediments at the mouth of creeks known to be impacted by PFAS.				
DG8	On-Site,	On & Off-Site: Consideration of Ecological Receptors	Medium			
	Mission, Watermill & Cascade Creek Catchments	This investigation has not considered impacts to the sensitive ecological receptors that may be present in the areas identified as being impacted. Further investigation into sensitive receptors including endemic flora and fauna and EPBC listed organisms needs to be undertake in order to be able to understand the potential for PFAS exposure.				

7.0 Conclusions

Through the completion of the PSI and targeted groundwater, surface water, soil and sediment assessment works, Senversa was able to achieve the objectives outlined in **Section 1.2** and draw the following conclusions:

PFAS Source Areas

- Six significant potential PFAS primary source areas (Group 1 Source Areas) were identified within the Airport that may have contributed to the elevated PFAS concentrations identified within the Mission Creek catchment.
- All six sources were associated with the training, storage and maintenance of fire trucks that historically used PFAS containing aqueous film-forming foam (AFFF).
- A further 11 lower significant potential PFAS source areas (Groups 2 4 Source Areas) were identified on and outside the airport within the Mission Creek and other catchments.

PFAS Impact to Utilised Water

- All privately owned drinking water sources that were sampled by Senversa were found to have
 concentrations below the adopted health based guidance value (HBGV) for PFAS (sum of PFOS
 + PFHxS). The privately owned drinking water sources assessed included three of five known
 water carters and tanks / groundwater bores within the Mission Creek catchment.
- Concentrations of PFAS above the adopted HBGV was identified in three public facilities (hospital, works depot and fire station) at internal water taps and groundwater tanks. Upon confirmation of the analytical results alternative drinking water supplies have been implemented at these locations and other potentially impacted public facilities (including the airport, which is understood to have previously used the same water source as the facilities mentioned above). The elevated PFAS concentrations at all three public facilities was linked to supply of water from the same "Airport Bore" within the Mission Creek catchment that was identified by CSIRO in December 2019 as having elevated concentrations of PFAS.
- It is understood that "Airport Bore" water is also utilised in public toilets across the island but the potential for exposure during hand washing will be relatively low given the frequency and duration of exposure, the limited potential for PFAS adsorption through the skin and the non-volatile nature of PFAS. Signage is understood to be at place at toilet facilities across the island to indicate the water should not be drunk. These measures will effectively manage potential exposures to PFAS within public toilets. As a number of the public toilets run septic systems there is the potential for the use of PFAS impacted water at these facilities to pose a secondary source of PFAS impacts to groundwater. However, it is noted that the mass and concentrations of PFAS associated with these uses is likely to be very small when compared with primary sources associated with the onsite direct use of AFFF.
- PFAS was identified in three water sources used for the watering of stock, chicken eggs and vegetables within the Mission Creek catchment. Exposure to the measured concentrations of PFAS is unlikely to impact upon the health or condition of cattle. However, where PFAS is present in water used for stock watering and/or irrigation, it can be taken up into meat, eggs and produce and people who consume the produce can be subsequently exposed. It is noted that there is no available regulatory screening level specifically for these pathways; the presence of PFAS in this water does not necessarily indicate potential risks, but does indicate that further assessment of these pathways is required. It is noted that when cattle source their water from a variety of sources (i.e. not all of the water they drink is from the PFAS impacted source) this will reduce the potential exposures via this pathway.

PFAS Impact to Surface and Groundwater

- Concentrations of PFAS above the HBGV in groundwater was restricted to the Mission Creek surface water catchment. The 11 groundwater samples obtained in five other surface water catchments on the island were all below laboratory detection limits with the exception of one groundwater sample obtained adjacent Headstone Creek, which was above laboratory detection limits but below the HBGV.
- Elevated concentrations of PFAS above the HBGV was identified within the surface waters of
 Mission Creek and Watermill Creek. Concentrations above laboratory detection limits but below
 the HBGV was identified in Headstone Creek, with the one surface water sample obtained from
 Broken Bridge Creek below detection limits.

Data Gaps and Further Investigation

- Following a qualitative assessment of source-pathway receptor linkages, eight data gaps requiring further assessment and / or completion of a Tier 2 or 3 risk assessment were identified.
- A detailed site investigation into the identified data gaps relating to the nature and extent PFAS in groundwater, surface water, soil and sediment and biota on Norfolk Island is proposed to be undertaken.

8.0 **Principles and Limitations of Investigation**

The following principles are an integral part of site contamination assessment practices and are intended to be referred to in resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

Field Observations and Analytical Results Area

Elimination of Uncertainty

Some uncertainty is inherent in all site investigations. Furthermore, any sample, either surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.

Failure to Detect

Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environmental Protection (Assessment of Site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.

Limitations of Information

The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation, including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information.

Information received during preparation of this report from third parties or anecdotal sources, such as the sources of PFAS identified, was not able to be independently verified by Defence records.

Chemical **Analysis Error**

Chemical testing methods have inherent uncertainties and limitations. Senversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may have occurred during the testing, so that such problems can be considered in evaluating the data.

Level of Assessment

The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort of information obtained and the time required to obtain it outweigh the benefit of the information gained and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment.

Comparison with Subsequent Inquiry

The justification and adequacy of the investigation findings in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.

Data Useability

Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected, or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.

Nature of Advice The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business advice.

9.0 References

ABC News, 2020. Norfolk Island Locals work with CSIRO, Defence, to find long term water solutions. Accessed 19 February 2020 WWW: https://www.abc.net.au/news/2020-02-11/norfolk-island-water-solutions/11950350

Abell, R S & Falkland A C, 1991. *The hydrogeology of Norfolk Island South Pacific Ocean.*Department of Primary Industries and Energy Bureau of Mineral Resources, Geology and Geophysics, Bulletin 234.

Abell, R S, 1993. Aquifer vulnerability on small volcanic islands in the southwest Pacific region – an example from Norfolk Island. AGSO Journal of Australian Geology & Geophysics, 14 (2/3), pp 123-133.

ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

ANZECC / ARMCANZ, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy, Australian & New Zealand Environment & Conservation Council and Agriculture & Resource Management Council of Australia and New Zealand.

Australian Governemnt – Geoscience Australia, 2020 – Norfolk Island. Accessed 21 Februrary 2020 WWW: http://www.ga.gov.au/scientific-topics/national-location-information/dimensions/remote-offshore-territories/norfolk-island

Australian Government, 2010. Director of National Parks – Norfolk Island Region Threatened Species Recovery Plan. Accessed 10 February 2020 WWW:

https://www.environment.gov.au/system/files/resources/018b9480-6db8-4361-8db2-ab83d5fa5072/files/norfolk-island.pdf

BoM, 2016. Climate statistics for Australian locations: Summary Statistics Norfolk Island Aero. Accessed 18 February 2020 WWW:

 $\frac{\text{http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p nccObsCode=136\&p display type=dailyData}{\text{File\&p startYear=\&p c=\&p stn num=200288}}$

Department of Health (DoH) (2017) Final Health Based Guidance Values for PFAS for use in site investigations in Australia, developed by Food Standards Australia New Zealand (FSANZ), 2017.

Encyclopaedia Britannica, 1999. Norfolk Island, Australia. Accessed 15 February 2020 WWW: https://www.britannica.com/place/Norfolk-Island

HEPA (2018) PFAS National Environmental Management Plan (PFAS NEMP) January 2018

HEPA (2019). PFAS National Environmental Management Plan (PFAS NEMP) 2.0.

NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), Canberra, National Environment Protection Council.

NHMRC, 2011. *Australian Drinking Water Guidelines*, National Water Quality Management Strategy Document 6: National Health and Medical Research Council & Natural Resource Management Ministerial Council.

Norfolk Island Living Library, 2008. Norfolk Island Emergency Services. Accessed 20 February 2020 WWW: http://www.livinglibrary.edu.nf/ /Fire Services.html

Norfolk Island Regional Council, 2018

Figures

Figure 1: Site Location and Layout

Figure 2: Site Topography and Drainage

Figure 3: Inferred Groundwater Flow Direction

Figure 4: On-Site Features and Potential PFAS Source Areas

Figure 5: Off-Site Features and Potential PFAS Source Areas

Figure 6: Island Wide PFAS Concentration Plan - Water

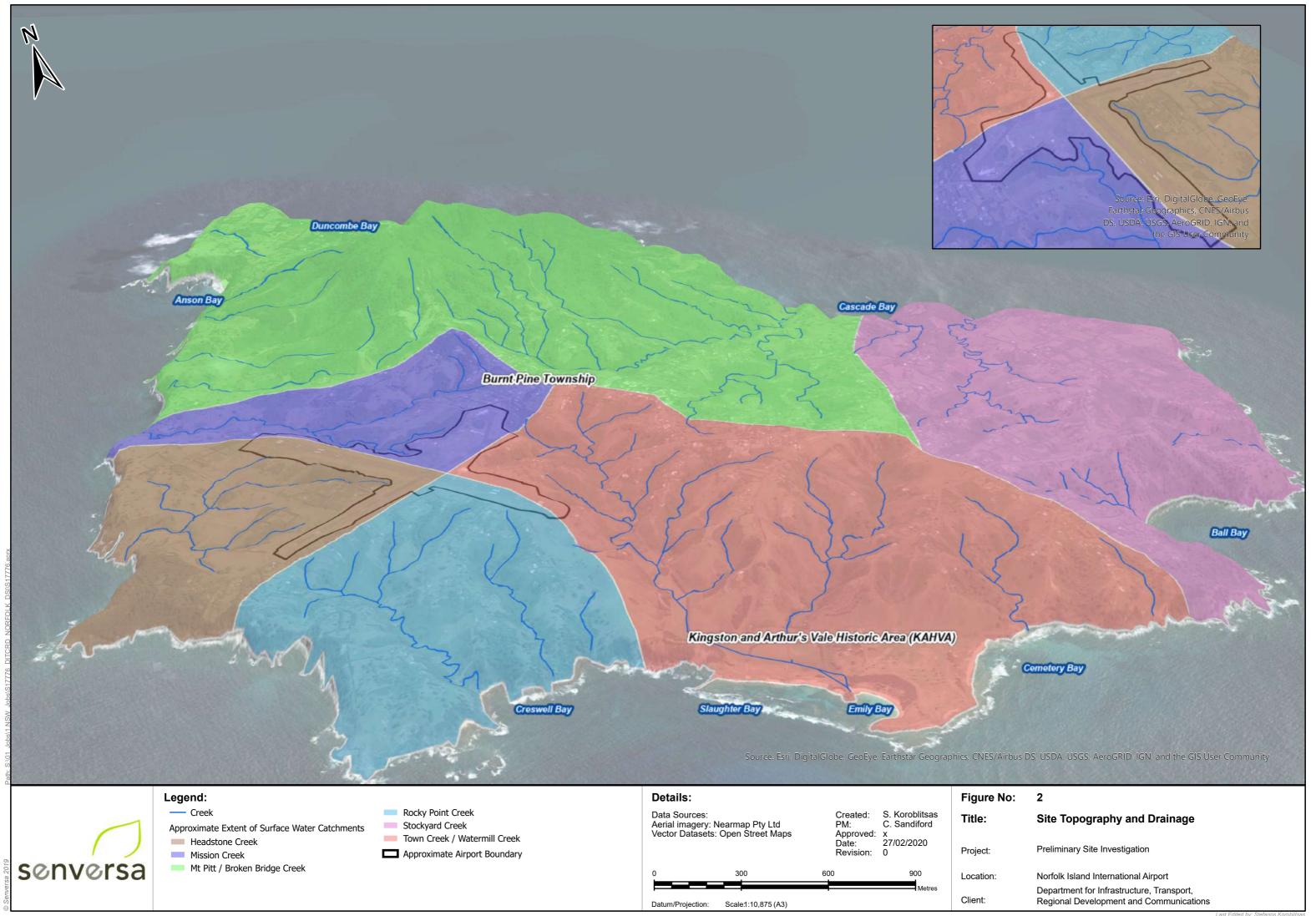
Figure 7: Mission Creek Catchment PFAS Concentration Plan - Water

Figure 8: Island Wide PFAS Concentration Plan - Soil and Sediment

Figure 9: Norfolk Island Airport PFAS Concentration Plan – Soil and Sediment

Figure 10: Conceptual Site Model – Hydrogeological Cross Section

☐ Approximate Airport Boundary


Approximate Extent of Mission Creek Catchment

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps S. Koroblitsas C. Sandiford Created: PM: Approved: x
Date: 28/02/2020 Revision: 0 2,400 Datum/Projection:WGS 1984 Web Mercator Auxiliary Sphere Scale5,000 (A3)

Title: Site Location

Preliminary Site Investigation Project:

Norfolk Island International Airport Location:

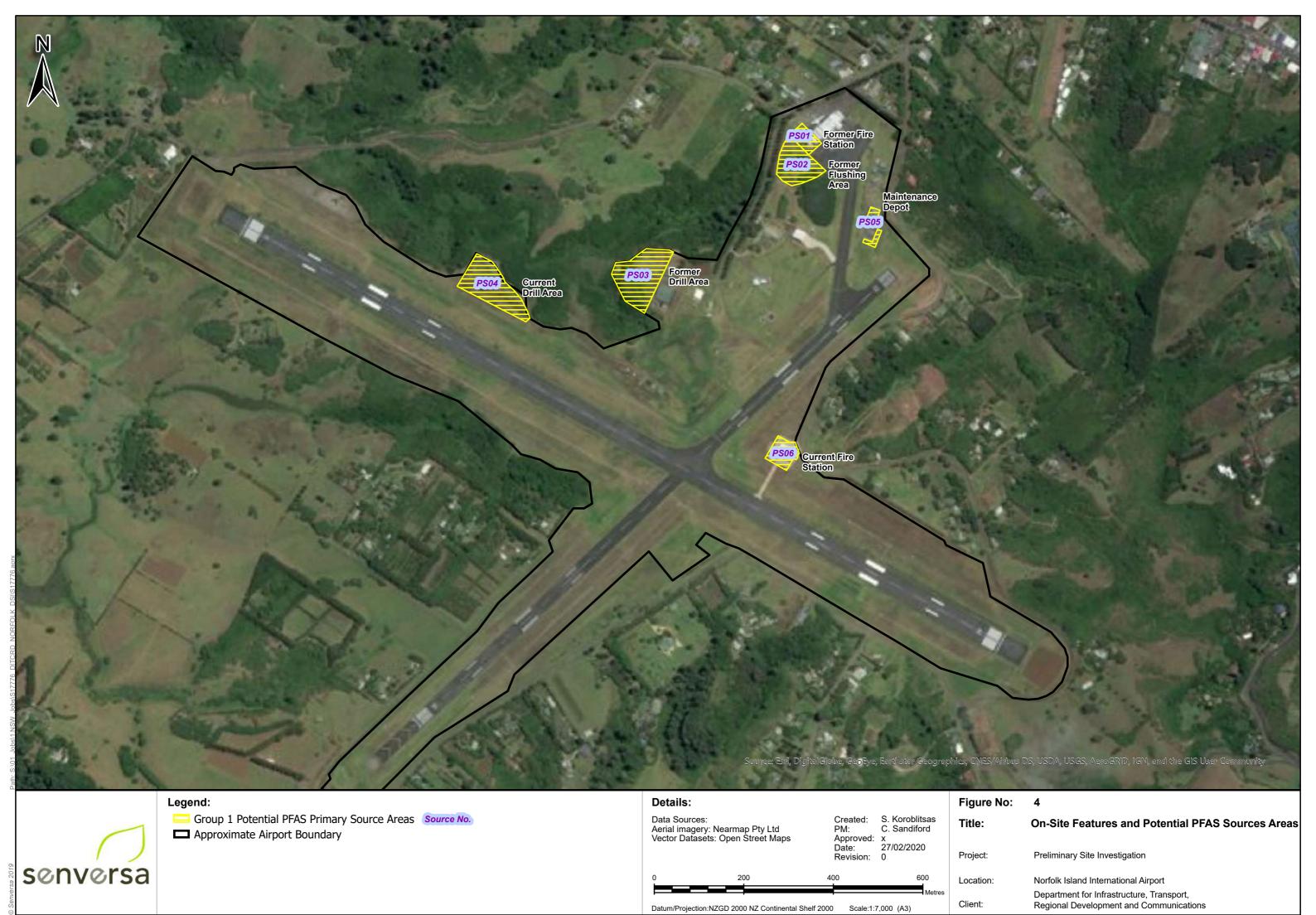
■ Approximate Airport Boundary

← Historical Groundwater Flow Direction

Historical Groundwater Flow Regime (as measured in July – August 1974)". "Reference: Hydrogeology of Norfolk Island, South Pacific Ocean. BMR Bulletin 234

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps

Created: PM: C. Sandiford Approved: x Date: 2 27/02/2020 Revision:


S. Koroblitsas

Project:

Datum/Projection:WGS 1984 Web Mercator Auxiliary Sphere Scale: 1:35,000(A3) Title: **Inferred Groundwater Flow Direction**

Preliminary Site Investigation

Location: Norfolk Island International Airport

ast Edited by: Stefanos.Koroblitsas

Potential PFAS Primary Source Areas

Creek

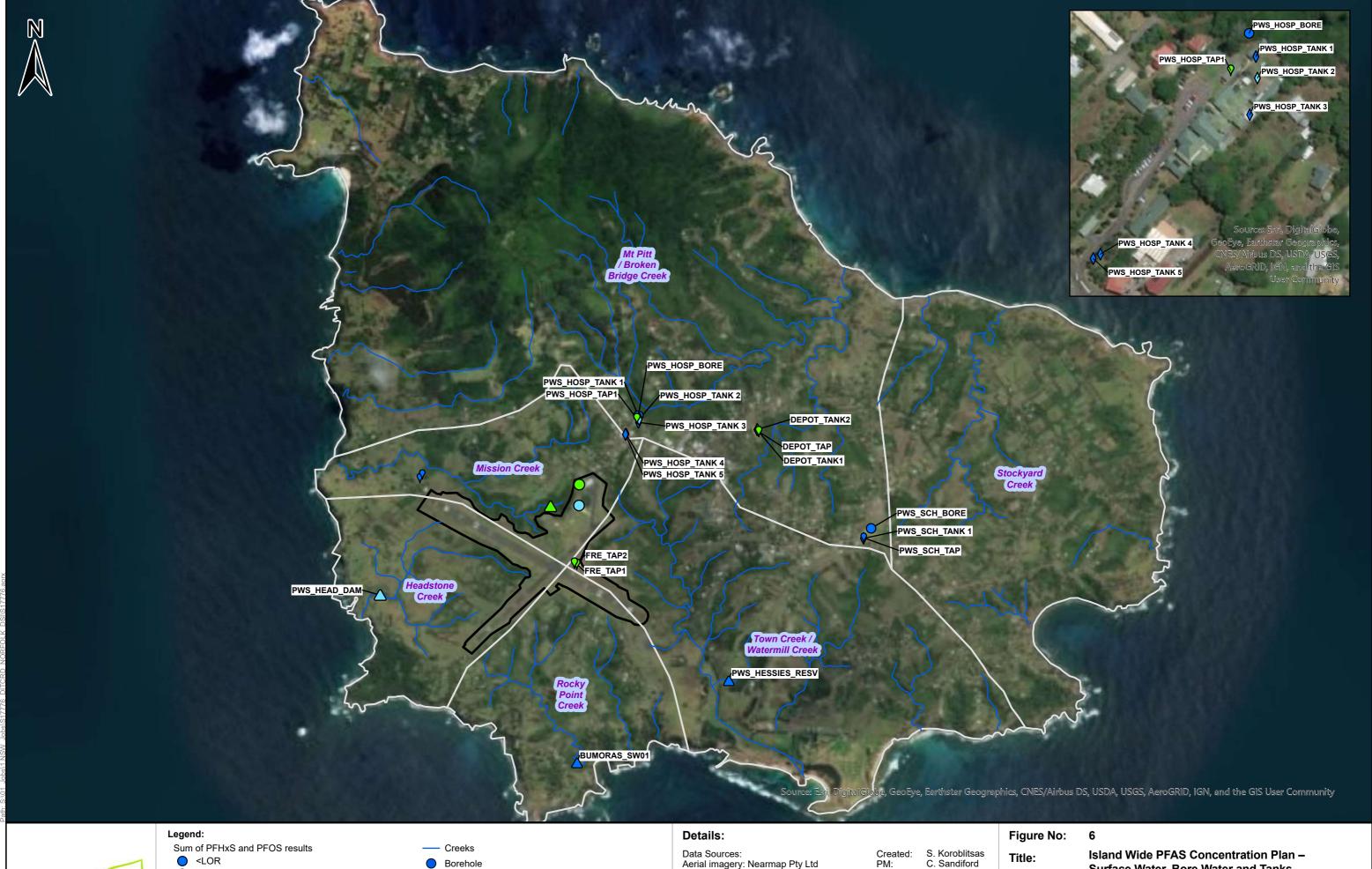
■ Approximate Airport Boundary

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps Created: S. Koroblitsas PM: C. Sandiford Approved: C. Sandiford Date: 13/03/2020 Revision: 0

0 500 1,000 1,500

Metres

Datum/Projection:NZGD 2000 NZ Continental Shelf 2000 Scale:1:20,000(A3)


Title: Off-Site Features and Potential PFAS Sources Areas

Project: Preliminary Site Investigation

Location: Norfolk Island International Airport

Department for Infrastructure, Transport,
Client: Regional Development and Communications

st Edited by: Stefanos.Koroblitsas

<LOR>LOR - 0.07 μg/L

>0.07 μg/L (Drinking Water Quality Guideline)

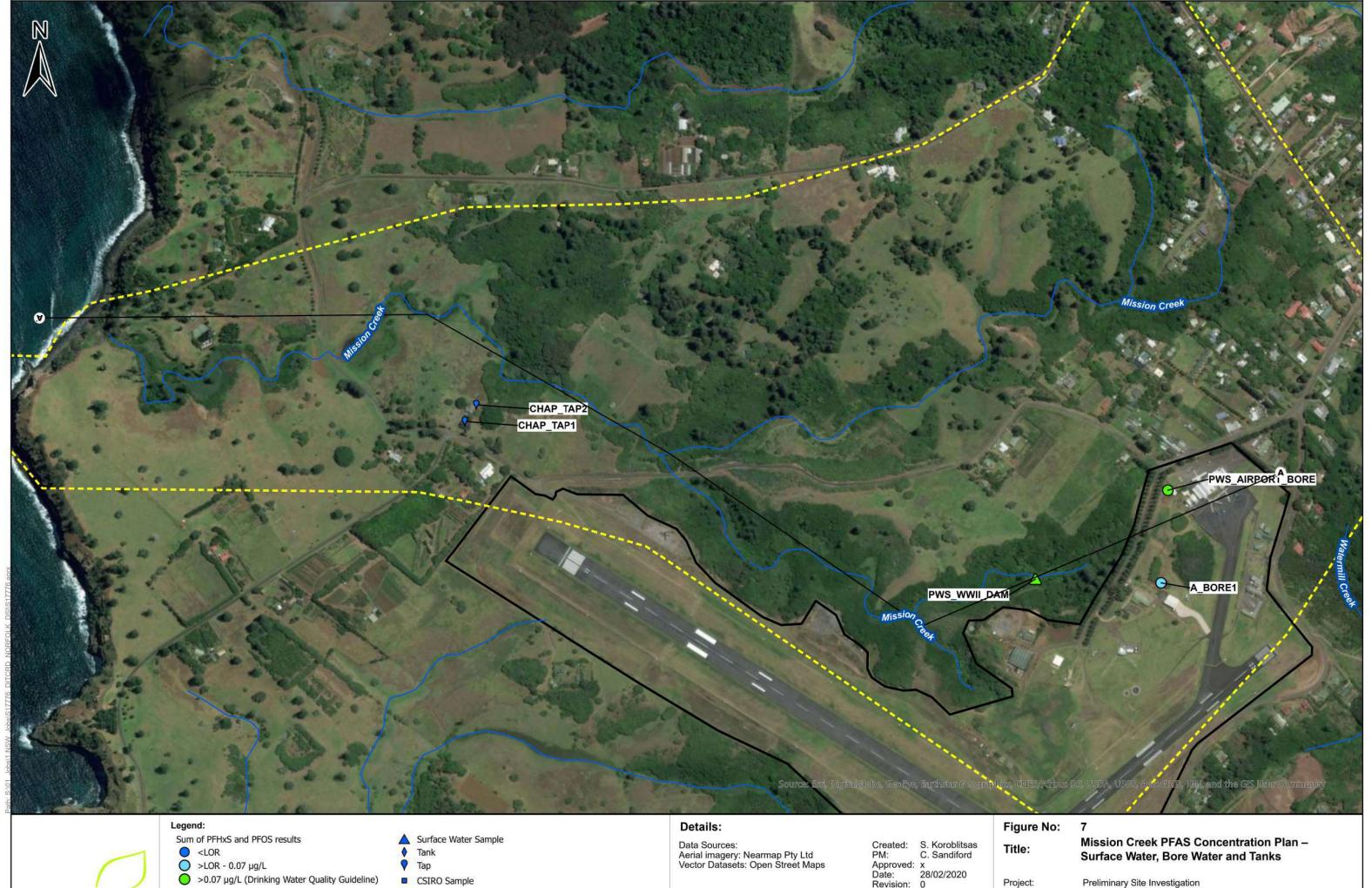
Approximate Extent of Surface Water Catchments Approximate Airport Boundary

Borehole ▲ Surface Water Sample

Tank Tap

CSIRO Sample

Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps


C. Sandiford Approved: x Date: 2 27/02/2020 Revision:

1,500 1:30,000 Datum/Projection:

Title: **Surface Water, Bore Water and Tanks**

Preliminary Site Investigation Project:

Location: Norfolk Island International Airport

- Creeks

Approximate Airport Boundary

Borehole

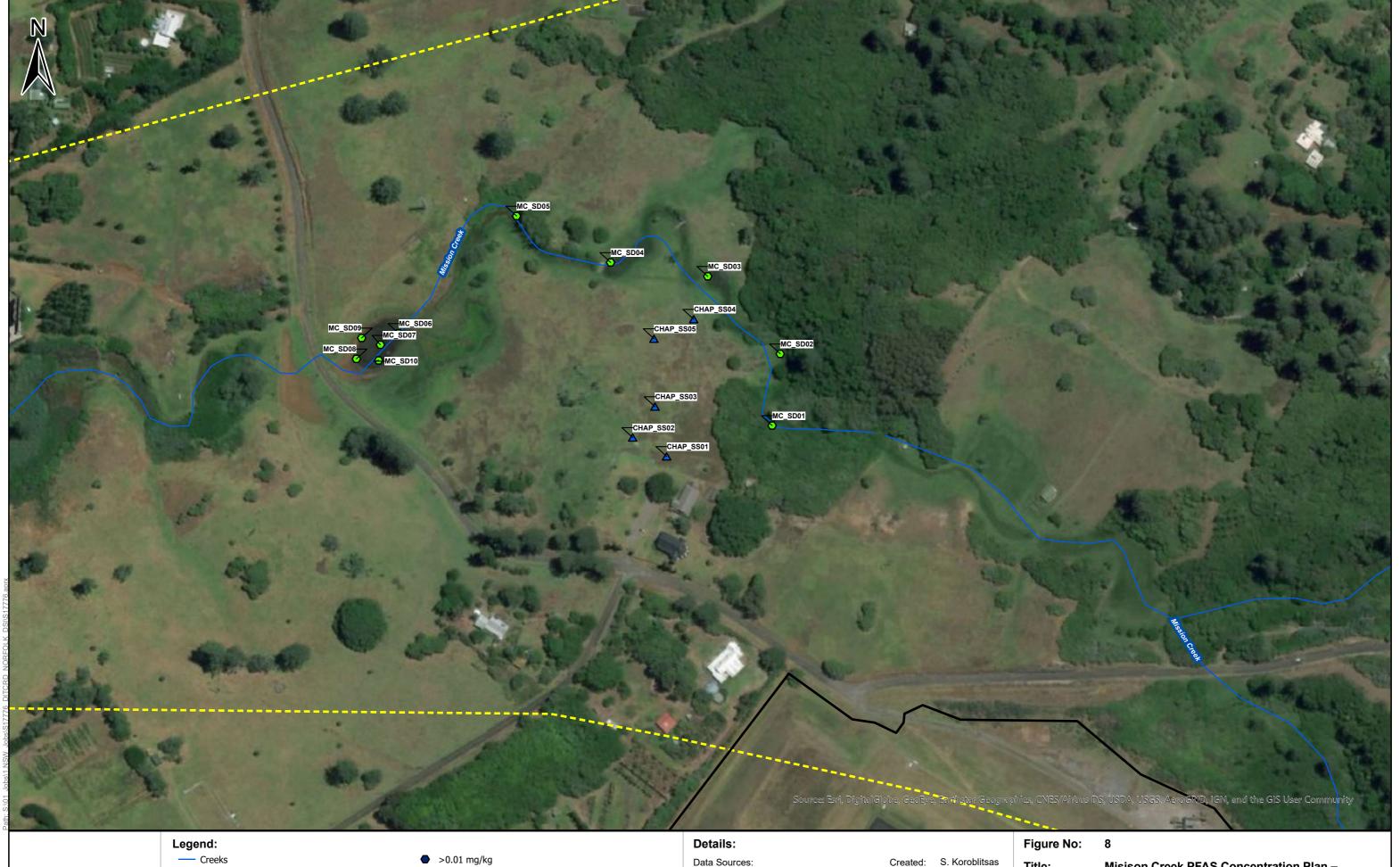
Тар

CSIRO Sample

Approximate Extent of Mission Creek Catchment

Cross Sectional Alignment

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps


Approved: x Date: 28/02/2020

Revision: 0

420 Datum/Projection:WGS 1984 Web Mercator Auxiliary Sphere Schle500 Surface Water, Bore Water and Tanks

Preliminary Site Investigation Project:

Location: Norfolk Island International Airport

--- Creeks

Approximate Airport Boundary

Approximate Extent of Mission Creek Catchment Sediment Results - Sum of PFHxS and PFOS (mg/kg)

O <LOR

O >LOR - 0.001 mg/kg

● >0.001 mg/kg

>0.01 mg/kg

○ >0.1 mg/kg

Soil Results - Sum of PFHxS and PFOS (mg/kg)

 Δ <LOR

△ >LOR - 0.001 mg/kg

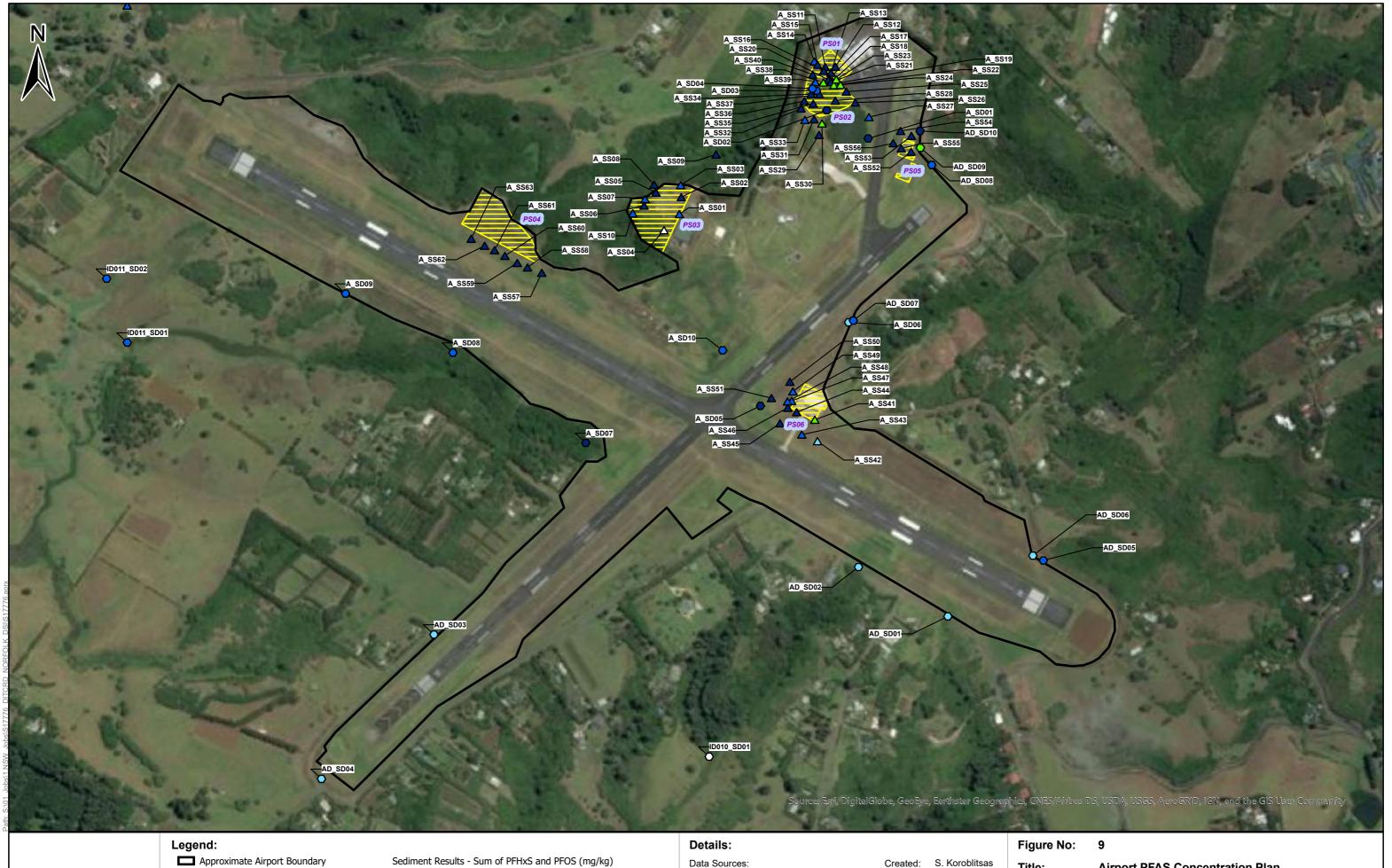
▲ >0.001 mg/kg ▲ >0.01 mg/kg

△ >0.1 mg/kg

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps

Created: PM: C. Sandiford Approved: x Date: 2

Revision:


27/02/2020

Datum/Projection:WGS 1984 Web Mercator Auxiliary Sphere Scale: 1:3,000 (A3) Title: Misison Creek PFAS Concentration Plan -

Soil & Sediments

Preliminary Site Investigation Project:

Location: Norfolk Island International Airport

Soil Results - Sum of PFHxS and PFOS (mg/kg)

△ <LOR

△ >LOR - 0.001 mg/kg

▲ >0.001 mg/kg

▲ >0.01 mg/kg

△ >0.1 mg/kg

O <LOR

>LOR - 0.001 mg/kg

>0.001 mg/kg

>0.01 mg/kg>0.1 mg/kg

Group 1 Potential PFAS Primary Source Areas

Data Sources: Aerial imagery: Nearmap Pty Ltd Vector Datasets: Open Street Maps

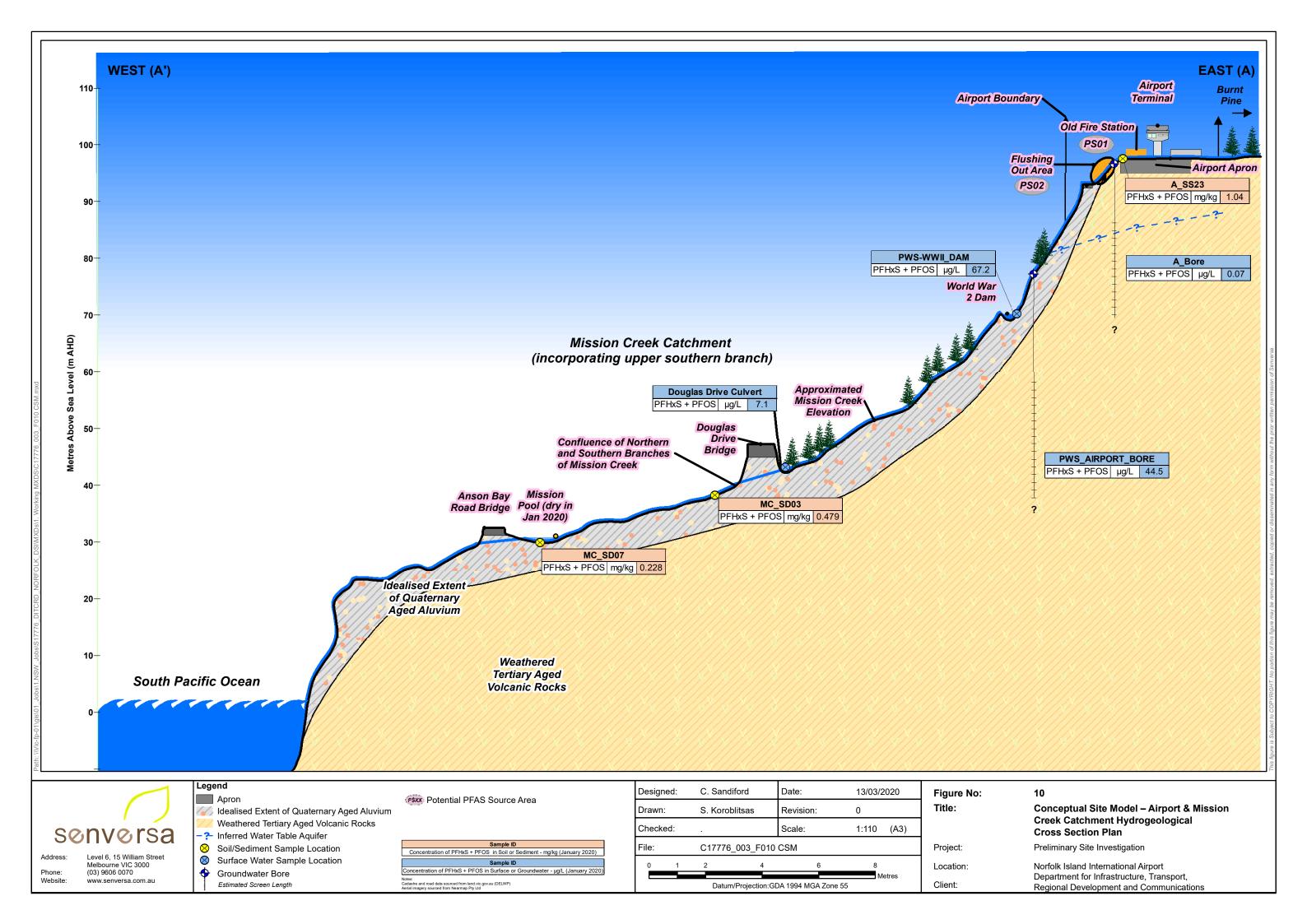
Created: S. Koroblitsas
PM: C. Sandiford
Approved: x
Date: 27/02/2020
Revision: 0

0 140 280 420

Metres

Datum/Projection:NZGD 2000 NZ Continental Shelf 2000 Scale:1:7,000 (A3)

Title: Airport PFAS Concentration Plan


Soil & Sediments

Project: Preliminary Site Investigation

Location: Norfolk Island International Airport

Department for Infrastructure, Transport,
Client: Regional Development and Communications

Last Edited by: Stefanos.Koroblitsas

Tables

Table 1: Potential PFAS Source Areas

Table 2: Water Results Summary Table

Table 3: Water Analytical Results

Table 4a: On-Site Soil and Sediment Analytical Results

Table 4b: Off-Site Soil and Sediment Analytical Results

Table 5: Soil and Sediment Leachability Analytical Results

Table 1 - Potential PFAS Source Areas

Preliminary Site Investigation
Norfolk Island Airport
17776

Potential Source Area Number (see Figure 3)	Name of Area	Source Type	Time of Use (re: AFFF)	Description of Activity	Description of Area / Infrastructure	Volumes of AFFF used/ stored/ lost	Regularity of Use / activity / testing	State of AFFF Product (Concentrate, Foam, Waste Water)	Potential for AFFF to enter Soil	Potential for AFFF to enter Surface Water	Potential for AFFF to enter Groundwater	Additional information
GROUP 1 SOUP	RCE AREAS											
1	Former Fire Station and Foam Shed	Primary	Up until approximately 2009	The former fire station was located adjacent to the airport terminal and was the main fire station for the entire Island. The station was used to house fire trucks and fire fighting gear. A small wooden shed to the west of the station was used to store AFFF concentrate.	A number of small wooden buildings are still present near council facility. A portion of the freight storage facility. Buildings are still present and contain concrete hardstand both inside and surrounding the buildings.	Unknown	Daily	Concentrate, foam, waste water	Medium	Medium	Medium	
2	Former Flushing Out Area	Primary	Up until approximately 2009	Large area where fire trucks were washed out after each training session. Area was unsealed and runoff into a low point where infiltration into aquifer may have occurred.	Area to the south west of the former fire station. Unsealed, small concrete drain.	Unknown	Daily	Foam, waste water	High	High	High	The topography of the ground surface in these areas would allow drainage of any surface water run-off towards Mission Creek.
3	Former Drill Ground	Primary	Unknown - mid 1990s	Practice using AFFF to put out fires, mostly on cars that were used for 4 - 5 events then sent to tip (most often off the edge).	Former Drill Ground / Current Waste Management Centre	Unknown	Weekly	Foam, waste water	High	High	High	Creek.
4	Current Drill Ground	Primary	Mid-1990's to now	Training area for fire fighting. Anecdotal evidence that PCB oils and heavy metals were present and potentially pushed into the gully.	Fire Training area that is currently being used for the resurfacing of the airport.	220 KL of foam used (Mainly on Drill Ground) from 1997 to 2015	Weekly	Foam, waste water	High	High	High	
5	Maintenance Depot	Primary	Not confirmed.	Flushing out during maintenance of fire trucks.	L Shaped Building near runway.	Unknown	Weekly	Foam, waste water	Medium	Medium	Medium	Surface water run-off could potentially drain
6	Current Fire Station	Primary	Approx. 10 years	Storage and use of AFFF. Flushing out all around the station on unsealed ground.	Approximately 10 year old facility.	Unknown	Daily	Concentrate, foam, waste water	High	Medium	High	towards Watermill Creek.
GROUP 2 SOUP	RCE AREAS	1										
7	The Common Oval	Primary	Not confirmed.	Area on Quality Row that was used to create snow at Christmas time.	Oval - unsealed.	Unknown	Historically done annually.	Unknown	High	Medium	Medium	Anedotal information suggests that AFFF may not have been used, potential for this to have occurred during Protein Foam use.
8	St Barnabus Chapel Paddock	Primary	Annual training. Specific times are unknown.	Aerodrome Emergency Plan (AEP Annual Training) - West of St Barnabus Chapel.	Unsealed cattle paddock to the west of the chapel. The area is steeply sloped from the chapel down to Mission Creek.	Unknown	Annual	Unknown	High	Medium	Medium	Anedotal information suggests that AFFF was used in this area to create slippery slides down the hill towards Mission Creek.
9	Works depot / Former fire truck storage	Secondary	Not confirmed.	Drains into Cascade Creek. New Cascade Road		Unknown	Unknown	Unknown	Low	Low	Low	
10	Ball Bay Refuelling Area	Primary	Not confirmed.	Council facility adjacent to Mobil		Unknown	Unknown	Unknown	Low	Low	Low	
11	Wastewater Treatment Plant / Stormwater Drains	Secondary	Not confirmed.	Wastewate treatment plant and stormwater drains likely to be have PFAS impacted water present.	Sewerage Treatment Plant is located on the airport land. Stormwater drains are located on and off the airport.	Unknown	NA	Waste water	Low	High - Discharges to Ocean	Low	Further information required.
GROUP 3 SOUP	RCE AREAS											
12	Private residence - Webb Adams Road	Primary	Not confirmed.	AFFF used in backyard 3 times per year - (anacdotal report)		Unknown	Annual	Unknown	Medium	Low	Low	
13	Paradise hotel previous Norfolk/colonial other	Primary	Not confirmed.	Burnt down, 20 - 30 years ago unsure if foam was used		Unknown	Once	Unknown	Low	Low	Low	
14	Perfumery	Primary	Not confirmed.	Stored duty free goods (alcohol, perfume etc.) Burnt down 15 years ago and AFFF may have been used to fight the fire due to flammable goods / explosions		Unknown	Once	Unknown	Low	Low	Low	
15	Headstone Burning area	Primary	Not confirmed.			Unknown	Once	Unknown	Low	Low	Low	
GROUP 4 SOUP	RCE AREAS										1	
16	Public toilets filled by airport bore	Secondary		Public toilets filled with airport bore water via truck. Potential PFAS contamination entering the septic tanks and associated flow fields.								
17	Hospital tank directly filled by Airport Bore	Secondary		Hospital tank was filled by the airport bore. At times the hose was connected and left to overfill causing overflow into Broken Bridge Creek.								

Norfolk Island PFAS Investigation

Department for Infrastructure, Transport, Regional Development and Communications Senversa Job Number: C17776

Catchment	Media	Sample ID	Sum of PFOS and PFHxS (µg/L)	Ownership	Drinking Wate Source?	Comment Comment							
Mission Creek Catchment	Groundwater	PWS_AIRPORT_BORE	44.5	Public (Airport land owned by Council)	Potentially	Sample collected from concrete tank adjacent to former fire station which was fed directly from bore.							
		A_BORE1	0.07	Public (Airport land owned by Council)	Potentially	Unused well south of former fire station (on airport land)							
		ID013_BORE		Private	Yes	Sample collected from bore adjacent to house.							
		ID015_BORE	1.09	Private	No	Sample collected from bore outlet entering poly tank. Understood to be used for stock watering (cattle).							
		ID009_WELL	< 0.01	Private (Church of England Trust)	Potentially	Sample collected from well on church property - Headstone Road.							
		ID014_BORE		Private	No	Collected from a bore, however resident indicated that the bore pumps water up from Mission Creek. Understood to be used for stock watering (cattle).							
	Surface Water	PWS_WWII_DAM	67.2	Public (Airport land owned by Council)	No	WWII dam south of airport bore.							
		ID013_SW01		Private	No	Samples from a tap that pumps water up from Mission Creek. Water is understood to be used to irrigate vegetables and water chickens.							
		ID004_TANK		Private	Yes	Rainwater tank collected via house tap.							
	Rainwater	CHAP_TAP1	< 0.01	Private (Church of England Trust)	Potentially	Collected from the outside tap of the chapel, believed to be rainwater							
		CHAP_TAP2	< 0.01	Private (Church of England Trust)	Potentially	Collected from the outside tap of the cottage adjacent to the chapel, believed to be rainwater.							
	Groundwater	PWS_HOSP_BORE		Public	Potentially	Hospital bore located down near broken bridge creek and pumped up into tank used for laundry.							
		BBC_SW01	< 0.01	Public	Potentially	Broken Bridge Creek, Down-gradient of hospital. Accessed through private property							
	Tank / Tap	PWS_HOSP_TAP1	0.50	Public	Potentially	Hospital Sample - Sample collected from tap post filtration. Analytical laboratory re-ran the sample and found PFOS+PFHxS to be between 0.41 µg/L and 0.40 µg/L.							
		PWS_HOSP_TANK1	< 0.01	Public	Potentially	Hospital Sample - Filled with Airport Bore Water (Historically). Poly tank.							
		PWS_HOSP_TANK2	0.02	Public	Potentially	Hospital Sample - Filled with Airport Bore Water (Historically). Concrete tank.							
		PWS_HOSP_TANK3	< 0.01	Public	Potentially	Hospital Sample - Rain Water							
		PWS_HOSP_TANK4	< 0.01	Public	Potentially	Hospital Sample - Rain Water							
Broken Bridge		PWS_HOSP_TANK5	< 0.01	Public	Potentially	Hospital Sample - Rain Water							
Creek		DEPOT_TANK1	< 0.01	Public	Potentially	Works Depot - Underground tank potentially filled with airport bore water (historically).							
		DEPOT_TANK2	9.01	Public	Potentially	Works Depot - Underground tank potentially filled with airport bore water (historically).							
		DEPOT_TAP	8.79	Public	Potentially	Works Depot - Sample collected from kitchen tap. Tap understood not to have recently been used for as drinking water source but may been used for cooking / kettle.							
		ID006_BORE1	< 0.01	Private	Yes	Tap straight from bore							
		ID006_BORE2	< 0.01	Private	Yes	Tap straight from bore							
		ID007_SPRING	< 0.01	Private	Potentially	Man made spring, filled by creek before waterfall off of creek							
		COCKPIT_SW01	0.04	Private	Potentially	Weir at reservoir.							
		ID012_SW02	0.18	Private	No	Creek downgradient of council depot, accessed through private land.							
		WC01		Private	Yes	WATER CARTER: Bore located on private residence.							
	Groundwater	WC02		Private	Yes	WATER CARTER: Bore - located in near Burnt Pine Township. Sample collected from truck.							
		WC_03_BORE		Private	Yes	WATER CARTER: Bore located on private residence.							
		PWS_SCH_BORE		Public	Potentially	Bore. Adjacent to oval							
Town Creek /		PWS_POUND_BORE_A	<0.01	Public	Potentially	Bore located behind government building on Quality Row. Bore pumps to reservoir and sample collected from reservoir.							
		TC_SW01		Public (KAVHA- Commonwealth)	No	Watermill Creek, down gradient of perfumery fire and TV_SW02.							
	Surface Water	PWS_HESSIES_RESER		Public	Potentially	Part rainwater and bore water							
Watermill Creek		PWS_DUCK_DAM		Public	No	Watermill Reservoir							
		PWS_SCH_TANK1		Public	Potentially	School - Rain Water, Potential historic filling from other sources.							
		PWS_SCH_TAP		Public	Potentially	School - Tap following filtrations							
		FRE_TAP1		Public	Potentially	Fire Station - Sample collected from kitchen tap. Tap understood not to have recently been used for as drinking water source but may been used for cooking / kettle.							
		FRE TAP2		Public	No	Fire Station - Sample collected from outside hydrant. Water currently used to fill and flush out fire trucks.							
		ID005 TANK		Private	Yes	Collected from rainwater tank historically filled by water carter.							
Headstone Creek		ID003_BORE		Private	Potentially	Bore adjacent to Creek							
	Groundwater	ID003_WELL		Private	Yes	Well adjacent to residence.							
	Surface Water	PWS_HEAD_DAM		Private - NIRC agreement for access.	No	Large dam used to water cattle.							
		BUMORAS_SW01		Public (NIRC owned)	No	Bombora Reserve - Base of Rocky Point Creek.							
		ID003_SW01		Private	Yes	Headstone Creek Sample accessed from private land.							
		ID010_BORE		Private	Yes	Bore adjacent to dry creek bed, pumped to house for drinking water.							
Rocky Point Creek		ID001_BORE	<0.01	Private	Potentially	Bore located on private residence.							
	Groundwater	PWS_KINGFISH_BORE	<0.01	Private	Yes	Bore located on private residence. Potential to become public water supply (noting elevated salinity, with sodium and chloride above taste thresholds for drinking water)							
Mt Pitt —		ID002_TANK		Private	Yes	Rainwater used to supply drinking water across the island.							

			Location Code A BORE1		DDO OWO4	IDUMODAO OMOA	CHAP TAP1	TOUAD TARR	01 1 014/04	01	O I it ONAIG	1 DEPOT TANK1	DEPOT TANK1	IDEBOT TANKA	DEPOT TANK2	DEPOT TAP	FRE TAP1	FRE TAP2	ID001 BORE
				A_BORE1	BBC_SW01 BBC_SW01	BUMORAS_SW01		CHAP_TAP2 CHAP_TAP2	Cockpit_SW01 Cockpit_SW01	Cockpit_SW01 QC104				DEPOT_TANK1					
											QC204	DEPOT_TANK1	QC110	QC210	DEPOT_TANK2	DEPOT_TAP			ID001_BORE
				14/01/2020	15/01/2020	14/01/2020	21/01/2020	21/01/2020	18/01/2020	18/01/2020	18/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	20/01/2020	20/01/2020	16/01/2020
			Sample Type		Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal
Г		_	Lab Report No.	ES2002626	ES2002626	ES2002626	ES2002810	ES2002810	ES2002808	ES2002803	699303	ES2002819	ES2002803	699303	ES2002819	ES2002819	ES2002817	ES2002817	ES2002615
	11-14		Deierleie er Westere																
	Unit	EQL	Drinking Water																
Major Ions		+				1	1	1	1	1	1		1	1	1	1	1		
Calcium (filtered)	mg/L	1		_	-	 	+	+ -	 	+	+	-	 	+	 	 	 	-	4
Chloride	mg/L	1		_	-	<u> </u>	-	<u> </u>	<u> </u>	1 .	<u> </u>	_	-	+ -	_	<u> </u>	<u> </u>	_	118
Magnesium (filtered)	mg/L	1		_	-	+ -	-	-	<u> </u>	 -	 -	-	-	<u> </u>	-	-	-	-	7
Potassium (filtered)	mg/L	1 1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Sulfate (as SO4) (filtered)	mg/L	1	250 ^{#2}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	36
Sodium (filtered)	mg/L	1	180#3	_	_		<u> </u>	<u> </u>	_	_	_	_	_	-	<u> </u>	_	_	_	72
Anions Total	mea/L	0.01			-	+ -	-	+ -	<u> </u>	-	+ -	-	-	<u> </u>	-	<u> </u>	-	_	4.36
Cations Total	mea/L	0.01		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.93
Ionic Balance	%	0.01		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.12
Alkalinity																			1
Bicarbonate Alkalinity (as CaCO3)	mg/L	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14
Carbonate Alkalinity (as CaCO3)	mg/L	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Hydroxide Alkalinity (as CaCO3)	mg/L	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1
Total Alkalinity (as CaCO3)	mg/L	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14
(n:2) Fluorotelomer Sulfonic Acids																1	 	_	
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01		< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.01	< 0.05	<0.05	<0.01	<0.05	<0.05	<0.05	< 0.05	< 0.05
Perfluoroalkane Carboxylic Acids	/1	0.04		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	0.38	0.37	0.37	4.07	<0.02
Perfluorohexanoic acid (PFHxA) Perfluorododecanoic acid (PFDoDA)	μg/L μg/L	0.01		<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01		<0.02	<0.02	1.07 <0.02	<0.02
Perfluorononanoic acid (PFNA)	μg/L μg/L	0.01		<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid (PFPeA)	μg/L μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.01	0.09	0.09	0.02	0.26	<0.02
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01		< 0.02	<0.02	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.01	<0.02	< 0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.02
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		< 0.03	<0.03	<0.02	<0.03	<0.03	<0.03	<0.03	<0.01	<0.03	<0.03	<0.01	0.07	0.07	0.07	0.21	<0.03
Perfluorobutanoic acid (PFBA)	ua/L	0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1	< 0.05	<0.1	<0.1	<0.1	0.2	<0.1
Perfluorodecanoic acid (PFDA)	μg/L	0.01		< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	<0.02	< 0.02	< 0.01	<0.02	< 0.02	< 0.02	< 0.02	<0.02
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.01	< 0.02	< 0.02	< 0.01	<0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorooctanoic acid (PFOA)	ua/L	0.01	0.56 ^{#4}	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.17	0.16	0.16	0.44	< 0.01
Perfluoroalkane Sulfonic Acids	F3'-	1																	
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01		-	-	-	-	-	-	-	< 0.01	-	-	< 0.01	-	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.02	0.01	< 0.01	< 0.01	< 0.01	5.54	5.46	5.49	15.0	< 0.01
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.01	0.45	0.42	0.41	1.31	< 0.02
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		0.07	< 0.02	< 0.02	< 0.02	< 0.02	0.02	0.02	< 0.01	< 0.02	< 0.02	< 0.01	3.47	3.33	3.14	7.30	< 0.02
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.01	0.24	0.23	0.23	0.74	< 0.02
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01		< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.01	<0.02	<0.02	0.01	0.35	0.34	0.31	0.94	<0.02
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01		-	-	-	-	-	-	-	< 0.01	-	-	<0.01	-	-	-	-	-
Sum of PFHxS and PFOS	μg/L	0.01	0.07#4	0.07	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.04	0.01	<0.01	< 0.01	< 0.01	9.01	8.79	8.63	22.3	< 0.01
Perfluoroalkyl Sulfonamides																			
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
		1																	
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02		< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.05	< 0.02	< 0.02	< 0.05	<0.02	< 0.02	< 0.02	< 0.02	< 0.02
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02		<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05	<0.05 <0.05	<0.02 <0.05	<0.02 <0.05	<0.05 <0.05	<0.02 <0.05	< 0.02	<0.02 <0.05	<0.02	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA) N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05												<0.05		< 0.05			< 0.05
N-Methyl perfluorooctane sulfonamidoe(MeFOSA) N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05		< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05		< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Perfluorooctane sulfonamide (FOSA)	μg/L μg/L	0.05		<0.05	<0.05 <0.02	<0.05 <0.02	<0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.05	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02
PFAS	µg/L	0.02	+	\U.UZ	\U.UZ	\U.UZ	\U.UZ	\U.UZ	<u> ~0.02</u>	\U.UZ	\U.U3	\U.UZ	\U.UZ	\U.U3	\U.UZ	\U.UZ	<u> ~0.02</u>	~0.02	\U.UZ
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	ua/L	0.01	+	_	+ -	+ -	+ -	+ -	<u> </u>	-	0.01		 -	<0.01	-	 -	 -	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L μg/L	0.01			-	+	-	+ -	+ :	+ :	0.01	-	-	<0.01	+ :	+ -	+ -	-	-
Sum of PFAS	μg/L	0.01		0.07	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.04	<0.1	< 0.01	< 0.01	<0.01	10.8	10.5	10.3	27.5	< 0.01
54 5.11710	IP9/L	0.01	1	0.07	-0.01	·U.U1	.0.01	-0.01	J.U T	0.04	~0.1	~0.01	-0.01	~U. I	10.0	10.0	10.0	21.0	-0.01

Comments
#1 NHMRC (2011) - Aesthetic. Taste threshold
#2 NHMRC (2011) - Aesthetic. Taste threshold. Health based value is 500 mg/L
#3 NHMRC (2011) - Aesthetic. Taste threshold. No health based value has been set
#4 PFAS National Environmental Management Plan (HEPA 2018)

			1	IDOGO TANK	linean none	IIDAAA AWAA	IIDAAA MELI	linoor Tabili	liboos Tabile	IIDAAS TANK	liboos Tabilió	Junear Bones	Jipaga Bobsa	LIDOOT OPPILLO	IIDOOO MARII	linata none	IIDO40 OMOO	linoto none	Liboro ovico	IIDOLL DODE	TIDOLL DODE
			Location Code					ID004_TANK		ID005_TANK					ID009_Well	ID010_BORE	ID012_SW02				
			Field ID	ID002_TANK	ID003_BORE	ID003_SW01	ID003_WELL	ID004_TANK		QC103	QC203	ID006_BORE1		ID007_SPRING	ID009_Well	ID010_BORE	ID012_SW02	ID013_BORE		ID014_BORE	
			Date		16/01/2020	16/01/2020	16/01/2020	16/01/2020	16/01/2020	16/01/2020	16/01/2020	17/01/2020	17/01/2020	18/01/2020	20/01/2020	20/01/2020	21/01/2020	22/01/2020	22/01/2020	23/01/2020	21/01/2020
			Sample Type		Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D
_			Lab Report No.	ES2002614	ES2002619	ES2002619	ES2002619	ES2002609	ES2002612	ES2002626	ES2002626	ES2002821	ES2002821	ES2002822	ES2002826	ES2002827	ES2002830	ES2002831	ES2002831	ES2002813	ES2002803
	Unit	EQL	Drinking Water																		
Major lons																					
Calcium (filtered)	mg/L	1		-	8	-	-	-	-	-	-	7	5	6	-	8	-	16	-	-	-
Chloride	mg/L	1	250 ^{#1}	-	110	-	-	-	-	-	-	136	170	160	-	124	-	237	-	-	-
Magnesium (filtered)	mg/L	1		-	10	-	-	-	-	-	-	11	10	13	-	12	-	22	-	-	-
Potassium (filtered)	mg/L	1	050#2	-	28	+	-	-	-	-	-	2	2	2	-	35	-	20	-	-	-
Sulfate (as SO4) (filtered) Sodium (filtered)	mg/L	1	250 ^{#2}	-		-	<u> </u>	-	-	-	-	14	18		-		-		-	-	-
Anions Total	mg/L meq/L	0.01	180#3	-	75 4.58	+	<u> </u>	-	-	-	-	76 4.97	87 5.41	91 5.60	-	83 4.92	-	114 8.14	-	-	-
Cations Total	meg/L	0.01		-	4.54	+ -	 	+ - :	+ - :	 	+ :	4.61	4.91	5.38		5.05	 	7.67	+ :	+ :	+
Ionic Balance	%	0.01	1	-	0.54	-	-	-	-	-	-	3.71	4.86	2.05	-	1.23	-	2.98	-	-	-
Alkalinity				<u> </u>							1									<u> </u>	
Bicarbonate Alkalinity (as CaCO3)	mg/L	1		-	45	-	-	-	-	-	-	42	12	40	-	35	-	52	-	-	-
Carbonate Alkalinity (as CaCO3)	mg/L	1		-	<1	-	-	-	-	-	-	<1	<1	<1	-	<1	-	<1	-	-	
Hydroxide Alkalinity (as CaCO3)	mg/L	1	-	-	<1	-	-	-	+ -	 -	+ -	<1	<1	<1	-	<1	-	<1	-	+ -	
Total Alkalinity (as CaCO3) (n:2) Fluorotelomer Sulfonic Acids	mg/L	1	-	-	45	-	-	+ -	-	-	-	42	12	40	-	35	-	52	-	-	-
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	ua/L	0.01		< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoroalkane Carboxylic Acids																					
Perfluorohexanoic acid (PFHxA)	μg/L	0.01		<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	0.14	0.15	0.14
Perfluorododecanoic acid (PFDoDA) Perfluorononanoic acid (PFNA)	μg/L	0.01		<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	< 0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	< 0.02	<0.02 <0.02	<0.02	<0.02
Perfluoropentanoic acid (PFPA)	μg/L μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	0.02	0.04
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01		<0.05	<0.02	< 0.05	< 0.05	<0.02	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.02	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	0.03	0.02	<0.02
Perfluorobutanoic acid (PFBA)	μg/L	0.05		< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
Perfluorodecanoic acid (PFDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	0 56 ^{#4}	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA) Perfluoroalkane Sulfonic Acids	μg/L	0.01	0.56	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.07	0.05	0.04
Perfluorononanesulfonic acid (PFNS)	µq/L	0.01		_	-	-	 .	 -	+ -	 -	+ -	 -	 -	 	_		 -	_	+ -	+	+
Perfluorooctanesulfonic acid (PFOS)	µg/L	0.01		< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.10	< 0.01	2.78	1.93	1.73
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	0.17	0.17	0.14
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		< 0.02	0.04	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	0.08	< 0.02	1.72	1.20	1.02
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.14	0.08	0.07
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02
Perfluorobutane sulfonic acid (PFBS) Perfluoropropanesulfonic acid (PFPrS)	μg/L μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.14	0.16	0.14
Sum of PFHxS and PFOS	μg/L μg/L	0.01	0.07#4	<0.01	0.04	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.18	<0.01	4.50	3.13	2.75
Perfluoroalkyl Sulfonamides	µg/L	0.01	0.07	<0.01	0.04	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.16	<0.01	4.50	3.13	2.75
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
··· = ··· / · F = ··· = ··· · · · · · · · · · · · ·	F3'-	1																			1
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02	<u> </u>	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05 <0.05	<0.05 <0.05	< 0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	< 0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) Perfluorooctane sulfonamide (FOSA)	μg/L μg/L	0.05	-	<0.05	<0.05	<0.05 <0.02	<0.U5	<0.05	<0.05 <0.02	<0.05	<0.05 <0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.U2	<0.05	<0.05	<0.05	<0.05
PFAS	µg/L	0.02	 	<u> ~0.02</u>	\U.UZ	\U.UZ	\U.UZ	~U.UZ	\U.UZ	<0.02	\U.UZ	<0.02	<0.02	~U.UZ	\U.UZ	\U.UZ	~U.UZ	\U.UZ	\U.UZ	\U.UZ	<0.02
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFAS	μg/L	0.01		< 0.01	0.04	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.18	< 0.01	5.22	3.80	3.32
			_	-			-			-					-		-				

PWS_HESSIES_RESERVOIR

		-	Data	23/01/2020	23/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020	14/01/2020
		L	Sample Type		Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Field_D	Interlab_D	Normal
			Lab Report No.	699303	ES2002814	ES2002626	ES2002626	ES2002626	699266	ES2002626	ES2002626	ES2002626	699266	ES2002626
	Unit	EQL	Drinking Water								•		•	
Major lons														
Calcium (filtered)	mg/L	1		-	-	-	8	-	-	-	8	-	-	7
Chloride	mg/L	1	250 ^{#1}	-	-	-	104	-	_	-	191	-	-	122
Magnesium (filtered)	mg/L	1		-	-	-	9	-	-	-	12	-	-	11
Potassium (filtered)	mg/L	1		-	-	-	2	-	-	-	3	-	-	2
Sulfate (as SO4) (filtered)	mg/L	1	250 ^{#2}	_	-	_	26	-	_	-	27	-	-	32
Sodium (filtered)	mg/L	1	180#3	-	_	-	73	_	-	-	102	<u> </u>	-	85
Anions Total		0.01	100	-	-	 	4.27	<u> </u>	<u> </u>	-	6.51		_	4.95
Cations Total		0.01		-	-	-	4.37	-	_	-	5.90	-	-	5.00
Ionic Balance		0.01		-	_	-	1.07	 	<u> </u>	-	4.91	-	-	0.56
Alkalinity	+~ +	3.01				<u> </u>	1.07	1		1	7.01	†	+	0.00
Bicarbonate Alkalinity (as CaCO3)	mg/L	1		-	-	-	40	 	<u> </u>	-	28	-	-	42
Carbonate Alkalinity (as CaCO3)	mg/L	1		-	-	-	<1	-	-	-	<1	-	-	<1
Hydroxide Alkalinity (as CaCO3)	mg/L	1		-	-	<u> </u>	<1	 	 	-	<1	 -	-	<1
Total Alkalinity (as CaCO3)	mg/L	1		-	-	_	40	-	_	-	28	-	-	42
(n:2) Fluorotelomer Sulfonic Acids	13	- 			1	<u> </u>	 	1	1	1		†	1	·-
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/L	0.01		< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)		0.05		< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)		0.01		< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	<0.01	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)		0.01		< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	<0.01	< 0.05	< 0.05	< 0.05	<0.01	<0.05
Perfluoroalkane Carboxylic Acids	Pg/ L	0.01		0.01	0.00	0.00	0.00	0.00	0.0.	0.00	0.00	0.00	0.01	0.00
Perfluorohexanoic acid (PFHxA)	µq/L	0.01		0.11	0.09	<0.02	1.35	1.34	1.2	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02
Perfluorododecanoic acid (PFDoDA)		0.01		< 0.01	< 0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorononanoic acid (PFNA)		0.01		<0.01	< 0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluoropentanoic acid (PFPeA)		0.01		0.03	0.02	<0.02	0.33	0.33	0.27	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorotetradecanoic acid (PFTeDA)		0.01		< 0.01	< 0.05	<0.05	<0.05	< 0.05	<0.01	<0.05	< 0.05	< 0.05	<0.01	<0.05
Perfluoroheptanoic acid (PFHpA)		0.01		0.02	< 0.02	<0.02	0.28	0.27	0.25	<0.02	<0.02	<0.02	<0.01	<0.02
Perfluorobutanoic acid (PFBA)		0.05		< 0.05	<0.1	<0.1	0.2	0.2	0.15	<0.1	<0.1	<0.1	< 0.05	<0.1
Perfluorodecanoic acid (PFDA)		0.01		< 0.01	< 0.02	<0.02	<0.02	<0.02	< 0.01	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorotridecanoic acid (PFTrDA)		0.01		<0.01	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.02	<0.01	<0.02
Perfluoroundecanoic acid (PFUnDA)		0.01		<0.01	< 0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorooctanoic acid (PFOA)		0.01	0.56#4	0.03	0.02	<0.01	0.57	0.57	0.57	<0.01	<0.01	< 0.01	<0.01	<0.01
Perfluoroalkane Sulfonic Acids	pg/L	0.01	0.00	0.00	0.02	10.01	0.07	0.01	0.01	-0.01	-0.01	-0.01	-0.01	-0.01
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01		< 0.01	_	_	_	_	0.10	<u> </u>	-	-	< 0.01	<u> </u>
Perfluorooctanesulfonic acid (PFOS)		0.01		1.5	0.46	<0.01	33.1	20.6	22	0.03	0.02	0.02	<0.01	0.01
Perfluoropentane sulfonic acid (PFPeS)		0.01		0.10	0.10	<0.02	1.62	1.47	1.2	<0.02	<0.02	<0.02	<0.01	<0.02
Perfluorohexane sulfonic acid (PFHxS)		0.01		0.74	0.63	<0.02	11.4	8.24	10	0.09	<0.02	< 0.02	<0.01	<0.02
Perfluoroheptane sulfonic acid (PFHpS)		0.01		0.05	0.03	<0.02	0.92	0.89	0.62	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorodecanesulfonic acid (PFDS)		0.01		<0.01	< 0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	< 0.02	<0.01	<0.02
Perfluorobutane sulfonic acid (PFBS)		0.01		0.11	0.11	< 0.02	1.27	1.23	1.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02
Perfluoropropanesulfonic acid (PFPrS)		0.01		0.04	-	-	-	-	0.50	-	-	-	<0.01	-
Sum of PFHxS and PFOS		0.01	0.07#4	2.24	1.09	<0.01	44.5	28.8	32	0.12	0.02	0.02	<0.01	0.01
Perfluoroalkyl Sulfonamides	1.5-	3.0.				0.0.		25.0		V2		12	V.0.	0.01
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)		0.02		<0.05	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.05	<0.02
N-ethyl-perfluorooctane suifonamidoacetic acid (NMeFOSAA) N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02												
N-ethyl perfluorooctane sulfonamide (EtFOSA)		0.02		< 0.05	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	< 0.05	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA) N-Methyl perfluorooctane sulfonamide (MeFOSA)				<0.05 <0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
		0.05			< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)		0.05		< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02		< 0.05	<0.02	<0.02	<0.02	<0.02	< 0.05	<0.02	<0.02	<0.02	<0.05	<0.02
PFAS		0.04		0.07	ļ			+	20.57	1	+	-	10.04	
Sum of enHealth PFAS (PFAS + PFOS + PFOA)*		0.01		2.27	-	-	-	-	32.57	-	-	-	< 0.01	-
Sum of US EPA PFAS (PFOS + PFOA)*		0.01		1.53	-	-	- 54.0	-	22.57	- 0.40	-	-	< 0.01	-
Sum of PFAS	μg/L	0.01		2.73	1.46	<0.01	51.0	35.1	37.96	0.12	0.02	0.02	<0.1	0.01

Location Code | ID014_BORE | ID015_BORE | PSW_POUND_BORE A | PWS_AIRPORT_BORE | PWS_AIRPORT_BORE | PWS_AIRPORT_BORE | PWS_AIRPORT_BORE | PWS_DUCK_DAM | PWS_HEAD_DAM | PWS_

			Date	15/01/2020	15/01/2020	15/01/2020	15/01/2020	15/01/2020	15/01/2020	15/01/2020	13/02/2020	13/02/2020	13/02/2020	13/02/2020	13/02/2020
			Sample Type	Normal	Field D	Interlab D	Normal	Normal							
			Lab Report No.		ES2002622	ES2002622	ES2002622	ES2002622	ES2002622	ES2002622	EM2002483	EM2002483	702421	EM2002483	EM2002483
	1	1	Lab Report No.	L02002022	102002022	L02002022	LOZOOZOZZ	LOZOUZUZZ	LOZOOZOZZ	L02002022	LIVIZUUZ403	LIVIZUUZ400	102421	LIVIZUUZ403	LIVIZUUZ403
	Unit	EQL	Drinking Water												
Major Ions															
Calcium (filtered)	mg/L	1		5	-	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L	1	250#1	107	-	-	-	-	-	-	-	-	-	-	-
Magnesium (filtered)	mg/L	1		7	-	-	-	-	-	-	-	-	-	-	-
Potassium (filtered)	mg/L	1		2	-	-	-	-	-	-	-	-	-	-	-
Sulfate (as SO4) (filtered)	mg/L	1	250 ^{#2}	19	-	-	-	-	-	-	-	-	-	-	-
Sodium (filtered)	mg/L	1		54	-	-	-	-	-	-	-	-	-	-	-
Anions Total	meq/L	0.01		3.51	-	-	-	-	-	-	-	-	-	-	-
Cations Total	meq/L	0.01		3.22	-	-	-	-	-	-	-	-	-	-	-
Ionic Balance	%	0.01		4.28	-	-	-	-	-	-	-	-	-	-	-
Alkalinity Disaster at Alkalinity (as 0.000)		+-	1				+				+				
Bicarbonate Alkalinity (as CaCO3)	mg/L	1		5	-	-	-	-	-	-	-	-	-	-	-
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	mg/L	1	+	<1 <1	-	-	-	-	-	-	-	-	-	-	-
Total Alkalinity (as CaCO3)	mg/L mg/L	1		5	-	-	-	-	-	-	-	-	-	-	-
(n:2) Fluorotelomer Sulfonic Acids	mg/L	+	+	j j	+ -	+ ·	+ -	+ -	+ -	+ -	+	+ -	+	-	+ -
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01		< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01		< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.01	<0.05	<0.05
Perfluoroalkane Carboxylic Acids															
Perfluorohexanoic acid (PFHxA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	<0.02
Perfluorononanoic acid (PFNA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	<0.02
Perfluoropentanoic acid (PFPeA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	<0.02
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	<0.05
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.01	< 0.02	<0.02
Perfluorobutanoic acid (PFBA)	μg/L	0.05		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1
Perfluorodecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		<0.02 <0.02	<0.01 <0.01	<0.02 <0.02	<0.02 <0.02								
Perfluoroundecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnDA)	μg/L μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02
Perfluorooctanoic acid (PFOA)		0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02
Perfluoroalkane Sulfonic Acids	μg/L	0.01	0.50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01		_	-	 -	-	+	_	_	-	_	< 0.01	_	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01		<0.01	<0.01	0.02	<0.01	<0.01	< 0.01	0.45	0.46	0.48	0.54	<0.01	0.30
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.01	<0.02	<0.02
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.04	0.04	0.04	<0.02	0.04
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.01	< 0.02	<0.02
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01		-	-	-	-	-	-	-	-	-	< 0.01	-	-
Sum of PFHxS and PFOS	μg/L	0.01	0.07 ^{#4}	< 0.01	<0.01	0.02	<0.01	< 0.01	<0.01	0.50	0.50	0.52	0.58	<0.01	0.34
Perfluoroalkyl Sulfonamides															
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.05	<0.02	<0.02
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.05	<0.02	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05		< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05		<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.05	< 0.02	< 0.02
PFAS															
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01		-	-	-	-	-	-	-	-	-	0.58	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01		-	-	-	-	-	-	-	-	-	0.54	-	-
Sum of PFAS	μg/L	0.01		< 0.01	<0.01	0.02	< 0.01	< 0.01	< 0.01	0.50	0.50	0.52	0.58	< 0.01	0.34

Location Code PWS_HOSP_BORE PWS_HOSP_TANK 1 PWS_HOSP_TANK 2 PWS_HOSP_TANK 3 PWS_HOSP_TANK 4 PWS_HOSP_TANK 5 PWS_HOSP_TAP1 PWS_HOSP_TAP2 PWS_HOSP_TAP3

			1 4 0 4 -	DIVIO LIGOD TABA	DWG WHOSIGH BODS B	Inuia cou none	DWG GGU DODE	Inua cou pope	Inuo con Table	Dura cou TAD	Inus was now	TO 01101	TO 011100	huo or	Turo 00	Two so BODE
				PWS_HOSP_TAP4	PWS_KINGFISH_BORE B	PWS_SCH_BORE	PWS_SCH_BORE	PWS_SCH_BORE		PWS_SCH_TAP		TC_SW01	TC_SW02	WC-01	WC-02	WC-03_BORE
				PWS_HOSP_TAP4	PWS_KINGFISH_BORE B	PWS_SCH_BORE	QC102	QC202	PWS_SCH_TANK 1	PWS_SCH_TAP	PWS-WWII_DAM	TC_SW01	TC_SW02	WC-01	WC-02	WC-03_BORE
				13/02/2020	14/01/2020	16/01/2020	16/01/2020	16/01/2020	16/01/2020	16/01/2020	13/01/2020	14/01/2020	16/01/2020	15/01/2020	16/01/2020	17/01/2020
			Sample Type		Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
	_		Lab Report No.	EM2002483	ES2002626	ES2002620	ES2002620	699263	ES2002620	ES2002620	ES2002626	ES2002626	ES2002626	ES2002617	ES2002616	ES2002618
	Unit	EQL	Drinking Water													
Major lons																
Calcium (filtered)	mg/L	1		-	12	4	-	-	-	-	-	-	-	2	6	4
Chloride	mg/L	1	250#1	-	524	57	-	-	-	-	-	-	-	170	48	44
Magnesium (filtered) Potassium (filtered)	mg/L	1		-	30	5	-	-	-	-	-	-	+ -	9	4	5
	mg/L	<u> </u>	250#2	-	34	22	-	-	-		-	-	+	16	4	16
Sulfate (as SO4) (filtered)	mg/L	1	250 ^{#2} 180 ^{#3}	-		50	-	-	-	-	-	-	-	90	28	35
Sodium (filtered) Anions Total	mg/L meg/L	0.01	180	-	245 15.6	2.50	-	-	-	-	-	-	-	5.29	1.66	2.09
Cations Total	meq/L	0.01		-	13.9	2.81	-	-	-	-	-	-	-	4.78	1.87	2.09
Ionic Balance	%	0.01		-	5.65	2.01		-	-	-		-	+ -	5.04	1.07	2.10
Alkalinity	1	0.01			5.50	1	1						1	3.04	1	+
Bicarbonate Alkalinity (as CaCO3)	mg/L	1		-	4	22	-	-	-	-	-	-	-	8	11	26
Carbonate Alkalinity (as CaCO3)	mg/L	1		-	<1	<1	-	-	-	-	-	-	-	<1	<1	<1
Hydroxide Alkalinity (as CaCO3)	mg/L	1		-	<1	<1	-	-	-	-	-	-	-	<1	<1	<1
Total Alkalinity (as CaCO3)	mg/L	1		-	4	22	-	-	-	-	-	-	-	8	11	26
(n:2) Fluorotelomer Sulfonic Acids																
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01		<0.05	<0.05	< 0.05	< 0.05	<0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS) 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L μg/L	0.01		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Perfluoroalkane Carboxylic Acids	µg/L	0.01		<0.05	<0.05	<0.05	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorohexanoic acid (PFHxA)	μg/L	0.01		<0.02	<0.02	< 0.02	<0.02	<0.01	<0.02	<0.02	2.68	< 0.02	<0.02	< 0.02	<0.02	<0.02
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01		<0.02	<0.02	<0.02	< 0.02	<0.01	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
Perfluorononanoic acid (PFNA)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02
Perfluoropentanoic acid (PFPeA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	0.65	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	0.51	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorobutanoic acid (PFBA)	μg/L	0.05		<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid (PFDA)	μg/L	0.01		<0.02	<0.02	<0.02	< 0.02	<0.01	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		<0.02	<0.02	< 0.02	<0.02	< 0.01	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	0.50#4	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA) Perfluoroalkane Sulfonic Acids	μg/L	0.01	0.56#4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.13	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoronnanesulfonic acid (PFNS)	µg/L	0.01		-	-	-	-	<0.01	_	_	_	-	 -	-	-	-
Perfluorooctanesulfonic acid (PFOS)	μg/L μg/L	0.01		0.43	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	44.6	< 0.01	0.03	< 0.01	<0.01	<0.01
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	<0.01	2.97	<0.01	<0.02	<0.02	<0.02	<0.02
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		0.04	<0.02	<0.02	<0.02	<0.01	<0.02	<0.02	22.6	< 0.02	0.06	<0.02	<0.02	<0.02
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		<0.02	<0.02	< 0.02	<0.02	<0.01	<0.02	<0.02	2.05	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		< 0.02	<0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01		<0.02	<0.02	<0.02	< 0.02	<0.01	<0.02	<0.02	2.30	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	#4	-	-	-	-	<0.01	-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	μg/L	0.01	0.07 ^{#4}	0.47	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	67.2	< 0.01	0.09	< 0.01	< 0.01	< 0.01
Perfluoroalkyl Sulfonamides	/1	0.05		.0.05	.0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	.0.05	-0.05		10.05
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02		<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02		<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA) N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L μg/L	0.05		<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)		0.05		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Perfluorooctane sulfonamide (FOSA)	μg/L μg/L	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
PFAS	ру/с	0.02		~U.UZ	\U.UZ	~U.UZ	~U.UZ	~0.00	~0.02	~U.UZ	~0.02	~U.UZ	~U.UZ	~U.UZ	~0.02	~0.02
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01		-	_	+ -	-	<0.01	-	_	-	-	 -	 -	-	_
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01		-	-	-	-	<0.01	-	-	-	-	-	-	-	-
Sum of PFAS	μg/L	0.01		0.47	<0.01	< 0.01	< 0.01	<0.1	< 0.01	<0.01	79.9	< 0.01	0.09	< 0.01	< 0.01	<0.01
<u> </u>	11.3			*···												

Department for Infrastructure, Transport, Regional Development and Communications

_																		
1	Location	On-site																
Γ	Location Code	A_SS01	A_SS02	A_SS03	A_SS03	A_SS03	A_SS04	A_SS05	A_SS06	A_SS07	A_SS08	A_SS09	A_SS10	A_SS11	A_SS12	A_SS13	A_SS14	A_SS15
Ε	Field ID	A_SS01	A_SS02	A_SS03	QC108	QC208	A_SS04	A_SS05	A_SS06	A_SS07	A_SS08	A_SS09	A_SS10	A_SS11	A_SS12	A_SS13	A_SS14	A_SS15
Γ	Date	21/01/2020	21/01/2020	21/01/2020	20/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Γ	Sample Type	Normal	Normal	Normal	Field_D	Interlab_D	Normal											
I	Catchment	Mission																
Γ	Media	Soil																
Γ	Lab Report No.	ES2002806	ES2002806	ES2002806	ES2002803	699303	ES2002806											

			Lab Report No.	ES2002806	ES2002806	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806
	Unit	EQL	Human health - Industrial / Commercial																	
Physical Parameters																				
Moisture Content	%	0.1		2.7	3.0	1.8	3.8	2.7	10.6	4.4	10.0	9.8	10.5	13.7	10.0	9.0	7.2	15.8	9.5	8.4
(n:2) Fluorotelomer Sulfonic Acids																				
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids																				
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.005	< 0.0002	0.0003	0.0003	< 0.0002	0.0002	0.0008	< 0.0002	0.0016	0.0008	0.0022	< 0.0002	0.0004
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0011	0.0002	0.0004	< 0.0002	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0007	0.0006	< 0.0002	< 0.0002
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002	0.0011	0.0008	0.0058	< 0.0002	0.0004
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0009	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0003	0.0005	0.0008	< 0.0002	< 0.0002
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	0.001	0.001	0.013	< 0.001	< 0.001
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0005	0.0003	0.0003	< 0.0002	< 0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0008	0.0005	< 0.0002	< 0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	50 ^{#1}	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0005	0.0009	0.0008	< 0.0002	0.0002
Perfluoroalkane Sulfonic Acids																				
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	-	-	< 0.005	-	-	-	-	-	-	-	-	-	-	—	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.0040	0.0092	0.0068	0.0068	<0.005	0.0002	0.0160	0.0295	0.0063	0.0108	0.0123	0.0028	0.0274	0.0423	0.0391	0.0067	0.0228
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	0.0019	<0.0002	0.0012	< 0.0002	<0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.0002	0.0028	0.0004	0.0003	<0.005	<0.0002	0.0015	0.0009	0.0003	0.0004	0.0021	<0.0002	0.0254	0.0012	0.0121	0.0002	0.0010
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		< 0.0002	< 0.0002	0.0003	0.0002	< 0.005	< 0.0002	< 0.0002	0.0008	< 0.0002	< 0.0002	<0.0002	< 0.0002	0.0012	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		<0.0002	< 0.0002	< 0.0002	<0.0002	< 0.005	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0025	0.0042	0.0082	0.0004	0.0025
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	0.0012	< 0.0002	0.0011	< 0.0002	< 0.0002
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		-	-	-	-	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	20 ^{#1}	0.0042	0.0120	0.0072	0.0071	< 0.005	0.0002	0.0175	0.0304	0.0066	0.0112	0.0144	0.0028	0.0528	0.0435	0.0512	0.0069	0.0238
Perfluoroalkyl Sulfonamides		0.0002		0.0012	0.0120	0.00.2	0.007	40.000	0.0002	0.01.0	0.0001	0.0000	0.0112	0.0111	0.0020	0.0020	0.0.00	0.0012	- 0.0000	0.0200
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0031	<0.0002	<0.0002	<0.0002	<0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		< 0.0002	< 0.0002	<0.0002	<0.0002	<0.005	< 0.0002	<0.0002	<0.0002	< 0.0005	<0.0002	< 0.0002	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0002	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		< 0.0005	<0.0005	<0.0005	<0.0005	<0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.005	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	0.0031	0.0002	0.0006	<0.0003	0.0003
PFAS	9/1.9	0.3002		-0.0002	15.0002	-3.0002	-3.0002	-0.000	43.0002	10.0002	10.0002	10.0002	40.0002	10.0002	43.0002	2.0001	3.0002	2.0000	10.0002	2.0000
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		_	-	+ -	-	< 0.005	-	 -	-	 -	-	 -	+ -	+ -	-	+ -	+	_
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005			-	+ -	 	< 0.005	+ -	 .	<u> </u>	 	<u> </u>	 .	+ -	+ -	 	+ -	+	-
Sum of PFAS	mg/kg	0.0002		0.0042	0.0126	0.0075	0.0073	<0.005	0.0002	0.0180	0.0319	0.0066	0.0114	0.0177	0.0028	0.0728	0.0539	0.0867	0.0073	0.0276
	1119/119	0.0002		0.0072	0.0120	0.0073	0.0073	VU.UJ	0.0002	0.0100	0.0013	0.0000	0.0114	0.0177	0.0020	0.0720	0.0000	0.0007	0.0073	0.0270

Department for Infrastructure, Transport, Regional Development and Communications

_																		
	Location	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site
	Location Code	A_SS16	A_SS17	A_SS18	A_SS19	A_SS20	A_SS20	A_SS21	A_SS22	A_SS23	A_SS24	A_SS25	A_SS26	A_SS27	A_SS28	A_SS29	A_SS30	A_SS30
	Field ID	A_SS16	A_SS17	A_SS18	A_SS19	A_SS20	QC111	A_SS21	A_SS22	A_SS23	A_SS24	A_SS25	A_SS26	A_SS27	A_SS28	A_SS29	A_SS30	QC112
	Date	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
	Sample Type	Normal	Normal	Normal	Normal	Normal	Field_D	Normal	Normal	Normal	Normal	Field_D						
	Sample Type Catchment		Normal Mission	Normal Mission	Normal Mission	Normal Mission	Field_D Mission	Normal Mission		Normal Mission	Normal Mission	Field_D Mission						
		Mission																
-	Catchment	Mission Soil		Mission Soil				Mission Soil	Mission	Mission Soil					Mission Soil	Mission Soil	Mission Soil	

			Lab Report No.	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002803	ES2002806	ES2002803									
	Unit	EQL	Human health - Industrial / Commercial																	
Physical Parameters																				
Moisture Content	%	0.1		11.1	7.2	9.2	5.4	10.4	8.6	9.6	8.3	5.2	5.7	12.6	6.6	13.5	8.6	11.3	10.8	13.1
(n:2) Fluorotelomer Sulfonic Acids																				
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	0.0022	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005		< 0.0005	0.0018	0.0039	0.106	0.0016	0.0017	0.0024	0.0228	0.0104	0.0191	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0117	0.0130
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	0.0006	0.0196	< 0.0005	< 0.0005	< 0.0005	0.0027	0.0008	0.0051	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0006	0.0009
Perfluoroalkane Carboxylic Acids																				
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		0.0026	0.0027	0.0033	0.0068	0.0028	0.0032	0.0032	0.0024	0.0094	0.0064	0.0006	0.0007	0.0004	0.0043	0.0008	0.0048	0.0049
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		0.0008	0.0036	0.0051	0.0364	0.0024	0.0023	0.0014	0.0156	0.0128	0.0207	0.0015	< 0.0002	< 0.0002	0.0010	< 0.0002	0.0056	0.0051
Perfluorononanoic acid (PFNA)	mg/kg	0.0002		0.0002	0.0012	0.0019	0.0058	0.0016	0.0015	0.0023	0.0017	0.0031	0.0022	< 0.0005	0.0003	< 0.0002	0.0002	< 0.0002	0.0153	0.0179
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		0.0016	0.0030	0.0049	0.0033	0.0033	0.0021	0.0076	0.0032	0.0041	0.0033	0.0006	0.0005	0.0005	0.0047	0.0005	0.0088	0.0058
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		0.0007	0.0021	0.0021	0.0067	0.0015	< 0.0005	< 0.0005	0.0037	0.0015	0.0062	< 0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0007	0.0006
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		0.0004	0.0009	0.0015	0.0024	0.0013	0.0010	0.0014	0.0011	0.0019	0.0018	< 0.0005	0.0003	< 0.0002	0.0004	< 0.0002	0.0029	0.0030
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		0.003	0.004	0.005	0.003	0.004	0.002	0.007	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.006	0.001	0.010	0.006
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		0.0004	0.0022	0.0045	0.0431	0.0026	0.0023	0.0044	0.0056	0.0074	0.0033	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0075	0.0070
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.0002	0.0005	0.0008	0.0055	0.0003	0.0004	0.0002	0.0023	0.0023	0.0049	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0012	0.0014
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		0.0007	0.0080	0.0080	0.0487	0.0067	0.0032	0.0049	0.0521	0.0165	0.0243	0.0021	0.0004	< 0.0002	0.0009	< 0.0002	0.0081	0.0044
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	50 ^{#1}	0.0006	0.0027	0.0024	0.0064	0.0029	0.0029	0.0026	0.0024	0.0060	0.0043	< 0.0005	0.0006	< 0.0002	0.0013	0.0002	0.0170	0.0198
Perfluoroalkane Sulfonic Acids																				
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.0219	0.0383	0.0392	0.571	0.0338	0.0548	0.0570	0.0985	0.986	0.246	0.0277	0.0109	0.0069	0.0453	0.0159	0.137	0.124
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		0.0013	0.0011	0.0015	0.0019	0.0008	0.0006	0.0007	0.0010	0.0048	0.0037	< 0.0005	< 0.0002	< 0.0002	0.0006	< 0.0002	0.0014	0.0010
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.0186	0.0130	0.0154	0.0204	0.0097	0.0091	0.0088	0.0117	0.0533	0.0296	0.0031	0.0010	< 0.0002	0.0136	0.0005	0.0190	0.0214
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		0.0008	0.0007	0.0010	0.0018	0.0006	0.0005	0.0006	0.0009	0.0047	0.0020	< 0.0005	< 0.0002	< 0.0002	0.0008	< 0.0002	0.0015	0.0015
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		0.0028	0.0404	0.0405	0.0626	0.0277	0.0210	0.0313	0.0519	0.0433	0.0206	0.0008	0.0018	< 0.0002	0.0301	< 0.0002	0.0103	0.0145
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		0.0008	0.0007	0.0012	0.0018	0.0006	0.0007	0.0007	0.0009	0.0036	0.0035	< 0.0005	< 0.0002	< 0.0002	0.0005	< 0.0002	0.0009	0.0011
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	20 ^{#1}	0.0405	0.0513	0.0546	0.591	0.0435	0.0639	0.0658	0.110	1.04	0.276	0.0308	0.0119	0.0069	0.0589	0.0164	0.156	0.145
Perfluoroalkyl Sulfonamides																				
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0012	< 0.0012	< 0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		0.0011	< 0.0002	< 0.0002	0.0008	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0009	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0012	< 0.0012	< 0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	0.0007	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.0012	< 0.0012	< 0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0012	0.0014
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0014	0.0013	< 0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0002		0.0018	0.0032	0.0039	0.0318	0.0025	0.0021	0.0016	0.0105	0.0144	0.0114	0.0007	0.0004	< 0.0002	0.0045	< 0.0002	0.0075	0.0063
PFAS																				
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFAS	mg/kg	0.0002		0.0601	0.130	0.147	0.989	0.107	0.111	0.138	0.295	1.19	0.420	0.0371	0.0169	0.0078	0.114	0.0189	0.273	0.261

Department for Infrastructure, Transport, Regional Development and Communications

_																		
Γ	Location	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site
	Location Code	A_SS30	A_SS31	A_SS32	A_SS33	A_SS34	A_SS35	A_SS36	A_SS37	A_SS38	A_SS39	A_SS40	A_SS41	A_SS42	A_SS43	A_SS44	A_SS45	A_SS46
	Field ID	QC212	A_SS31	A_SS32	A_SS33	A_SS34	A_SS35	A_SS36	A_SS37	A_SS38	A_SS39	A_SS40	A_SS41	A_SS42	A_SS43	A_SS44	A_SS45	A_SS46
Γ	Date	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020
Г	Comple Type																	
L	Sample Type	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal								
F	Catchment		Normal Mission		Normal Town/Watermill													
ŀ		Mission													Town/Watermill	Town/Watermil	Town/Watermill	
-	Catchment	Mission Soil	Mission	Mission Soil	Mission			Mission Soil	Mission	Mission Soil	Mission	Mission	Town/Watermill	Town/Watermill Soil	Town/Watermill Soil	Town/Watermill Soil	Town/Watermill Soil	Town/Watermil

			Lab Report No.	699303	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806
	Unit	EQL	Human health - Industrial / Commercial																	
Physical Parameters																				
Moisture Content	%	0.1		12	8.7	10.1	15.3	13.2	14.5	11.0	15.0	23.6	22.4	8.2	13.7	7.4	9.0	7.7	10.7	8.1
(n:2) Fluorotelomer Sulfonic Acids																				
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005		0.012	0.0032	0.0025	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0023	< 0.0005	< 0.0005	0.323	< 0.0005	< 0.0005	0.0046	0.0106	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0098	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids																				
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		< 0.005	0.0022	0.0005	< 0.0002	0.0010	0.0003	0.0005	0.0008	0.0055	0.0006	0.0008	0.0040	< 0.0002	0.0004	0.0005	0.0018	< 0.0002
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		< 0.005	0.0063	0.0029	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	0.0021	< 0.0002	< 0.0002	0.0305	< 0.0002	< 0.0002	0.0006	0.0030	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg	0.0002		0.021	0.0020	0.0003	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002	0.0037	< 0.0002	< 0.0002	0.0095	< 0.0002	0.0003	0.0019	0.0037	0.0004
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		0.0053	0.0053	0.0006	0.0002	0.0010	0.0008	0.0003	0.0008	0.0123	0.0008	0.0010	0.0037	< 0.0002	< 0.0002	0.0007	0.0027	< 0.0002
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		< 0.005	0.0009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0057	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		< 0.005	0.0010	0.0003	< 0.0002	< 0.0002	0.0002	< 0.0002	0.0002	0.0024	< 0.0002	< 0.0002	0.0049	< 0.0002	0.0003	0.0004	0.0013	< 0.0002
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		< 0.005	0.005	< 0.001	< 0.001	0.004	< 0.001	< 0.001	< 0.001	0.014	< 0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		0.0099	0.0024	0.0013	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0018	< 0.0002	< 0.0002	0.0347	< 0.0002	< 0.0002	0.0012	0.0055	< 0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.005	0.0012	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0004	< 0.0002	< 0.0002	0.0069	< 0.0002	< 0.0002	< 0.0002	0.0008	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		0.0053	0.0078	0.0043	< 0.0002	0.0003	< 0.0002	< 0.0002	< 0.0002	0.0011	< 0.0002	< 0.0002	0.0175	< 0.0002	< 0.0002	0.0007	0.0024	< 0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	50 ^{#1}	0.025	0.0017	0.0007	< 0.0002	0.0004	0.0002	0.0007	0.0004	0.0056	< 0.0002	0.0004	0.0182	< 0.0002	0.0005	0.0009	0.0048	< 0.0002
Perfluoroalkane Sulfonic Acids	1 3 3	1		0.020	-			-			-									
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		< 0.005	-	-	-	-	-	-	-	-	-	<u> </u>	<u> </u>	-	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.16	0.0449	0.0451	0.0024	0.0249	0.0124	0.0228	0.0177	0.205	0.0040	0.0313	0.119	0.0010	0.0070	0.0213	0.0480	0.0242
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		< 0.005	0.0010	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	0.0017	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.01	0.0102	0.0020	< 0.0002	0.0037	< 0.0002	0.0023	0.0008	0.0336	0.0018	0.0007	0.0010	< 0.0002	0.0004	0.0004	0.0033	<0.0002
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		< 0.005	0.0007	0.0004	< 0.0002	0.0003	< 0.0002	0.0003	< 0.0002	0.0029	< 0.0002	< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		0.014	0.0084	0.0077	< 0.0002	0.0028	0.0003	0.0010	0.0004	0.0115	0.0003	0.0015	0.0017	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		< 0.005	0.0009	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	0.0012	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		< 0.005	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	20 ^{#1}	0.17	0.0551	0.0471	0.0024	0.0286	0.0124	0.0251	0.0185	0,239	0.0058	0.0320	0.120	0.0010	0.0074	0.0217	0.0513	0.0242
Perfluoroalkyl Sulfonamides	gg	0.0002		0.17	0.0001	0.0471	0.0024	0.0200	0.0124	0.0201	0.0100	0.200	0.0000	0.0020	0.120	0.0010	0.0074	0.0217	0.0010	0.02-12
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0003		<0.003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		< 0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002	<0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		< 0.005	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		< 0.005	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		<0.005	<0.0005	0.0010	<0.0005	<0.0005	<0.0005	<0.0005	0.0006	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0003		0.0053	0.0075	0.0016	<0.0003	0.0012	<0.0003	0.0003	<0.0002	0.0047	<0.0003	<0.0003	0.0006	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
PFAS	mg/kg	0.0002		0.0003	0.0073	0.0020	₹0.0002	0.0012	₹0.0002	0.0003	₹0.0002	0.0047	₹0.0002	₹0.0002	0.0000	₹0.0002	₹0.0002	₹0.0002	₹0.0002	₹0.0002
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		0.195	+ -	+ -	+	+ -	+ -	+ -	+ -	+ -	 	 	+ -	+ -	+ -	-	+ -	+ -
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005		0.195	 	+ -	+ :	-	-	+ -	-	-	 	 	+ -	+ :	+ :	+ -	+ -	+ -
Sum of PFAS	mg/kg	0.0002		0.165	0.113	0.0727	0.0026	0.0400	0.0144	0.0282	0.0217	0.312	0.0075	0.0367	0.593	0.0010	0.0089	0.0332	0.0898	0.0246
Odili Ol I I AO	my/kg	0.0002		0.2078	0.113	0.0727	0.0020	0.0400	0.0144	0.0202	0.0217	0.312	0.0073	0.0307	0.593	0.0010	0.0069	0.0332	0.0098	0.0240

Department for Infrastructure, Transport, Regional Development and Communications

_																		
	Location	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site							
F	Location Code	A_SS47	A_SS48	A_SS49	A_SS50	A_SS50	A_SS50	A_SS51	A_SS52	A_SS52	A_SS52	A_SS53	A_SS54	A_SS55	A_SS56	A_SS57	A_SS58	A_SS59
	Field ID	A_SS47	A_SS48	A_SS49	A_SS50	QC114	QC214	A_SS51	A_SS52	QC115	QC215	A_SS53	A_SS54	A_SS55	A_SS56	A_SS57	A_SS58	A_SS59
	Date	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	23/01/2020	23/01/2020	23/01/2020
	Sample Type	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal
	Catchment	Town/Watermill	Town/Watermil	Town/Watermill	Town/Watermill	Town/Watermill	Town/Watermill	Town/Watermill	Mission	Mission	Mission							
	Media	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil							
	Lab Report No.	ES2002806	ES2002806	ES2002806	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806
	Human health -																	

			Lab Report No.	ES2002806	ES2002806	ES2002806	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806	ES2002806
	Unit	EQL	Human health - Industrial / Commercial																	
Physical Parameters																				
Moisture Content	%	0.1		12.2	10.5	9.1	9.1	9.5	7.2	12.4	5.2	4.5	4.1	7.6	1.6	3.6	4.1	12.5	10.2	10.8
(n:2) Fluorotelomer Sulfonic Acids																				
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005		0.0007	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids																				
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		0.0009	0.0003	0.0003	0.0004	0.0004	< 0.005	0.0006	0.0010	0.0011	< 0.005	0.0007	0.0131	0.0007	< 0.0005	0.0005	0.0008	0.0008
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0004	< 0.005	0.0003	0.0004	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg	0.0002		0.0048	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0005	< 0.005	0.0004	0.0002	0.0007	< 0.0005	< 0.0002	0.0002	0.0005
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		0.0010	0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0003	< 0.005	0.0002	0.0013	< 0.0005	< 0.0005	0.0003	0.0004	0.0006
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0012	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0012	< 0.0012	< 0.0005	< 0.0005	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0004	< 0.005	0.0003	0.0016	< 0.0005	< 0.0005	0.0002	0.0003	0.0006
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	0.003	< 0.005	0.001	0.001	< 0.001	< 0.001	0.001	0.002	0.002
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0005	< 0.005	< 0.0002	< 0.0002	0.0011	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0005	0.0004	< 0.005	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	50 ^{#1}	0.0012	0.0002	< 0.0002	0.0004	0.0004	< 0.005	0.0004	< 0.0005	0.0004	< 0.005	0.0008	0.0037	< 0.0005	< 0.0005	0.0004	0.0004	0.0008
Perfluoroalkane Sulfonic Acids																				
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	-	-	-	< 0.005	-	-	-	< 0.005	-	-	-	-	-	+	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.0086	0.0073	0.0042	0.0222	0.0102	0.018	0.0386	0.0492	0.0515	0.037	0.0285	0.0194	0.0853	0.0231	0.0146	0.0214	0.0250
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	0.0002	0.0002	< 0.005	0.0003	< 0.0005	0.0005	< 0.005	< 0.0002	0.0076	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.0010	0.0008	<0.0002	0.0028	0.0038	< 0.005	0.0039	0.0029	0.0056	< 0.005	0.0010	0.0746	0.0042	0.0034	0.0004	0.0008	0.0007
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		0.0004	< 0.0002	< 0.0002	0.0005	0.0003	< 0.005	0.0006	< 0.0005	0.0005	< 0.005	< 0.0002	0.0050	< 0.0005	< 0.0005	< 0.0002	<0.0002	<0.0002
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.005	<0.0002	0.0078	0.0092	< 0.005	0.0096	0.0003	0.0060	< 0.0005	<0.0002	0.0004	0.0007
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.005	< 0.0002	< 0.0005	0.0004	< 0.005	< 0.0002	0.0018	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		-	-	-	-	-	< 0.005	-	-	-	< 0.005	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	20 ^{#1}	0.0096	0.0081	0.0042	0.0250	0.0140	0.018	0.0425	0.0521	0.0571	0.037	0.0295	0.0940	0.0895	0.0265	0.0150	0.0222	0.0257
Perfluoroalkyl Sulfonamides		0.0002		0.0000	0.000.	0.001.2	0.0200	0.01.0	0.0.0	0.0.20	0.0021	0.007	0.001	0.0200	0.00.10	0.0000	0.0200	0.0100	0.0222	0.020
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0012	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0012	< 0.0012	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.01	<0.0002	< 0.0005	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.01	<0.0002	< 0.0005	<0.0002	<0.01	<0.0002	<0.0002	<0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0012	< 0.0002	< 0.005	< 0.0002	< 0.0002	<0.0012	<0.0000	< 0.0002	< 0.0002	< 0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.005	<0.0005	<0.0012	<0.0005	< 0.005	<0.0005	<0.0005	<0.0012	<0.0012	<0.0005	< 0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.005	<0.0005	<0.0012	<0.0005	<0.005	<0.0005	<0.0005	<0.0012	<0.0012	<0.0005	<0.0005	<0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0003		<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.005	<0.0003	<0.0012	0.0004	<0.005	<0.0003	<0.0003	< 0.0012	< 0.0012	<0.0003	<0.0003	<0.0003
PFAS	99	0.0002		₹0.0002	Q.000Z	VO.0002	VO.000Z	VO.000Z	VO.000	<0.000Z	X0.0000	0.0004	VO.000	<0.000Z	VO.000Z	<0.0000	<0.0000	~0.000Z	Z0.000Z	VO.000Z
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		 	+ .	+ -	+ -	+ -	0.018	+ -	 	+ -	0.037	+	+ -	+ -	+ -	+ -	+	_
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005			+-:-	+ :	+ - : -	+ -	0.018	+	+-:-	+ -	0.037	+-:-	+	+	 	+-:-	+	
Sum of PFAS	mg/kg	0.0002		0.0193	0.0089	0.0045	0.0265	0.0156	<0.05	0.0444	0.0609	0.0751	< 0.05	0.0428	0.130	0.0980	0.0265	0.0174	0.0267	0.0317
Cam of 1170	mg/ng	0.0002		0.0133	0.0009	0.0040	0.0203	0.0130	<0.00	0.0444	0.0009	0.0731	<0.00	0.0420	0.130	0.0500	0.0203	0.0174	0.0207	0.0317

Department for Infrastructure, Transport, Regional Development and Communications

				Soil	Soil	Soil	Soil	Soil	Soil
			Lab Report No.	ES2002806	ES2002803	699303	ES2002806	ES2002806	ES2002806
	Unit	EQL	Human health - Industrial / Commercial						
Physical Parameters									
Moisture Content	%	0.1		15.2	13.2	14	10.1	12.3	14.6
(n:2) Fluorotelomer Sulfonic Acids									
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.01	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids									
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		0.0007	0.0007	< 0.005	0.0016	0.0022	0.0014
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg	0.0002		0.0002	0.0004	< 0.005	0.0005	0.0004	0.0004
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		0.0009	0.0006	< 0.005	0.0013	0.0015	0.0030
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		0.0004	0.0004	< 0.005	0.0010	0.0008	0.0008
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		0.002	0.001	< 0.005	0.002	0.002	0.003
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	50 ^{#1}	0.0005	0.0006	< 0.005	0.0017	0.0014	0.0010
Perfluoroalkane Sulfonic Acids									
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	< 0.005	-	-	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.0274	0.0299	0.031	0.0335	0.0373	0.0301
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.0008	0.0011	< 0.005	0.0010	0.0010	0.0015
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		0.0004	0.0007	< 0.005	0.0006	0.0003	0.0004
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		-	-	< 0.005	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	20 ^{#1}	0.0282	0.0310	0.031	0.0345	0.0383	0.0316
Perfluoroalkyl Sulfonamides									
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002
PFAS		1							
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		-	-	0.031	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005		-	-	0.031	-	-	-
Sum of PFAS	mg/kg	0.0002		0.0333	0.0354	< 0.05	0.0432	0.0469	0.0416

Sample Type Normal
Catchment Mission

Field_D

Mission

Interlab_D

Mission

Normal

Mission

Mission

Mission

Comments
#1 Based on 20% of FSANZ TDI, i.e. up to 80% of exposure is assumed to come from other pathways.

5 of 5

Table 4b: Off-Site Soil and Sediment Analytical Results

Preliminary Site Investigation

Norfolk Island

Department for Infrastructure, Transport, Regional Development and Communications

	Location	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site									
	Location Code	BALL_SS01	BALL_SS02	CHAP_SS01	CHAP_SS01	CHAP_SS01	CHAP_SS02	CHAP_SS03	CHAP_SS04	CHAP_SS05	ID008_SS01	ID008_SS02	ID008_SS03	AD_SD01	AD_SD02	AD_SD03	AD_SD04	AD_SD04
	Field ID	BALL_SS01	BALL_SS02	CHAP_SS01	QC105	QC205	CHAP_SS02	CHAP_SS03	CHAP_SS04	CHAP_SS05	ID008_SS01	ID008_SS02	ID008_SS03	AD_SD01	AD_SD02	AD_SD03	AD_SD04	QC107
	Date	21/01/2020	21/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020
	Sample Type	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D
	Catchment	Stockyard	Stockyard	Mission	Town/Watermill	Town/Watermill	Town/Watermill	Rocky Point	Rocky Point	Headstone	Headstone	Headstone						
	Media	Soil	Soil	Soil	Sediment	Sediment	Sediment	Sediment	Sediment									
	Lab Report No.	ES2002808	ES2002808	ES2002810	ES2002803	699303	ES2002810	ES2002810	ES2002810	ES2002810	ES2002824	ES2002824	ES2002824	ES2002812	ES2002812	ES2002812	ES2002812	ES2002803
	Human health -																	
Unit EQL	Residential with																	

			Lab Report No	. ES2002808	ES2002808	ES2002810	ES2002803	699303	ES2002810	ES2002810	ES2002810	ES2002810	ES2002824	ES2002824	ES2002824	ES2002812	ES2002812	ES2002812	ES2002812	ES2002803
	Unit	EQL	Human health - Residential with garden/accessible		1	1	-1	1	•	'	'	•	•	1	1	1	1	1	•	•
			soil																	
Physical Parameters																				
Moisture Content	%	0.1		5.6	8.4	11.4	12.0	11	21.2	18.8	13.6	12.8	8.6	11.0	4.8	5.1	7.2	12.2	6.1	10.0
(n:2) Fluorotelomer Sulfonic Acids																				
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005	5	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg		5	0.0007	< 0.0005	< 0.0005	< 0.0005	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005	5	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids																				
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002	2	0.0007	0.0003	0.0002	0.0002	< 0.005	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorododecanoic acid (PFDoDA)	mg/kg			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg			0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002	2	0.0014	0.0004	< 0.0002	< 0.0002	< 0.005	0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorotetradecanoic acid (PFTeDA)	mg/kg			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002	2	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		0.002	< 0.001	0.001	< 0.001	< 0.005	0.002	0.002	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	0.3 ^{#1}	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoroalkane Sulfonic Acids															1					
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	-	-	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002	2	0.0024	0.0021	0.0021	0.0020	< 0.005	0.0039	0.0021	0.0021	0.0014	0.0015	< 0.0002	0.0003	0.0004	0.0010	0.0006	0.0010	0.0008
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorohexane sulfonic acid (PFHxS)	mg/kg		2	< 0.0002	< 0.0002	0.0003	0.0003	< 0.005	0.0007	0.0005	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002	2	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		-	-	-	-	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	ma/ka	0.0002	0.01 ^{#1}	0.0024	0.0021	0.0024	0.0023	< 0.005	0.0046	0.0026	0.0025	0.0014	0.0015	< 0.0002	0.0003	0.0004	0.0010	0.0006	0.0010	0.0008
Perfluoroalkyl Sulfonamides																				
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005	5	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg			<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg			<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg			<0.0002	<0.0002	<0.0002	<0.0002	< 0.005	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002
PFAS		2.0002		2.0002	2.0002	3.0002	3.0002	3.000	2.0002	2.0002	2.0002	2.0002	2.0002	3.0002	3.0002	3.0002	5.0002	2.0002	2.0002	3.0002
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		_	-	-	-	< 0.005	-	-	-	-	-	-	-	-	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	ma/ka			_	 	 	+ -	< 0.005	 -	-	-	-	-	+ -	 	 -	+ -	+ -	 	_
Sum of PFAS	mg/kg			0.0076	0.0028	0.0036	0.0025	< 0.05	0.0074	0.0046	0.0035	0.0014	0.0017	< 0.0002	0.0003	0.0004	0.0010	0.0006	0.0010	0.0008
,	mg/Ng	0.0002		0.0070	0.0020	0.0000	0.0020	-0.00	0.007-7	0.0040	0.0000	0.0014	0.0017	-0.0002	0.0000	0.0004	0.0010	0.0000	0.0010	0.0000

Comment

#1 Based on 20% of FSANZ TDI, i.e. up to 80% of exposure is assumed to come from other pathways. Does not include home-grown poultry /egg.

Table 4b: Off-Site Soil and Sediment Analytical Results

Preliminary Site Investigation

Norfolk Island

Department for Infrastructure, Transport, Regional Development and Communications

	Location Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site
	Location Code AD_SD04	AD_SD05	AD_SD06	AD_SD07	AD_SD08	AD_SD09	AD_SD10	ID010_SD01	ID011_SD01	ID011_SD02	ID012_SD01	ID012_SD01	ID012_SD01	ID012_SD02	MC_SD01	MC_SD02	MC_SD03
	Field ID QC207	AD_SD05	AD_SD06	AD_SD07	AD_SD08	AD_SD09	AD_SD10	ID010_SD01	ID011_SD01	ID011_SD02	ID012_SD01	QC109	QC209	ID012_SD02	MC_SD01	MC_SD02	MC_SD03
	Date 20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020	20/01/2020	20/01/2020	20/01/2020
	Sample Type Interlab_D	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal
	Catchment Headstone	Town/Watermill	Town/Watermil	Town/Watermil	Town/Watermill	Town/Watermill	Town/Watermi	Rocky Point	Headstone	Headstone	Town/Watermill	Town/Watermill	Town/Watermill	Town/Watermil	Mission	Mission	Mission
	Media Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
	Lab Report No. 699303	ES2002812	ES2002812	ES2002812	ES2002812	ES2002812	ES2002812	ES2002827	ES2002829	ES2002829	ES2002830	ES2002803	699303	ES2002830	ES2002810	ES2002810	ES2002810
Unit EQL	Human health - Residential with garden/accessible soil																

			Lab Report No. 6	99303	ES2002812	ES2002812	ES2002812	ES2002812	ES2002812	ES2002812	ES2002827	ES2002829	ES2002829	ES2002830	ES2002803	699303	ES2002830	ES2002810	ES2002810	ES2002810
	Unit	EQL	Human health - Residential with garden/accessible soil				•		•							•	·		•	•
Physical Parameters	_		SOII		1	1	1		1	1	1	1	1		1	1				1
Moisture Content	0/2	0.1		9.4	9.7	9.9	10.1	9.9	18.0	13.0	25.5	15.5	4.0	84.1	84.9	84	81.8	55.5	47.1	50.7
(n:2) Fluorotelomer Sulfonic Acids	- 170	0.1		0.4	0.1	0.0	10.1	0.0	10.0	10.0	20.0	10.0	7.0	04.1	04.0	 	01.0	00.0	77.1	00.7
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	ma/ka	0.0005		< 0.005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)		0.0005		<0.01	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)		0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0077	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	<0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)		0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0016	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005	<0.0005
Perfluoroalkane Carboxylic Acids	mg/kg	0.0003		٧٥.005	٧٥.0003	40.0003	٧٥.0003	40.0003	0.0010	40.0003	40.0003	40.0003	40.0003	40.0003	٧٥.0003	40.003	40.0003	40.0003	<0.0003	٠٥.٥٥٥٥
Perfluorohexanoic acid (PFHxA)	ma/ka	0.0002		< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0025	0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	0.0026	0.0042	0.0028
Perfluorododecanoic acid (PFDoDA)	mg/kg			<0.005	<0.0002	<0.0002	<0.0002	<0.0002	0.0025	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.005	<0.0002	<0.0020	<0.0042	<0.0020
Perfluorononanoic acid (PFNA)		0.0002		< 0.005	<0.0002	<0.0002	<0.0002	<0.0002	0.0054	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.005	<0.0002	0.0003	0.0004	0.0005
Perfluoropentanoic acid (PFPeA)		0.0002		<0.005	<0.0002	<0.0002	<0.0002	<0.0002	0.0034	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0003	0.0060	<0.0002	0.0003	0.0004	0.0008
Perfluorotetradecanoic acid (PFTeDA)	mg/kg			< 0.005	<0.0002	< 0.0002	< 0.0002	< 0.0002	0.0006	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0003	<0.005	<0.0002	<0.0007	<0.0011	<0.0008
Perfluoroheptanoic acid (PFHpA)		0.0003		< 0.005	<0.0003	<0.0003	<0.0003	<0.0003	0.0007	<0.0003	<0.0003	<0.0003	<0.0003	<0.0008	0.0003	<0.005	<0.0008	0.0006	0.0008	0.0006
Perfluorobutanoic acid (PFBA)	mg/kg			< 0.005	<0.0002	<0.0002	<0.0002	<0.0002	0.0027	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0003	<0.005	0.0002	0.000	0.002	0.000
Perfluorodecanoic acid (PFDA)		0.0001		< 0.005	<0.001	<0.001	<0.001	<0.001	0.0055	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.005	<0.001	0.002	0.002	0.002
Perfluorotridecanoic acid (PFDA)		0.0002		< 0.005	<0.0002	<0.0002	<0.0002	<0.0002	0.0033	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.005	<0.0002	<0.0003	<0.0002	<0.0004
Perfluoroundecanoic acid (PFUnDA)		0.0002		< 0.005	<0.0002		<0.0002	<0.0002	0.0010	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.005	<0.0002	0.0002	<0.0002	0.0003
			a a#1			<0.0002														
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	0.3 ^{#1}	<0.005	<0.0002	<0.0002	<0.0002	< 0.0002	0.0058	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.005	<0.0002	0.0018	0.0028	0.0025
Perfluoroalkane Sulfonic Acids																				
Perfluorononanesulfonic acid (PFNS)		0.005		< 0.005	-	-	-		-	-	-		-	-	-	< 0.005	-			-
Perfluorooctanesulfonic acid (PFOS)		0.0002		< 0.005	0.0020	< 0.0002	0.0032	0.0033	0.134	0.0104	< 0.0002	0.0008	0.0051	0.0167	0.0195	0.0083	0.0090	0.283	0.316	0.418
Perfluoropentane sulfonic acid (PFPeS)		0.0002		< 0.005	<0.0002	< 0.0002	<0.0002	< 0.0002	0.0003	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	0.0024	< 0.005	< 0.0002	0.0028	0.0032	0.0041
Perfluorohexane sulfonic acid (PFHxS)	mg/kg			< 0.005	< 0.0002	0.0003	0.0002	0.0002	0.0070	0.0025	< 0.0002	0.0003	0.0005	0.0041	0.0060	< 0.005	0.0020	0.0466	0.0502	0.0609
Perfluoroheptane sulfonic acid (PFHpS)		0.0002		< 0.005	< 0.0002	< 0.0002	<0.0002	< 0.0002	0.0010	< 0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	0.0016	< 0.005	< 0.0002	0.0050	0.0050	0.0068
Perfluorodecanesulfonic acid (PFDS)		0.0002		<0.005	< 0.0002	< 0.0002	<0.0002	0.0014	0.0105	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.005	< 0.0002	0.0021	0.0008	0.0019
Perfluorobutane sulfonic acid (PFBS)		0.0002		<0.005	< 0.0002	< 0.0002	<0.0002	< 0.0002	0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.005	< 0.0002	0.0022	0.0018	0.0032
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005		< 0.005	-	-	-	-	-	-	-	-	-	-	-	< 0.005	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	0.01 ^{#1}	< 0.005	0.0020	0.0003	0.0034	0.0035	0.141	0.0129	< 0.0002	0.0011	0.0056	0.0208	0.0255	0.0083	0.0110	0.330	0.366	0.479
Perfluoroalkyl Sulfonamides																				
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0006	< 0.0006	0.0092	< 0.0006	< 0.0005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg			< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0006	< 0.0006	< 0.005	< 0.0006	< 0.0005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0006	< 0.0006	< 0.005	< 0.0006	< 0.0005	< 0.0005	<0.000
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0006	< 0.0006	0.0057	< 0.0006	< 0.0005	< 0.0005	<0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0002		< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0006	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	0.0003	0.0005	0.0004
PFAS																				
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/ka	0.005		< 0.005	-	-	-	-	-	-	-	-	-	-	-	0.0083	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	ma/ka			< 0.005	-	-	-	-	-	-	-	-	-	-	-	0.0083	-	-	-	_
Sum of PFAS	J. J	0.0002		< 0.05	0.0020	0.0003	0.0034	0.0049	0.199	0.0135	< 0.0002	0.0011	0.0056	0.0208	0.0324	< 0.05	0.0120	0.351	0.389	0.505

Comment

Department for Infrastructure, Transport, Regional Development and Communications

			Location		OII-3ILC	OII-3ILC	OII-SILC	OII-SILC	OII-SILC	OII-3ILC	OII-3ILC	OII-3IIC
			Location Code	MC_SD04	MC_SD05	MC_SD06	MC_SD07	MC_SD08	MC_SD08	MC_SD08	MC_SD09	MC_SD10
			Field ID	MC SD04	MC SD05	MC SD06	MC SD07	MC SD08	QC106	QC206	MC SD09	MC SD10
			Date	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020
			Sample Type		Normal	Normal	Normal	Normal	Field D	Interlab D	Normal	Normal
			Catchment		Mission							
				Sediment								
			Lab Report No.	ES2002810	ES2002810	ES2002810	ES2002810	ES2002810	ES2002803	699303	ES2002810	ES2002810
	Unit	EQL	Human health - Residential with									
	0		garden/accessible soil									
Physical Parameters												
Moisture Content	%	0.1		73.4	52.4	32.1	37.5	18.7	18.7	19	17.8	21.0
(n:2) Fluorotelomer Sulfonic Acids												
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.01	< 0.0005	< 0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/kg			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg	0.0005		<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.005	<0.0005	< 0.0005
Perfluoroalkane Carboxylic Acids												
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0002		0.0025	0.0032	0.0010	0.0023	0.0018	0.0016	< 0.005	0.0021	0.0015
Perfluorododecanoic acid (PFDoDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002
Perfluorononanoic acid (PFNA)	mg/kg			0.0002	0.0005	0.0002	0.0003	0.0005	0.0003	< 0.005	0.0002	0.0003
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0002		0.0006	0.0008	0.0002	0.0004	0.0004	0.0004	< 0.005	0.0005	0.0003
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0002		0.0005	0.0007	0.0002	0.0005	0.0004	0.0004	< 0.005	0.0005	0.0003
Perfluorobutanoic acid (PFBA)	mg/kg	0.001		0.003	0.002	0.002	0.002	0.001	< 0.001	< 0.005	< 0.001	0.001
Perfluorodecanoic acid (PFDA)	mg/kg	0.0002		< 0.0002	0.0003	< 0.0002	< 0.0002	0.0003	0.0002	< 0.005	< 0.0002	0.0002
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.005	< 0.0002	< 0.0002
Perfluoroundecanoic acid (PFUnDA)	mg/kg	0.0002		<0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.005	<0.0002	<0.0002
Perfluorooctanoic acid (PFOA)	mg/kg	0.0002	0.3 ^{#1}	0.0021	0.0030	0.0007	0.0014	0.0011	0.0009	< 0.005	0.0012	0.0010
Perfluoroalkane Sulfonic Acids												
Perfluorononanesulfonic acid (PFNS)	mg/kg	0.005		-	-	-	-	-	-	< 0.005	-	-
Perfluorooctanesulfonic acid (PFOS)	mg/kg	0.0002		0.456	0.386	0.152	0.182	0.172	0.174	0.13	0.148	0.141
Perfluoropentane sulfonic acid (PFPeS)	mg/kg	0.0002		0.0040	0.0043	0.0012	0.0035	0.0015	0.0011	< 0.005	0.0011	0.0025
Perfluorohexane sulfonic acid (PFHxS)	mg/kg	0.0002		0.0652	0.0692	0.0205	0.0462	0.0219	0.0202	0.014	0.0187	0.0310
Perfluoroheptane sulfonic acid (PFHpS)	mg/kg	0.0002		0.0083	0.0071	0.0022	0.0038	0.0024	0.0016	< 0.005	0.0022	0.0026
Perfluorodecanesulfonic acid (PFDS)	mg/kg	0.0002		0.0015	0.0017	0.0012	0.0010	0.0009	0.0007	< 0.005	0.0007	0.0006
Perfluorobutane sulfonic acid (PFBS)	mg/kg	0.0002		0.0031	0.0031	0.0010	0.0023	0.0016	0.0013	< 0.005	0.0008	0.0021
Perfluoropropanesulfonic acid (PFPrS)	mg/kg	0.005	#4	-	-	-	-	-	-	< 0.005	-	-
Sum of PFHxS and PFOS	mg/kg	0.0002	0.01 ^{#1}	0.521	0.455	0.172	0.228	0.194	0.194	0.144	0.167	0.172
Perfluoroalkyl Sulfonamides		L									1	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	mg/kg	0.0002		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.01	< 0.0002	< 0.0002
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg	0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.01	<0.0002	<0.0002
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg	0.0005		<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	mg/kg	0.0005		< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005
Perfluorooctane sulfonamide (FOSA)	mg/kg	0.0002		0.0009	0.0003	<0.0002	<0.0002	0.0002	<0.0002	< 0.005	<0.0002	<0.0002
PFAS PFAS								1		<u> </u>		
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	mg/kg	0.005		-	-	-	-	-	-	0.144	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	mg/kg	0.005		-	-	- 0.400	-	-	-	0.13		-
Sum of PFAS	mg/kg	0.0002		0.548	0.482	0.182	0.246	0.206	0.203	0.144	0.176	0.184

Location Off-site Off-site Off-site Off-site Off-site Off-site Off-site

Off-site

Comment

			Date	22/01/2020	21/01/2020	21/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	23/01/202
		- [Sample Type	Normal	Field_D	Interlab_D	Normal	Normal	Normal	Normal	Normal											
		[Catchment	Mission	Town/Waterm	nil Town/Waterm	nil Mission															
		1	Media	Sediment	Soil	Soil	Soil															
		ı	Lab Report No.	ES2005692	702872	ES2005692	ES2005692	ES2005692	ES2005692	ES20056												
			Human health -																			
	Unit	EQL	Drinking water																			
	Onit	EQL	(Leachable)																			
			(Leachable)																			
nysical Parameters																						
Leachate Fluid	-			-	-	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-	-	-	-
pH (Initial)	pH Units			-	-	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	-	-	-
pH of Leaching Fluid	pH Units	0.1		-	-	-	-	-	-	-	-	-	-	-	-	-	5.0	-	-	-	-	-
pH (Final)	pH Units	0.1		8.4	8.0	7.2	6.8	7.8	7.5	7.8	8.0	7.8	7.4	7.3	7.2	7.5	5.0	7.1	7.2	7.0	8.0	7.
:2) Fluorotelomer Sulfonic Acids																						
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	<0.
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.20	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.28	<0.0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	3.02	0.08	0.69	0.15	1.30	< 0.05	0.22	0.22	0.12	< 0.05	< 0.05	0.14	< 0.05	<0.
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	<0.
erfluoroalkane Carboxylic Acids																						Т
Perfluorohexanoic acid (PFHxA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	0.06	0.09	0.45	0.08	0.11	0.47	0.63	0.14	0.17	0.17	0.17	0.04	0.15	0.04	0.62	0.0
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	0.11	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	<0.
Perfluorononanoic acid (PFNA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	0.02	0.30	0.05	0.08	0.32	0.38	< 0.02	0.69	0.70	0.35	< 0.02	0.10	0.09	< 0.02	<0.
Perfluoropentanoic acid (PFPeA)	μg/L	0.01		< 0.02	0.02	< 0.02	0.03	0.20	0.18	0.09	0.12	0.29	0.28	0.16	0.24	0.27	0.24	< 0.02	0.27	0.05	0.07	<0.
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	<0.
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	0.03	0.12	0.03	0.04	0.13	0.22	< 0.02	0.12	0.13	0.13	< 0.02	0.07	0.04	0.06	<0.
Perfluorobutanoic acid (PFBA)	μg/L	0.05		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.21	< 0.1	< 0.1	< 0.1	< 0.1	<0
Perfluorodecanoic acid (PFDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.48	0.03	0.10	0.22	0.29	< 0.02	0.12	0.17	0.06	< 0.02	0.02	0.03	< 0.02	<0.
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	<0.
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.06	< 0.02	0.09	0.09	0.30	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	<0.
Perfluorooctanoic acid (PFOA)	μg/L	0.01	0.56#1	0.01	0.01	0.02	0.02	0.04	0.41	0.08	0.13	0.43	0.68	0.06	0.88	0.99	0.65	0.03	0.16	0.17	0.17	0.0
erfluoroalkane Sulfonic Acids	Pg/L	0.01	0.00	0.01	0.01	0.02	0.02	0.04	0.41	0.00	0.13	0.40	0.00	0.00	0.00	0.55	0.00	0.00	0.10	0.17	0.17	0.0
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01						-					-				< 0.01	-			+	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01		0.11	0.28	0.80	0.14	0.26	10.6	0.68	1.90	10.1	9.12	0.71	1.52	2.10	0.81	0.24	1.80	0.52	0.70	0.2
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	0.04	0.04	<0.02	<0.02	0.18	0.24	<0.02	<0.02	<0.02	0.02	<0.02	0.03	<0.02	0.28	<0.2
Perfluorohexane sulfonic acid (PFHxS)	µg/L	0.01		0.02	0.06	<0.02	0.20	0.45	0.40	0.20	0.22	2.42	2.03	0.24	0.33	0.31	0.02	0.13	0.60	0.12	4.84	0.0
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		<0.02	<0.02	0.02	<0.02	<0.02	0.40	<0.02	<0.02	0.14	0.14	0.02	0.03	0.02	0.20	<0.02	0.04	<0.02	0.18	<0.0
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	0.04	0.02	0.04	0.14	0.22	0.05	<0.02	< 0.02	<0.01	<0.02	<0.02	<0.02	<0.02	<0.
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	0.04	0.04	< 0.02	<0.02	0.14	0.24	<0.02	<0.02	< 0.02	0.02	<0.02	0.02	< 0.02	0.08	<0.
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01		<0.02	<0.02	<0.02		0.04	0.04	<0.02	<0.02	0.14	0.24	<0.02	- 40.02	<0.02	< 0.02	<0.02	0.02	<0.02	0.00	50.
Sum of PFHxS and PFOS	μg/L	0.01	0.07#1	0.13	0.34	0.80	0.34	0.71	11.0	0.88	2.12	12.5	11.2	0.95	1.85	2.41	1.07	0.37	2.40	0.64	5.54	0.2
rfluoroalkyl Sulfonamides	ру/с	0.01	0.07	0.13	0.34	0.80	0.34	0.71	11.0	0.88	2.12	12.5	11.2	0.95	1.85	2.41	1.07	0.37	2.40	0.64	5.54	0.7
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	-
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)		0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.
N-metnylperfluorooctane suironamidoacetic acid (NMeFOSAA)	μg/L μg/L	0.02		<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.05	<0.02	<0.02	<0.02	<0.02	<0.
N-etnyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA) N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L μg/L	0.02		<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.05	<0.02	<0.02	<0.02	<0.02	<0.
		0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.07	0.02	0.04	0.25	0.09	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	< 0.02	< 0.02	<0
AS		1										1							1			+
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01		-	-	-	-	-	-	-	-	-	-	-	-	-	1.72	-	-	-		
Sum of US EPA PFAS (PFOS + PFOA)*	ua/L	0.01			1 -	1 -	1 -	1 -	1 -	1 -	1 -	1 -	1 -	1 -	1 -	1 -	1.46	1 -	1 -	1 -	1 -	-

Comments
#1 Australian Government Department of Health 2017
#2 Australian and New Zealand Guidelines for Fresh and Marine Water Quality – technical draft default guideline values.

			Location Code		AD_SD09	AD_SD10	CHAP_SS02	ID011_SD02	ID012_SD01	MC_SD03	MC_SD04	MC_SD08	MC_SD08	MC_SD08
				A_SS62	AD_SD09	AD_SD10	CHAP_SS02	ID011_SD02	ID012_SD01	MC_SD03	MC_SD04	MC_SD08	QC106	QC206
				23/01/2020	20/01/2020	20/01/2020	20/01/2020	21/01/2020	21/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020	20/01/2020
			Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Interlab_D
			Catchment	Mission	Town/Waterm	ill Town/Waterm	il Mission	Headstone	Town/Waterm	Mission	Mission	Mission	Mission	Mission
			Media	Soil	Sediment	Sediment	Soil	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
			Lab Report No.	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	ES2005692	702872
	Unit	EQL	Human health - Drinking water (Leachable)											
Physical Parameters														
Leachate Fluid	-			-	-	-	-	-	-	-	-	-	-	1.0
pH (Initial)	pH Units	0.1		-	-	-	-	-	-	-	-	-	-	5.0
pH of Leaching Fluid	pH Units	0.1		-	-	-	-	-		-	-	-	-	5.0
pH (Final)	pH Units	0.1		8.0	8.0	8.2	7.4	6.8	3.1	3.4	3.2	6.6	7.6	5.0
(n:2) Fluorotelomer Sulfonic Acids												1	1	1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01		< 0.05	0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01
Perfluoroalkane Carboxylic Acids	T	1			1	1			1	1	1		1	
Perfluorohexanoic acid (PFHxA)	µg/L	0.01		0.08	0.08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.06	0.06	0.05
Perfluorododecanoic acid (PFDoDA)	µg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
Perfluorononanoic acid (PFNA)	µg/L	0.01		< 0.02	0.22	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.01
Perfluoropentanoic acid (PFPeA)	µg/L	0.01		0.07	0.04	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.01
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.01		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01		0.03	0.12	<0.03	<0.03	<0.03	<0.02	<0.03	<0.03	<0.03	<0.03	0.02
Perfluorobutanoic acid (PFBA)	μg/L	0.01		<0.1	<0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Perfluorodecanoic acid (PFDA)	μg/L	0.03		<0.12	0.10	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.03
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.01
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
Perfluorooctanoic acid (PFOA)	μg/L	0.01	0.56#1	0.07	0.24	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.04	0.04	0.03
Perfluoroalkane Sulfonic Acids														
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01		-	-	-	-	-	-	-	-	-	-	< 0.01
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01		0.33	2.44	0.14	0.12	0.22	< 0.01	0.18	0.11	3.73	3.47	2.3
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	0.04	0.04	0.04
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		0.02	0.14	0.03	0.02	< 0.02	< 0.02	0.19	0.08	0.54	0.50	0.46
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.06	0.06	0.04
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04	< 0.02	0.06	0.05	0.04
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01		-	-	-	-	-	-	-	-	-	-	0.02
Sum of PFHxS and PFOS	μg/L	0.01	0.07#1	0.35	2.58	0.17	0.14	0.22	< 0.01	0.37	0.19	4.27	3.97	2.76
Perfluoroalkyl Sulfonamides														
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05
PFAS	T				1	1					1	1		
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01		-	-	-	-	-	-	-	-	-	-	2.79
Sum of US EPA PFAS (PFOS + PFOA)*	µg/L	0.01		-	-	-	-	-	-	-	-	-	1 -	2.33
Sum of PFAS	µg/L	0.01		0.60	3,48	0.17	0.14	0.22			•			3

Comments
#1 Australian Government Department of Health 2017
#2 Australian and New Zealand Guidelines for Fresh and Marine Water Quality – technical draft default guide

Appendix A: PFAS Fact Sheets

PFAS - Norfolk Island Fact Sheet

Background

Elevated levels of per- and poly-fluoroalkyl substances (PFAS) have been detected in water samples from three sites on public land within the headwaters of the Mission Creek catchment directly below the aviation fire services training drill ground, adjacent to Norfolk Island International Airport.

About per- and poly-fluoroalkyl substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are manufactured chemicals used in a wide range of industrial and household applications globally. Some types of PFAS have been used in fire-fighting foams, particularly at places like airports, fuel storage facilities, and Defence bases, because they are very effective at extinguishing liquid fuel fires.

PFAS were also used across Australia and internationally in a range of common household products and specialty applications, including in the manufacture of non-stick cookware; fabric, furniture and carpet stain protection applications; food packaging and in some industrial processes. As a result, most people living in the developed world will have levels of PFAS in their body.

PFAS are emerging as a concern around the world because they are persistent and highly mobile in the environment.

Currently there is limited evidence of significant impacts on human health from exposure to PFAS chemicals. Research in Australia and overseas continues to be undertaken.

Next steps

These three initial sample results were collected by the CSIRO on public land as part of the Norfolk Island Water Resource Assessment project. While samples were being collected to assess general water chemistry for the project, PFAS testing was included to determine any water or soil contamination. The Department of Infrastructure, Transport, Cities and Regional Development (the Department) is now commencing an environmental investigation, which will include a Human Health Risk Assessment (HHRA) for Norfolk Island. This will identify the nature and extent of PFAS in the local environment (including soil, sediment, surface water and groundwater) related to the historical use of firefighting foams at Norfolk Island International Airport, and any potential exposure risks to people or the environment.

We commit to working closely with Norfolk Island Regional Council and the community as we gather further information to determine how this needs to be managed. We will keep the community informed and engaged at every step.

Using groundwater for drinking

As a precaution, the Department recommends not drinking water from any underground or creek sources within the Mission Creek catchment around the airport or using bore water taken from that catchment to re-fill rainwater tanks that supply drinking water, until further notice.

The Department will ensure those people in nearby properties whose water supply will require further testing have access to alternative drinking water supplies. Landholders and residents within the investigation area, who use groundwater for drinking water or household use, should contact the Department to discuss possible management strategies. Each household's drinking water requirements will be assessed on a case-by-case basis to select the most appropriate assistance.

About the environmental investigation, including the Human Health Risk Assessment

The Department is undertaking an environmental investigation and assessment of the groundwater including targeted sampling and testing of local water bores. We are exploring expansion of the CSIRO water project to ensure sampling and testing commences as soon as possible. It is anticipated the investigation will take a number of months to complete. The purpose of the investigation is to understand how groundwater may have been impacted by legacy fire-fighting foams containing PFAS, used as part of training activities. The information collected will assist the Australian Government to understand the groundwater impacts and contribute to developing appropriate management strategies in relation to any potential human health and ecological risks.

Investigations are undertaken by independent and experienced environmental services providers and are done in accordance with the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) framework and PFAS National Environmental Management Plan (NEMP).

The investigation will include:

- sampling and analysis of soil, sediment, surface water and groundwater to identify PFAS exposure in the vicinity
- identifying pathways and receptors of PFAS. A 'receptor' is a person or thing (e.g. plant or animal) that can be exposed to these compounds. A 'pathway' is the way in which they can be exposed (e.g. drinking water or eating food containing these compounds);
- community and stakeholder engagement, including a water-use survey
- a Human Health Risk Assessment, which will evaluate potential risks to the human population and ecology, and inform future action to mitigate risks.

Investigation outcomes

When environmental investigation reports are finalised and publicly released, the Government will consult with residents, businesses and local stakeholders on the findings.

The Australian Government takes this environmental investigation very seriously and is committed to implementing appropriate management responses based on the advice of independent scientific experts in this field.

Government guidance

The Australian Government, led by the Department of Environment and Energy, has developed a comprehensive whole-of-government response to PFAS contamination and is working to prevent or reduce environmental and human PFAS exposure wherever possible. For more information on this and on PFAS generally, visit PFAS.gov.au

On 7 May 2018, an independent expert health panel concluded there is mostly limited, or in some cases no evidence, that human exposure to PFAS is linked with human disease. The panel also advised that the evidence does not support any specific health or disease screening or other health interventions for highly exposed groups in Australia, except for research purposes; and decisions and advice by public health officials about regulating or avoiding specific PFAS chemicals should be mainly based on scientific evidence about the persistence and build-up of PFAS.

The Panel's Report is available at https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-pfas-expert-panel.htm

Support

The Department will rely on Department of Health advice and the enHealth Guidance Statements available on the Department of Health website.

Accordingly, it has adopted a precautionary approach and is providing alternative sources of drinking water to eligible residents located in close proximity to the initial investigation area.

Residents are welcome to contact the Department's on-Island team on 23315 or NIPFAS@infrastructure.gov.au to discuss eligibility for water assistance and possible management strategies. Each household's drinking water requirements will be assessed on a case-by-case basis.

Keeping the community informed

The Department is committed to regularly updating the community throughout the investigation. The Department website will be updated as the investigation progresses. Community information sessions, direct mail and information sheets will occur as needed. Enquiries or requests relating to individual properties will be assessed on a case-by-case basis.

Where can I get more information?

https://www.pfas.gov.au/

https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-pfas.htm#pfas

Environmental investigation PFAS – Norfolk Island Fact Sheet 2

Background

Elevated levels of per- and poly-fluoroalkyl substances (PFAS) have been detected in water samples from three sites on public land within the headwaters of the Mission Creek catchment directly below the aviation fire services training drill ground, adjacent to Norfolk Island International Airport. Please see PFAS – Norfolk Island Fact Sheet for further background information.

Further, detailed environmental investigation and assessment is now required to identify the nature and extent of PFAS in the local environment related to the historical use of firefighting foams at Norfolk Island International Airport for training activities, and identify potential exposure pathways to people or the environment.

The detailed environmental investigation

The Department of Infrastructure, Transport, Cities and Regional Development (the Department) has engaged Senversa to conduct the environmental investigation, which will likely include a Human Health Risk Assessment (HHRA) for Norfolk Island. The purpose of this investigation, which will take a number of months to complete, is to understand how the environment may have been affected by legacy fire-fighting foams containing PFAS. The information collected will assist the Australian Government to understand the environmental exposure and contribute to developing appropriate management strategies in relation to any potential human and environmental exposure pathways.

The CSIRO's Norfolk Island Water Resource Assessment (NIWRA) project scope was expanded to ensure sampling and testing commenced as soon as possible. CSIRO conducted additional testing of a number of properties within the Mission Creek catchment on 21 to 23 December, with a focus on drinking water, specifically taps and tanks on the properties, along with some bores. The analysis from this sampling will allow for initial advice to those property owners as well as contributing to the overall investigation. The CSIRO's NIWRA project has now returned to an exclusive focus on an assessment of hydrology and hydrogeology and options for increasing the community's water security, while Senversa focuses on PFAS.

Senversa is experienced in undertaking PFAS preliminary and detailed site investigations and human health risk assessments and has worked on numerous Defence and airport sites across Australia. The investigations are done in accordance with the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) framework and PFAS National Environmental Management Plan (NEMP).

The investigation will include:

- •sampling of soil, sediment, surface water and groundwater and analysis to understand PFAS concentrations in various locations across Norfolk Island, including the Mission Creek catchment
- identifying pathways and receptors of PFAS. A 'receptor' is a person or thing (e.g. plant or animal) that can be exposed to these compounds. A 'pathway' is the way in which they can be exposed (e.g. drinking water or eating food containing these compounds)
- community and stakeholder engagement, including completing water-use surveys with members of the community to help identify how people could be exposed

Should the preliminary or detailed investigation confirm concentrations of PFAS exceed appropriate screening levels, a Human Health and/or Ecological Risk Assessment will be undertaken. The risk assessment will evaluate potential risks to the human population and ecology, and inform future action to mitigate risks.

Senversa's initial on-Island field work from 13–24 January will involve collection of a range of samples from various locations across Norfolk Island. Testing on private land will only occur with property owners' consent. These samples will then be returned to the mainland for laboratory analysis, after which the results will be analysed and interpreted by Senversa.

The interpretation of the data collected through this initial analysis will inform more detailed health advice, while also determining if further investigation is required and, if so, what that would involve.

During the sample collection, there will be community information sessions to provide details on the investigation process, including likely timelines for further information, and to answer questions.

Investigation outcomes

When environmental investigation reports are finalised, they will be publicly released and the Government will consult with residents, businesses and local stakeholders on the findings.

Using Mission Creek catchment water for drinking

As consuming water containing above guidance levels of PFAS is not recommended, as a precaution, the Department recommends not drinking water from any underground or creek sources within the Mission Creek catchment around the airport or using bore water taken from that catchment to re-fill rainwater tanks that supply drinking water, until further notice. Alternative water is available to residents in the catchment by contacting the Department's on-Island team on 23315 or MIPFAS@infrastructure.gov.au.

About per- and poly-fluoroalkyl substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are manufactured chemicals which were used historically in a wide range of industrial and household applications globally. Some types of PFAS have been used in fire-fighting foams, particularly at places like airports, fuel storage facilities, and Defence bases, because they are very effective at extinguishing liquid fuel fires. PFAS were also used across Australia and internationally in a range of common household products and specialty applications, including in the manufacture of non-stick cookware;

fabric, furniture and carpet stain protection applications; food packaging and in some industrial processes. As a result, most people living in the developed world will have levels of PFAS in their body.

PFAS are emerging as a concern around the world because they are persistent and highly mobile in the environment. Currently there is limited evidence of significant impacts on human health from exposure to PFAS chemicals. Research in Australia and overseas continues to be undertaken.

Where can I get more information?

Residents are welcome to contact the Department's on-Island team on 23315 or NIPFAS@infrastructure.gov.au
For more information on PFAS generally, visit PFAS.gov.au.

9 January 2020

Preliminary test results from initial sample sites PFAS – Norfolk Island Fact Sheet 3

Background

Results from the CSIRO's preliminary screening conducted in November 2019 on Norfolk Island identified elevated levels of per- and poly-fluoroalkyl substances (PFAS) from three test sites on public land. These sites were located within the headwaters of the Mission Creek catchment directly below the aviation fire services training drill ground, adjacent to Norfolk Island International Airport. Water samples were taken from three public locations, the World War II Dam in the headwaters of Mission Creek, the nearby airport groundwater bore and a surface water sample where Mission Creek crosses Douglas Drive.

Please see PFAS - Norfolk Island Fact Sheet for further background information.

Sample locations:

Legend:

- Watercourse
- CSIRO Sample Locations
- Approximate Airport Boundary

Health based guidance values

The Department of Health, Food Standards Australia New Zealand (FSANZ) and the National Medical Research Council (NHMRC) have developed health based guidance values (HBGVs) for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), which belong to the group of chemicals known as PFAS. These values aim to protect the general community from exposure to PFAS from food, drinking water and recreational water. The guidance values for drinking water and recreational water quality are available in NHMRC's <u>Australian Drinking Water Guidelines (2011)</u> and <u>Guidance on per- and poly-fluoroalkyl substances (PFAS) in recreational water</u>.

HBGVs indicate the amount of a chemical in food or drinking water that a person can consume on a regular basis over a lifetime without any significant risk to health. Both the recreational water and the drinking water guideline values are precautionary and protective of human health. The guideline values include a wide safety margin and are expected to be well below the level at which any negative effects could occur.

It is important to note that as a precaution, it is recommended exposure to PFAS be minimised wherever possible while further research is undertaken on the potential health effects of PFAS exposure. However, PFAS have not been proven to cause disease in humans. To date there is not enough information available to definitively say what, if any, health effects may be caused by exposure to PFAS.

The HBGVs for drinking water quality and recreational water quality for use in site investigations in Australia are:

Health based guidance value	Total PFOS+ PFHxS (μg/L)	PFOA (μg/L)								
Drinking water quality guideline value (μg /L)	0.07	0.56								
Recreational water quality guideline value (µg /L)	2.0	10.0								
Note: μg = micrograms. One microgram is one millionth of a gram. L = litres.										

Results of preliminary testing on Norfolk Island

The table over the page summarises the test results for the three PFAS compounds that have guidance values – PFOS, PFOA and PFHxS. These results are from preliminary sampling only. Further testing is under way as part of a detailed environmental investigation and results could vary. The higher readings of PFOS and PFHxS are similar to some of the results seen across other sites in Australia (which include residential areas) and appear consistent with the historic use of the legacy firefighting foam as the main source.

Sample location		Sampl	e Results	
	PFOS+ PFHxS (μg/L)	Comparison against applicable guidance values	PFOA (μg/L)	Comparison against applicable guidance values
World War II Dam surface water	20.98 + 15.13 = 36.11	This test result is above HBGVs for drinking water (0.07) and recreational water quality (2.0)	0.90	This test result is above HBGVs for drinking water (0.56), and below for recreational water quality (10.0)
Airport bore groundwater	10.85 + 7.44 = 18.29	This test result is above HBGVs for drinking water (0.07) and recreational water quality (2.0)	0.45	This test result is below HBGVs for drinking water (0.56), and well below recreational water quality (10.0)
Mission Creek surface water	3.76 + 3.34 = 7.1	This test result is above HBGVs for drinking water (0.07) and recreational water quality (2.0)	0.17	This test result is below HBGVs for drinking water (0.56), and recreational water quality (10.0)

The measured concentrations of PFOS+PFHxS are elevated above the guidance values in all three samples, while the concentration of PFOA only marginally exceeds the drinking water guidance value in one sample (from the World War II Dam surface water). The elevated concentrations of PFOS + PFHxS indicate that people who drink or use this water regularly (i.e. every day) over a lifetime could have elevated exposure to PFOS+PFHxS when compared with the precautionary guidance values.

It is emphasised that these concentrations are preliminary results, and were measured in only three sample locations in proximity to the aviation fire services training drill ground (the potential source). Concentrations of PFAS can decrease as they migrate through groundwater and surface water, and concentrations elsewhere in the Mission Creek catchment may be lower than these measured concentrations. Investigations are under way to better understand the extent of these impacts, and the PFAS concentrations in water which people may drink and use (e.g. in domestic bores and water tanks), as described below.

Next steps

The CSIRO's Norfolk Island Water Resource Assessment (NIWRA) project scope was expanded temporarily to ensure further sampling and testing for PFAS commenced as soon as possible in the Mission Creek catchment area. CSIRO conducted testing of a number of properties within the Mission Creek catchment on 21 to 23 December, with a focus on drinking water, specifically taps and tanks on the properties, along with some bores. Those samples have been returned to accredited laboratories for analysis. The Department will be able to provide advice to those properties once results are available, which is expected to be by the end of January 2020.

The Department has engaged environmental consultants Senversa to undertake the detailed environmental investigation to determine the nature and extent of PFAS in the local environment and the potential exposure pathways for people and the environment. Senversa has extensive experience in delivering these complex PFAS investigations for Defence at mainland sites. The investigation findings will inform future action to mitigate risks. Senversa's initial on-Island field work from 13–24 January will involve collection of a range of samples from various locations across Norfolk Island. Testing on private land will only occur with property owners' consent. These samples will then be returned to the mainland for laboratory analysis, after which the results will be analysed and interpreted by Senversa. The interpretation of the data collected through this initial analysis will inform more detailed health advice, while also determining if further investigation is required and, if so, what that would involve. See Norfolk Island PFAS fact sheet 2 for further information.

The data collected from CSIRO's December testing in the Mission Creek catchment will form part of Senversa's island-wide environmental investigation. The CSIRO's NIWRA project has now returned to an exclusive focus on an assessment of hydrology and hydrogeology and options for enhancing the community's water security (see more information here.

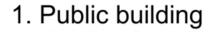
Using Mission Creek catchment water for drinking

As consuming water containing above guidance levels of PFAS is not recommended, as a precaution, the Department recommends not drinking water from any underground or creek sources within the Mission Creek catchment around the airport or using bore water taken from that catchment to re-fill rainwater tanks that supply drinking water, until further notice. Alternative water is available to residents in the catchment by contacting the Department's on-Island team on 23315 or MIPFAS@infrastructure.gov.au.

Where can I get more information?

Residents are welcome to contact the Department's on-Island team on 23315 or <u>NIPFAS@infrastructure.gov.au</u>. https://www.pfas.gov.au/

https://www1.health.gov.au/internet/main/publishing.nsf/Content/ohp-pfas.htm#pfas

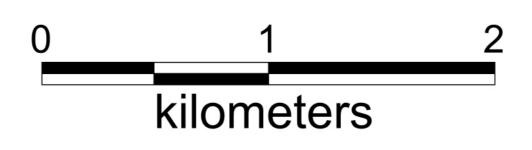

15 January 2020

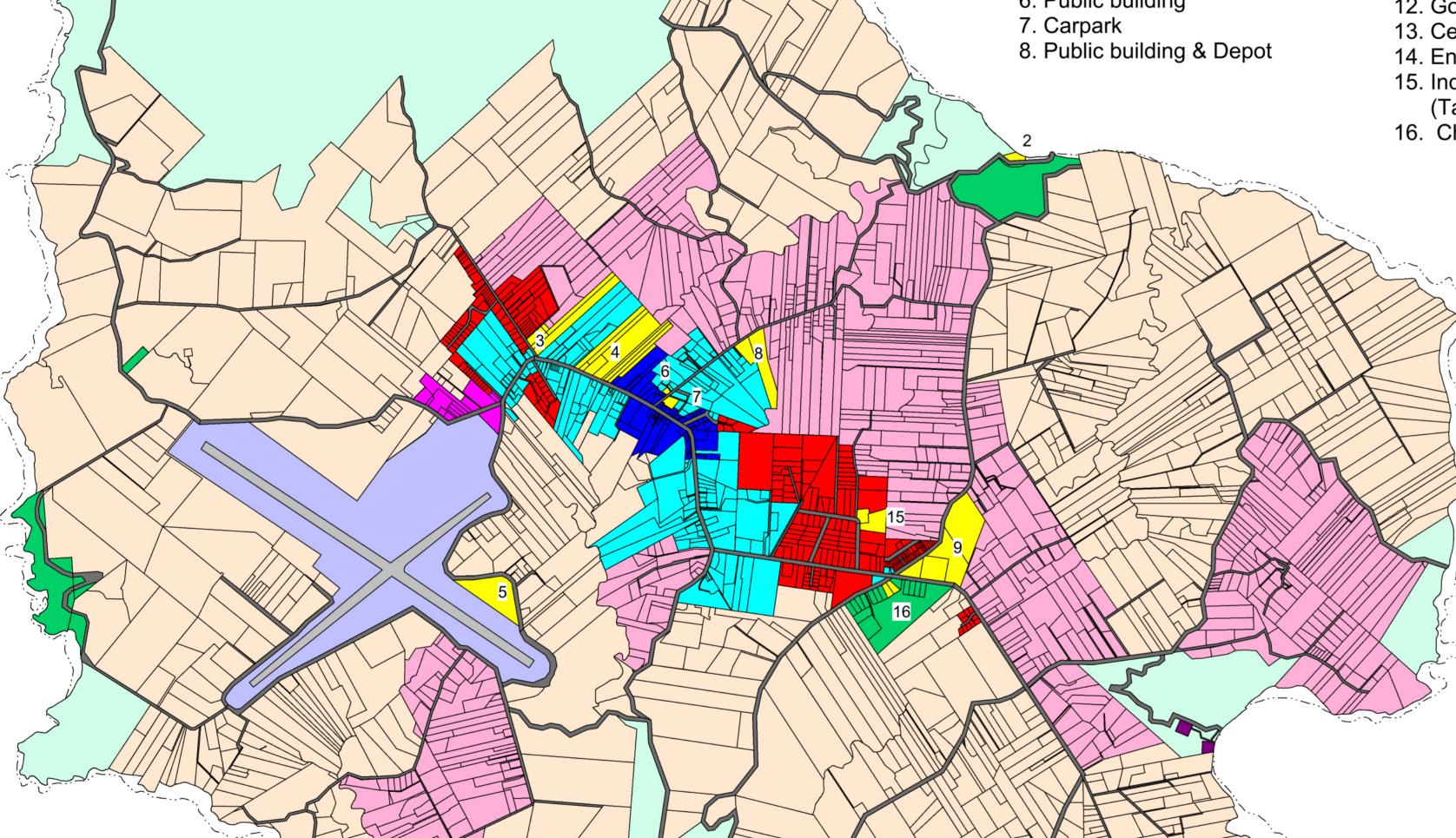
Appendix B: Norfolk Island Zoning Map

Norfolk Island Zoning Map

- 2. Public wharf & carpark
- 3. Hospital
- 10. Public buildings & Education 4. Public building, Park & Outdoor Sport establishment & Recreation Facilties
- 5. Residences
- 6. Public building

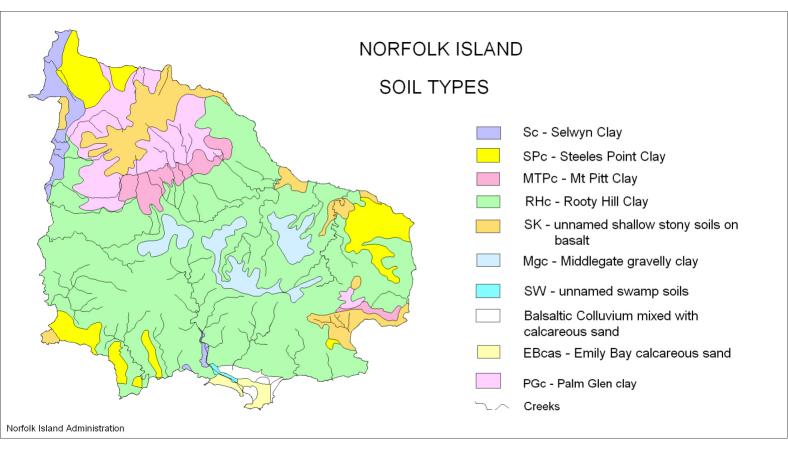
11. Public buildings & Education establishment


9. Educational establishment / Indoor

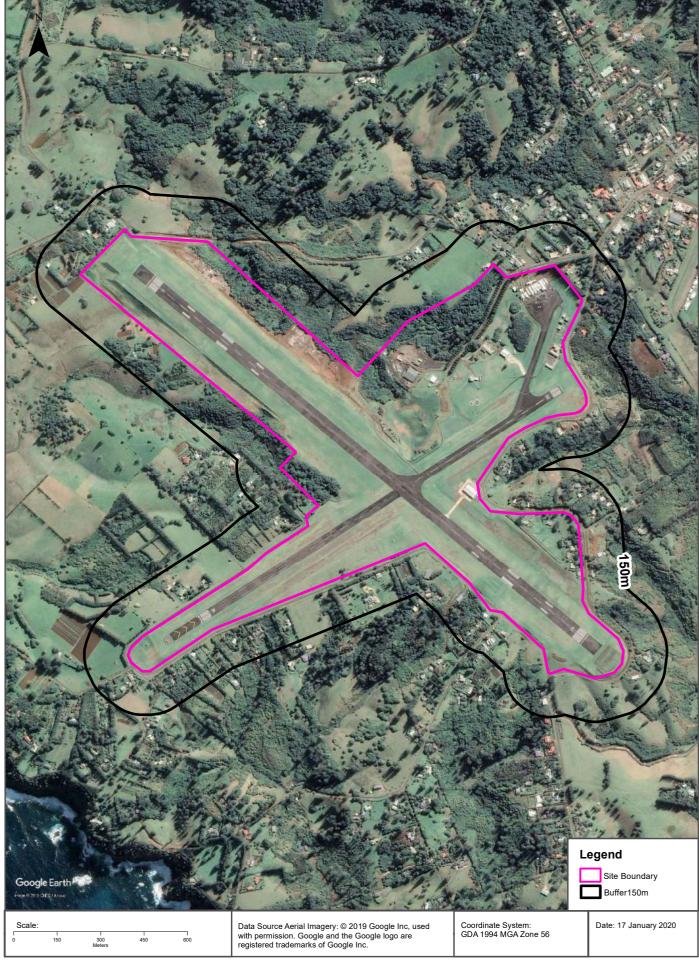

and Outdoor sport & recreation facilties

- 12. Government House & Domain
- 13. Cemetery
- 14. Endangered species habitat
- 15. Industry Noxious, Hazardous or Offensive (Tanalising works), Public Works - Major, and Depot
- 16. Child care centre

- Rural
- Rural Residential
- Residential
- Mixed Use
- Business
- Light Industry
- Industrial
- Open Space
- Conservation
- Special Use
- Airport
- Roads
- Cadastral Boundaries
- Mean High Water Mark

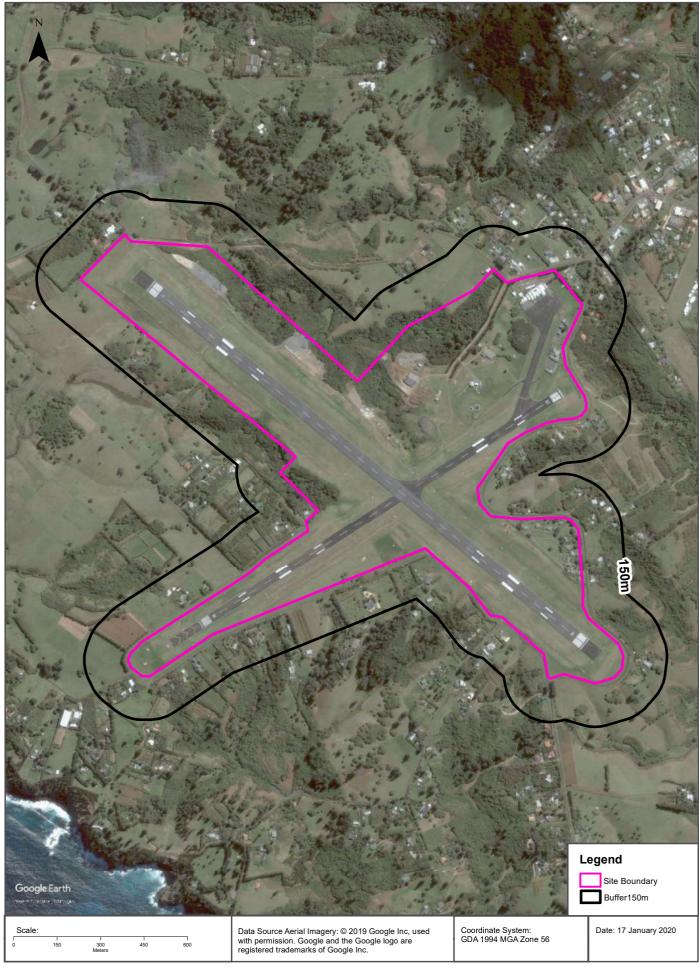

Last Variation Approved On: 10th April 2018 Last Variation Gazetted On: 13th April 2018 Last Variation Approved By: Eric Hutchinson Administrator

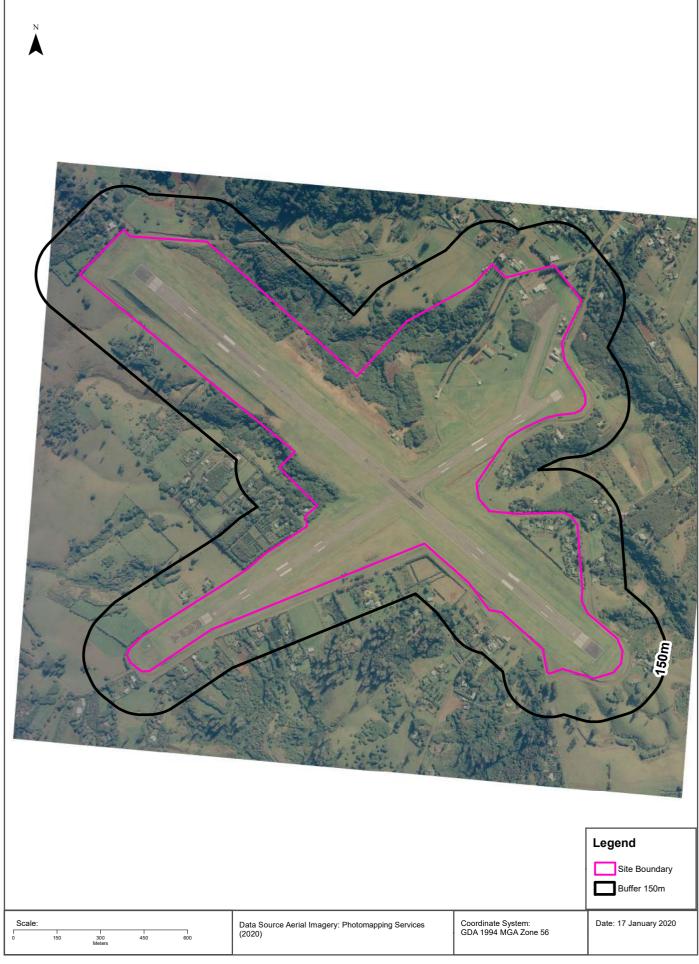
Appendix C: Norfolk Island Soil Map

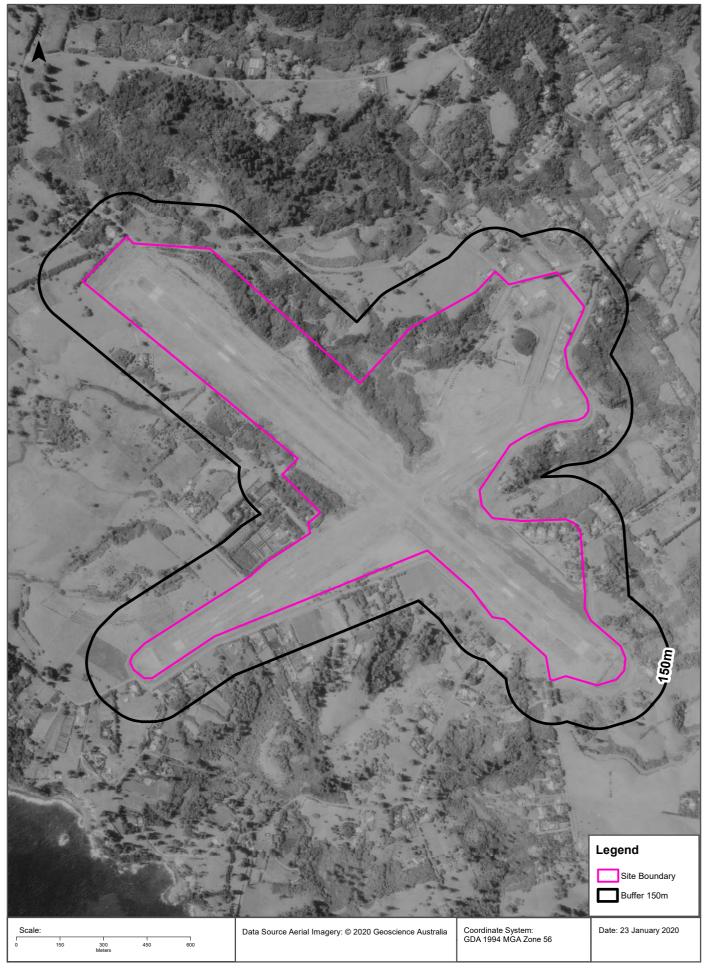

Appendix D: Historical Aerial Photographs

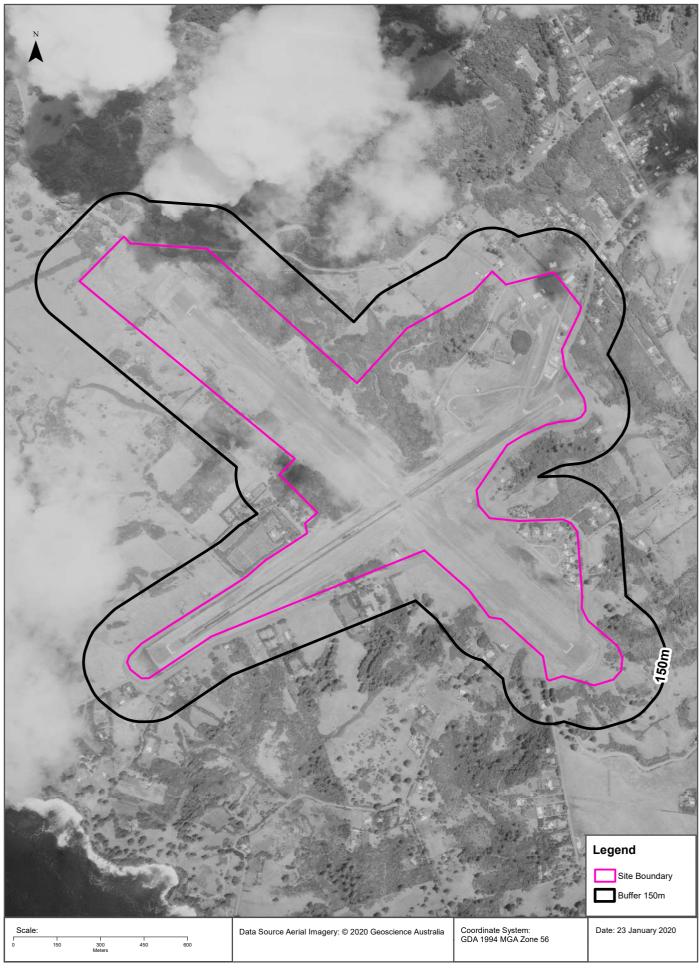
Date: 23 Jan 2019

Reference: LS0010437 EA









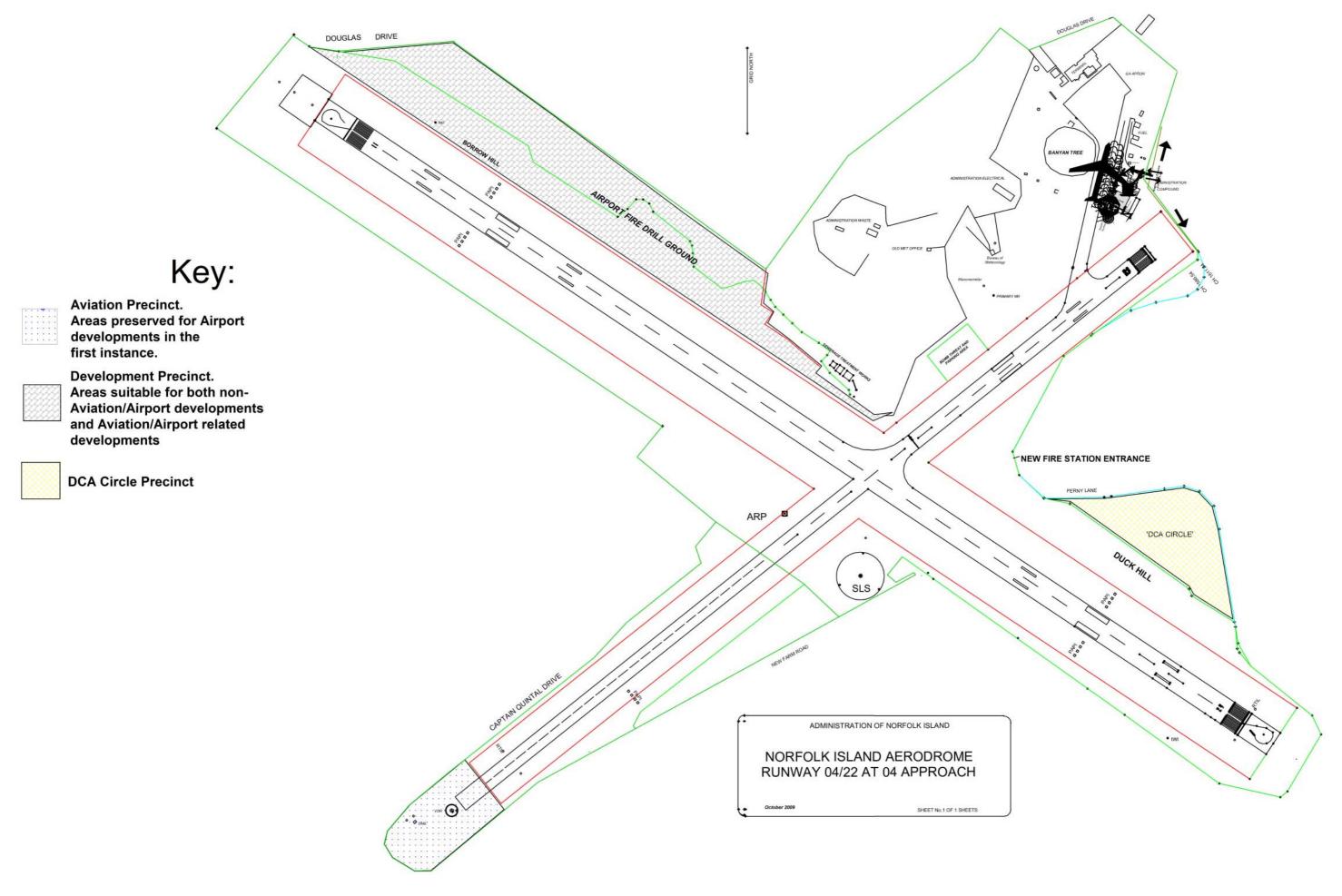
Aerial Imagery 1978

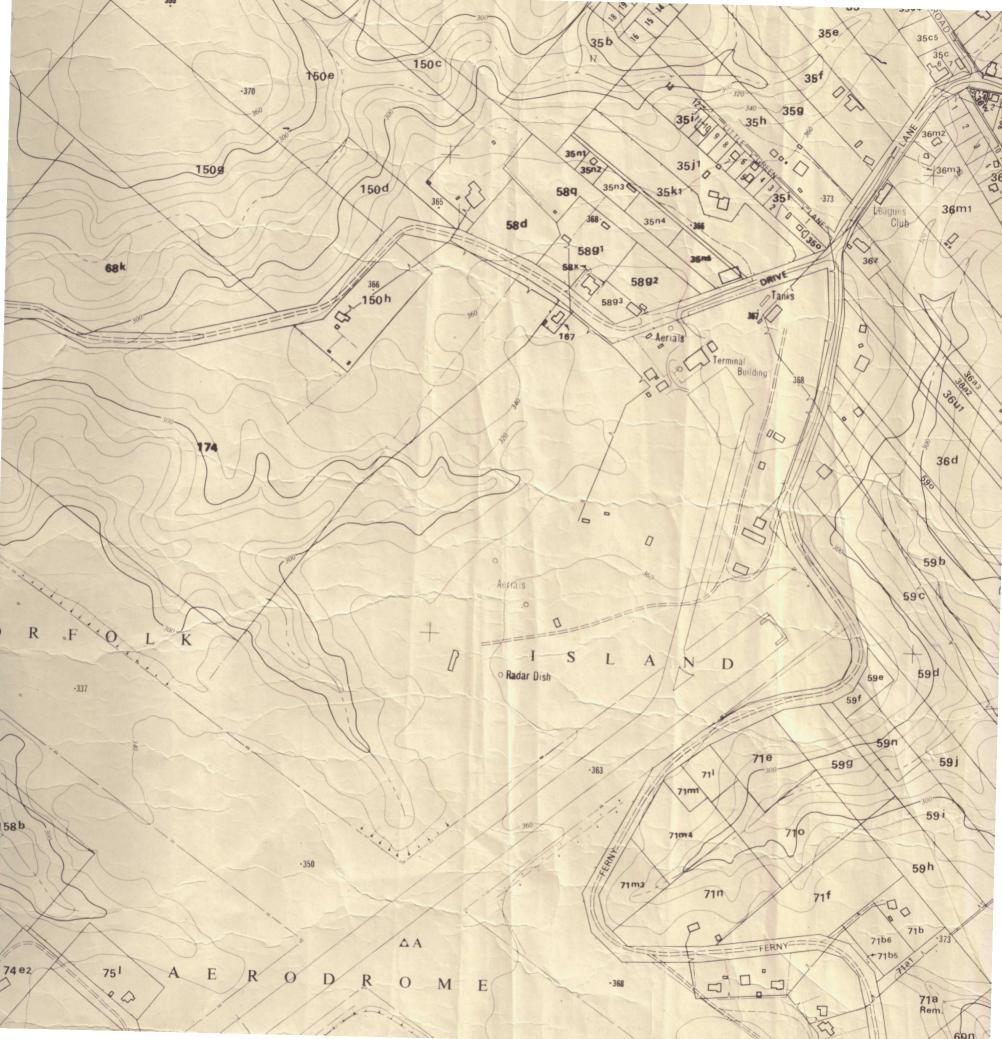
Norfolk Island International Airport, Norfolk Island 2899

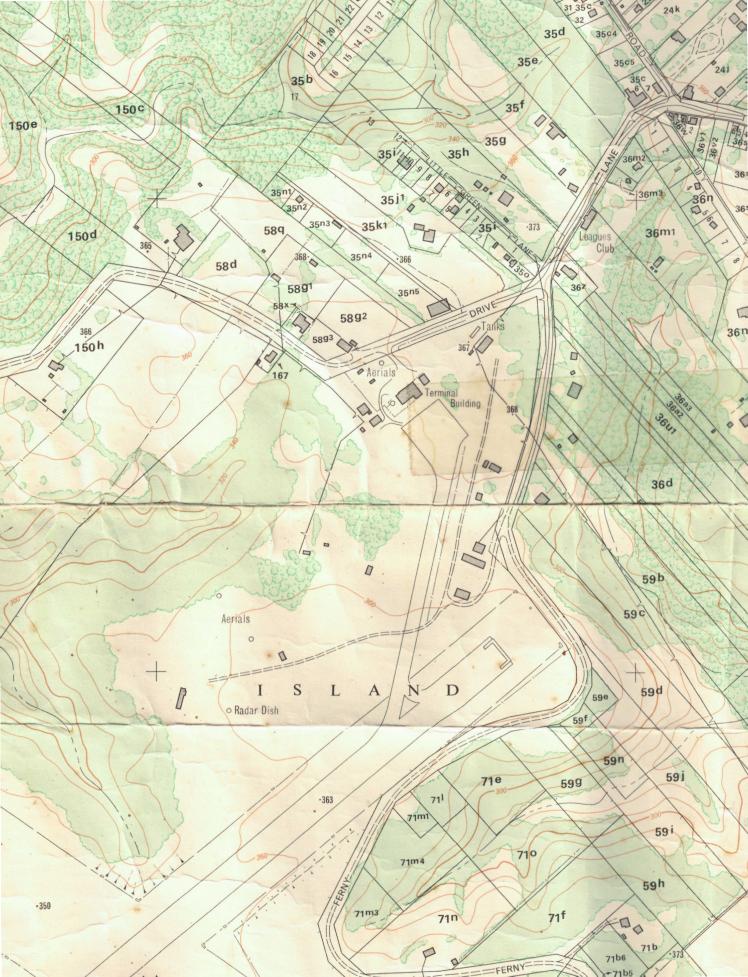
USE OF REPORT - APPLICABLE TERMS

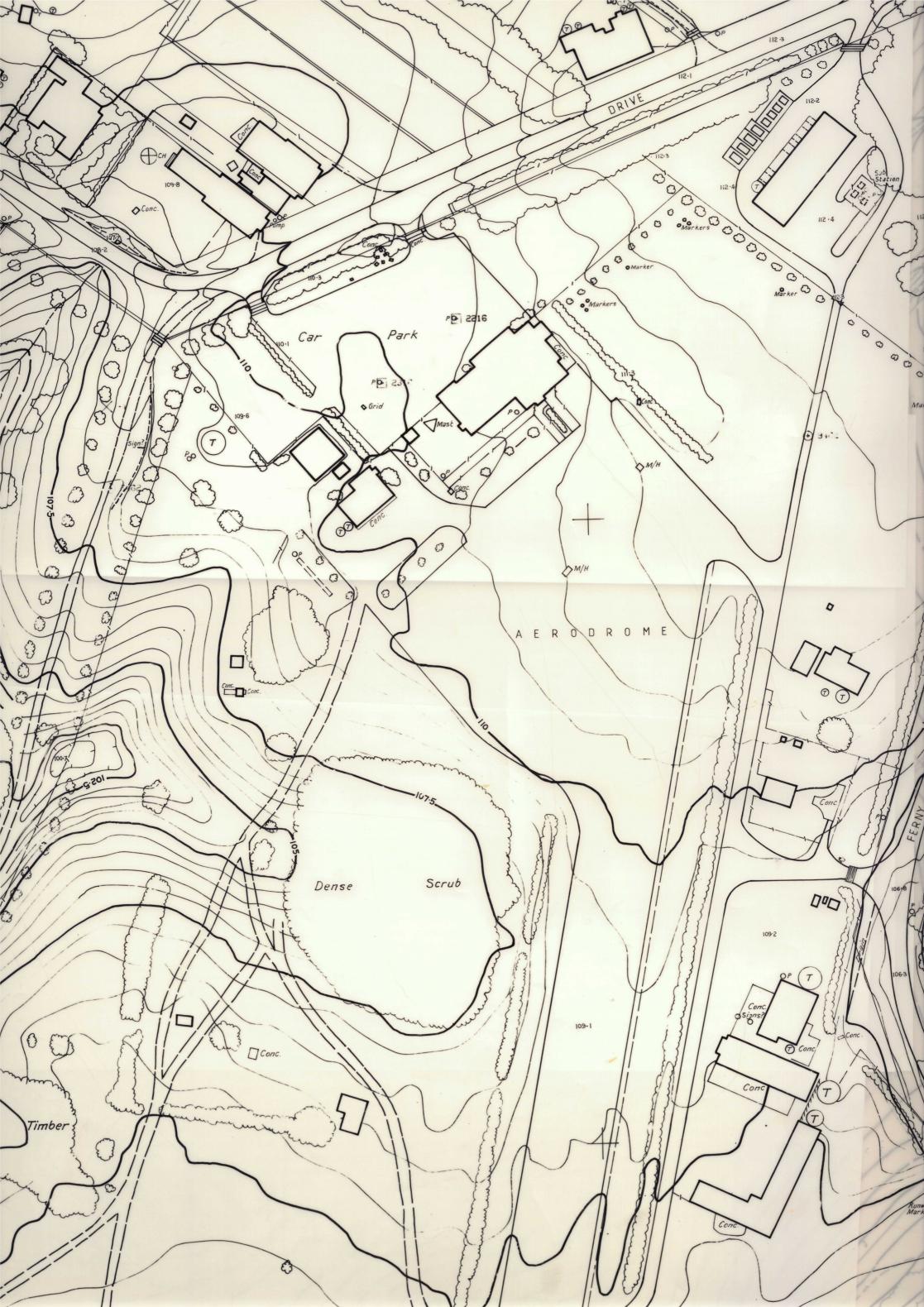
The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the


- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,


irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.


12. These Terms are subject to New South Wales law.



Appendix E: Council Provided Maps

Appendix F: Interview Records

Site Interviews

The following tables summarise interviews conducted while on island in January 2020.

Date Interview Attendees / Description

13 January 2020 CSIRO Field Investigation Team

Discussion of areas of interest at airport:

- Old fire station
 - Outside where the airport buildings are now / where freight is.
- Old drill area was out the back of waste management
 - Drill area moved in the mid to late 90s
 - Also used for a burning dump
 - Fuel truck/ equipment storage in wooden shed --> old fire station
 - Foam shed (10x10m wooden shed) north of these buildings, filled from outside with potential for spills.
- These buildings were built before planning was required, no plans available
- Airport workshop
 - Maintenance depot for fire trucks
 - Wash bay with no containment
- Current fire station
 - Drainage culvert under runway towards mission creek catchment i.e. heads west

Discussion of airport bore

- Used for public toilets in island
- Septic tanks leaking raised as a potential issue

Discussion of hospital

- Hospital tanks have overflowed in the past
 - These tanks have been filled by airport bore in the past
- Sample bore near hospital (used for laundry only)
- Broken Bridge Creek is downstream from the hospital, suggested sample location

Other recommended sampling locations

- Watermill valley
- School bore, near principal's office

Hospital bore

Chief Fire Officer (NIRC) + Current and Former Fire Fighters

Date Interview Attendees / Description

13 & 21 January 2020

Timeline of AFFF usage on Norfolk Island

- 1950s to 1980s: Protein foam
- 1992: Civil aviation handover to administration of Norfolk Island
- 1992 to 1997: No records
- 1980s to 2004: Light water used
- 2004: Change from light water to Ansulite
- 2015: No PFAS foam (no foam)

Discussion of current and former drills, flushing of trucks

- Current drill ground
 - Currently occupied by Boral
 - Soils pushed into creek to level
 - Direct access to mission creek
 - PCB contamination from transformers
 - 2-3 exercises a week
- Flush outs
 - After every training exercise (2-3 times per week)
 - Foam was not always used but most
 - Clean water used
 - All around current and former fire stations
 - No enviro protections
- Annual drill
 - AEP* once a year
 - Large scale use of foams
 - West of the chapel
- Trucks filled using airport bore
 - Most (if not all) fires put out using water from airport bore

Historical use of AFFF on Norfolk Island

- AFFF used at perfumery (also known as national duty free fire)
- Common oval on quality row used to make snow
- Possible around old fire buildings
- 220, 000 produced L of AFFF

Date

Environmental Representative – Norfolk Council

13 January 2020

Suggested sample locations. Council to accompany Serversa for sampling on 14 January

- Pound paddock
- Rosy Hessie
- Headstone bore
- Kingfisher
- School bore
- Hospital bore
- Town Creek
- Water carter bores

Mission Creek Catchment

- Airport bore to be retested
- ~50 head of cattle in this catchment

15 January 2020

Island Plumber

^{*}AEP = aerodrome emergency plan

Date Interview Attendees / Description

15 Hospital bore and tanks

January 2020

- Hospital Bore
 - 8m deep
 - Feeds into laundry and morgue
 - Tank is 1.5 years old
 - Used to use it, horse died nearby, water blamed, stopped using it and started using airport bore more frequently instead of hospital bore
- Tank 1 distribution
 - All rainwater tanks pumped to tank 1 for distribution to the building via filtration
 - Filtration tap sampled as well as tank
 - Two joined tanks
 - Previously filled with airport bore
 - Last filled with airport bore water 2 years ago
- Tank 2 concrete UST
 - Contained airport bore water
 - Potentially overflowed into creek
 - Has been cleared
 - Not lined
 - Potential for concrete leaching PFAS
 - ~1m of water
 - >30 years old
- 3 rainwater tanks
 - No top ups with bore water, all rain water
 - All feed into distribution tank

Fire Station

- Interviewed plumber did not install or do the plumbing for the current fire station. Plumbers understanding is as follows:
- 3 x 10,000 L tanks (1 tank leads to building / 2 tanks for fires)
- Believed to be entirely airport bore water pumped from concrete storage tank
- No filtration
- Pumped under runway

Appendix G: Water Use Survey

Water Use Questionnaire - Norfolk Island

The purpose of this questionnaire is to obtain information from you about your sources and use of water. Information collected through these questionnaires will help us to determine what additional sampling needs to be conducted to better understand potential exposures to PFAS on Norfolk Island.

If you have any questions about completing this questionnaire, or the current PFAS investigations, please contact the Department's on-Island team on **23315** or NIPFAS@infrastructure.gov.au

Name	
Phone number	
Email	
Postal address	
Property address	

Elevated levels of per- and poly-fluoroalkyl substances (PFAS) have been detected in water samples from three sites on public land within the headwaters of the Mission Creek catchment directly below the aviation fire services training drill ground, adjacent to Norfolk Island International Airport. Please see PFAS - Norfolk Island Fact Sheet for further background information.

Further, detailed environmental investigation and assessment is now required to identify the nature and extent of PFAS in the local environment related to the historical use of firefighting foams at Norfolk Island International Airport for training activities, and any potential exposure risks to people or the environment.

The Department of Infrastructure, Transport, Cities and Regional Development (the Department) has engaged Senversa to conduct the environmental investigation for Norfolk Island. The purpose of this investigation, which will take a number of months to complete, is to understand how groundwater may have been affected by legacy fire-fighting foams containing PFAS. The information collected will assist Senversa's understanding of the groundwater impacts and contribute to developing appropriate management strategies in relation to any potential human health and ecological risks.

Information obtained by Senversa in the course of this investigation program, including results of sampling taken from residential properties, and through the completion of surveys will be used to identify whether PFOS and/or PFOA are present in the environment and, if so, to understand the extent of any presence and levels of these chemicals and how people might be exposed. The information will also be used during engagement with local and state authorities, as well as communities, to determine what action, if any, needs to occur as a result.

The collection of your information is voluntary. If you choose not to provide any information, Senversa and the Department will not be able to take into account your specific circumstances when conducting the investigation, engaging with relevant authorities and the community, and taking further action.

The information you provide may be shared with the Department's technical advisors, relevant state and local government agencies and organisations, and business entities directly involved in any action linked to the investigation, to the extent that is necessary for the purposes of the environmental investigation, and the determination and implementation of any further action. The Department Privacy Policy is available at https://www.infrastructure.gov.au/department/about/privacy-policy.aspx The Department Privacy Policy contains information on how you may apply to have your personal information amended. The Department Privacy Policy also contains information on how to make a privacy complaint about the way the Department has handled your personal information.

1.	Private residential
	Growing Produce / Raising Livestock
	Other (please specify)
2.	If property is used for food production (fruit, vegetables or livestock (meat, milk cheese etc.), please provide details of types of activities below (e.g. dairy farming, irrigation of food crops, etc)?
3.	If property is residential, how many people usually live at this property?
4.	How long have you lived at this property?
5.	Do you have water tanks on your property? Yes No
	If there are no water tanks, please go to Question 10.
6.	How many water tanks are on your property
7.	What are they made of (e.g. concrete, iron, poly, fiberglass)?
8.	Are your water tanks above or below ground?

9.	9. What water do your water tanks currently contain (tick all that apply)?					
		Rainwater collected on property				
		Bore water				
		Filling or topping up of tanks by water carriers				
		Other (please specify)				
10.	What	water have your tanks contained in the past (tick all that apply)?				
		Rainwater collected on property				
		Bore water				
		Filling or topping up of tanks by water carriers				
		Other (please specify)				
44						
11.	Is thei	re any surface water (e.g. creek or drain) on your property?				
		Yes				
		No				
12.	12. If yes, please describe what waters are present and outline any uses of the water you are aware of?					
13.	13. Do you have water bores on your property?					
		Yes				
		No				
		If there are no bores, please go to Question 15.				
14.	14. How many bores do you have on your property?					
	Active bores					
	Inactive bores					

15. Is water from the bore p	lumbed dir	ectly to the	house and	used for household purposes?	
The bore is currently	The bore is currently plumed directly to the house to supply household water				
The bore was plumb	The bore was plumbed to the house in the past (but isn't now)				
Not plumbed to the	Not plumbed to the house, but bore water is used to fill the tanks I use for household water				
Bore water isn't used	Bore water isn't used for domestic/household purposes				
16. How do you use water at your property (tick all that apply)?					
	Tank water	Bore water	Other		
Drinking water supply					
Indoor domestic uses (shower, bathing, laundry, cleaning, etc.)					
Outdoor domestic uses					
(gardens, etc.)					
Stock watering (e.g. drinking water for cattle)					
Irrigation of fruit and vegetables					
Irrigation of pasture					
Other:					
Other:					
17. Have you <u>historically</u> used water for any other purposes, not identified above, on your property? If yes, please provide details below.					
18. If you grow fruit or vegetables, please indicate what types, and who consumes it (e.g. just the household, sold or given to other community members)					

	p livestock or pou y), and what prod				who consumes it:
00 71					
20. Please pro	ovide any addition	nal comments a	bout your water	r usage.	

 $Thank\ you\ for\ completing\ this\ question naire.$

If you have any questions about completing this questionnaire, or the current PFAS investigations, please contact the Department's on-Island team on **23315** or NIPFAS@infrastructure.gov.au

For more information on PFAS generally, visit PFAS.gov.au

Additional notes (Senversa use)

21. Please detail any additional comments/queries from the respondents provided while giving the water use survey
22. Please detail responses provided, or required follow up actions

Appendix H: Site Inspection Record

Appendix H - Site Inspection Observations

Feature of Interest (as per NEPM Schedule guidance)	Site Observations			
Current uses of the site and surrounding land.	The site includes the International Airport and associated terminal buildings, maintenance depot, the fire station, the waste management centre, regional council office and drill area (currently used by Boral as part of the runway upgrade works).			
Areas of discoloured, odorous or stained soil, bare	No discoloured, odorous or stained soil was observed.			
soil patches and disturbed or distressed vegetation.	Vegetation appeared to be in good condition across the site.			
	Areas of visibly greener grass were noted in low lying areas down gradient of the former fire station, underground drainage may have discharged or leaked in these areas.			
The presence of any stockpiled material, imported soil or fill material such as slag, ashes, potential asbestos containing materials, scrap and industrial or chemical waste, as well as any signs of	Soil in the waste management area (former drill ground) appeared to have been pushed to the boundary to make way for infrastructure and rubbish. No other fill was observed during surface soil sampling across the site.			
settlement, subsidence and disturbed ground.	The early lin had observed dailing carract our sampling across the one.			
Presence of surface water bodies (pits, ponds, lagoons etc.)	No surface water bodies were present on site at the time of inspection.			
Quality of surface water (e.g. sheens, significant odours).	Not applicable based on absence of surface water on site during inspection.			
The direction of the flow of water run-off from the site and adjacent properties.	All surface water from the former fire station and flushing out area drained to the west to a low-lying area and drainage point at the site boundary.			
	Water at the current fire station drains to low lying drainage channels both to the north east and west. A drain to the west of the buildings drains under the runway towards Mission Creek.			
	Water from the maintenance sheds is collected in a network of drains which flows into a sump at the rear of the workshop. A drainage channel under the runway was observed at the western fence line of the area.			
	Surface water at the waste management centre is assumed to drain to the south and west to low lying areas and ultimately into Mission Creek.			
Presence and type of groundwater bores on the site and the condition of headworks.	One bore observed within site boundary (A_BORE1). It is believed to not currently be in use. Headworks were in a poor condition.			
	One bore was observed off-site, adjacent to the northern site boundary (PWS_AIRPORT_BORE). Water is pumped onsite to a collection tank near the council offices from which it is used across the site and off-site via a publicly accessible fill point. The bore is also pumped to the fire station tanks where it is used within the fire station buildings and for firefighting purposes via hydrants.			
The depth of any standing water, the direction and rate of flow of rivers, streams or canals, together with their flood levels and any tidal fluctuations	Standing water levels were not measured. No information on water levels was available from the CSIRO study at the time of this PSI.			
Condition and construction of buildings, concrete and bitumen floors and roads etc.	The terminal buildings are generally well maintained with a concrete hardstand or bitumen. Older buildings, which made up the former fire station contain concrete hardstand, areas surrounding these buildings were unpaved (either bitumen or grass cover).			

Feature of Interest (as per NEPM Schedule guidance)	Site Observations				
	The maintenance sheds were generally well maintained. Observed buildings (those open at the time of inspection) had concrete hardstand floors. Concrete hardstand surrounding these buildings was in a good condition.				
	Current fire station was well maintained with a concrete hardstand.				
	The waste management centre had some areas of concrete hardstand and some areas of compacted gravel. The buildings were not inspected, but generally consisted of relatively current (last 20 years) steel or aluminium sheds.				
Means of heating (fuel type) and cooling buildings on the site.	Not able to be confirmed. Heating is not required very often on Norfolk Island due to its sub-tropical climate.				
Presence and condition of chemical containers, holding tanks, bunds, underground storage tanks and associate infrastructure and any other underground structures that may be associated with	Aqueous film-forming foam (AFFF) was stored in IBCs at the fire station in a loft area and appeared to be in good condition, with no evidence of leaks as observed from the top / sides of the IBCs (IBCs were not lifted).				
sub-surface contamination.	The primary focus of the site inspection was for the use of AFFF, some additional chemical storage was observed and is discussed below.				
	An underground fuel storage tank was observed to the west of the runway, adjacent to the terminal buildings. Infrastructure appeared to be in a fair condition.				
	The waste management centre had storage of IBCs with waste oils with no or limited evidence of bunding or other environmental controls.				
Condition of materials storage and handling facilities and any solid or liquid waste disposal areas.	A small flammable goods storage shed was located at the rear of the waste management facility and appeared to be in poor condition.				
Any evidence of on-site spillage of dangerous goods and/or offsite migration.	There was evidence of historical spills to have occurred around the flammable goods storage shed at the waste management facility.				
	No evidence of spills around the terminal buildings, maintenance sheds or current fire station.				
Any differences between the present conditions and the information obtained from the site history.	None observed.				

Appendix I: Site Photographs

Photo 1. Potential PFAS Source Area 1: Former Fire Station and Foam Shed – current council facility, tank filled by airport bore in background.

Photo 2. Potential PFAS Source Area 1: Former Fire Station and Foam Shed

Photo 3. Potential PFAS Source Area 1: Former Fire Station and Foam Shed – underground fuel storage area.

Photo 4. Potential PFAS Source Area 1: Former Fire Station and Foam Shed – concrete hardstand inside former firefighting building

Photo 5. Potential PFAS Source Area 2: Former Flushing Out Area – south west of the former fire station

Photo 6. Potential PFAS Source Area 2: Former Flushing Out Area – hose rinse pit.

Photo 7. Potential PFAS Source Area 2: Former Flushing Out Area – drainage line out of hose rinse pit

Photo 8. Potential PFAS Source Area 2: Former Drill Ground (Current Waste Management Centre)

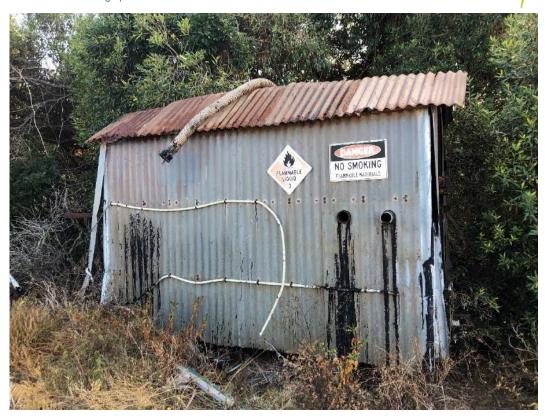


Photo 9. Potential PFAS Source Area 3: Former Drill Ground (Current Waste Management Centre) – flammable liquid storage.

Photo 10. Potential PFAS Source Area 4: Current Drill Ground, occupied by Boral.

Photo 11. Potential PFAS Source Area 5: Maintenance Depot

Photo 12. Potential PFAS Source Area 5: Maintenance Depot – fire truck washdown area at rear of maintenance building

Photo 13. Potential PFAS Source Area 6: Current Fire Station

Photo 14. Potential PFAS Source Area 6: Current Fire Station – current hose wash infrastructure.

Photo 15. Potential PFAS Source Area 6: Current Fire Station – tank infrastructure and hydrant.

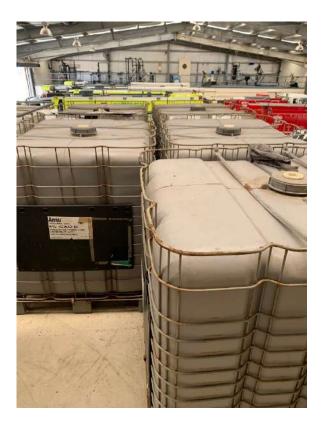


Photo 16. Potential PFAS Source Area 6: Current Fire Station – storage of Ansulite (AFFF)

Photo 17. Potential PFAS Source Area 8: St Barnabas Chapel Paddock, looking north towards Mission Creek.

Photo 18. Potential PFAS Source Area 9: Works Depot / Former Fire Truck Storage – tanks filled with airport bore water.

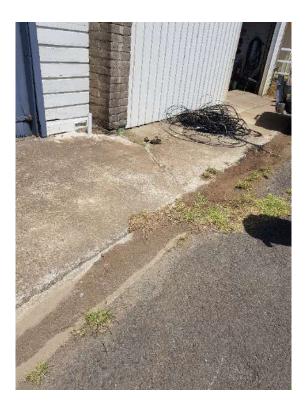


Photo 19. Potential PFAS Source Area 9: Works Depot / Former Fire Truck Storage – drain in front of former fire truck storage.

Photo 20. Potential PFAS Source Area 10: Ball Bay Refuelling Area

Photo 21. Potential PFAS Source Area 11: Stormwater Drains from airport along New Farm Road, looking north west.

Photo 22. Sample location PWS_POUND_BORE, sampled on 14 January 2020.

Photo 23. Sample location PWS_HESSIES_RESERVOIR, sampled on 14 January 2020.

Photo 24. Truck fill point at sample location PWS_DUCK_DAM, sampled on 14 January 2020.

Photo 25. Sample location PWS_HEAD_DAM, sampled on 14 January 2020.

Photo 26. Sample location PWS_KINGFISH_BORE, sampled on 14 January 2020.

Photo 27. Sample location A_BORE1 on airport land, sampled on 14 January 2020.

Photo 28 Sample location PWS_AIRPORT_BORE, concrete tank filled from airport bore. Sampled on 14 January 2020.

Photo 29. Mission Pool, sample locations MC_SD06 – MC_SD10, looking west towards Anson Bay Road.

Photo 30. Sample location PWS_HOSP_TANK1, main hospital tank sampled on 15 January 2020.

Photo 31. Sample location PWS_SCH_BORE, school bore, looking east towards oval. Sampled on 16 January 2020.

Photo 32. Sample location AD_SD02, drainage off of airport along New Farm Road, looking west. Sampled 20 January 2020.

Photo 33. Sample location A_SD01, drainage culvert under runway, looking east towards maintenance sheds. Sampled 22 January 2020.

Photo 34. Sample location A_SS25, adjacent to runway south of terminal buildings, looking north east. Sampled 22 January 2020.

Photo 35. Sample location A_SS45, south west of fire station, looking north east. Sampled 22 January 2020.

Appendix J: Fieldwork Methodology

Appendix J: Fieldwork Methodology

The following describes the methodology undertaken during the fieldworks program for on-site and off-site sampling during the targeted PSI investigation.

On-Site Sampling

Activity	Item	Description
Bore sampling	Dates	14 January 2020
	Sample IDs	A_BORE1 and PWS_AIRPORT_BORE
	Method	A total of two on-site bores were sampled during the investigation using two sampling techniques. A_BORE1 was sampled using a disposable bailer. The disposable bailer was lowered into the well until it was fully submerged in water. Sample bottles were filled directly from the bailer.
		 PWS_AIRPORT_BORE was sampled from a concrete holding tank in the north eastern portion of the site as there was no direct access to the bore. Samples were collected from an opening on the top of the same directly into laboratory supplied sample bottles.
		All sample bottles were placed in individual zip locked backs and stored in a chilled esky.
Targeted Shallow Soil Sampling	Dates	22 and 23 January 2020
	Sample IDs	A_SS01 to A_SS63
	Method	Sample spatial locations were located on-site by using a Global Positioning System on a mobile smart phone.
		A total of 63 targeted shallow soil locations on-site were sampled during the targeted sampling field program. Locations were targeted based on outcomes of the site history review (Table 1).
		Targeted soil samples were collected directly below the ground surface cover (grass/ gravel) at depths <0.1 m.
		Soil samples were collected from directly under the grass/gravel surface cover using either a hand trowel or gloved hand. Soil was then placed into laboratory supplied jars, put in individual zip lock bags and placed on ice in a chilled esky.
Drain Sediment Sampling	Dates	20 and 22 January 2020
	Sample IDs	A_SD01 to A_SD10 and AD_SD01 to AD_SD10
	Method	Sample spatial locations were located on-site by using a Global Positioning System on a mobile smart phone.
		A total of 20 targeted drain sediment samples were collected from both on-site drains and off site drains surrounding the site.
		Sediment samples were collected using either a hand trowel or gloved hand. Sediment was then placed into laboratory supplied jars, put in individual zip lock bags and placed on ice in a chilled esky.

Off-Site Sampling

Activity	Item	Description						
Private Property and Public	Dates	14 – 24 January 2020						
Vater Tanks and aps	Sample IDs	Public Water Supply – CHAP_TAP1, CHAP_TAP2, DEPOT_TANK1, DEPOT_TANK2, DEPOT_TAP, FRE_TAP1, FRE_TAP2, PWS_HOSP_TANK1 to PWS_HOSP_TANK5, PWS_HOSP_TAP, PWS_SCH_TANK, PWS_SCH_TAP.						
		Private Properties - ID002_TANK, ID004_TANK, ID005_TANK						
	Method	 Water tank samples were collected by turning on the outlet to flush it of water for approximately 30 seconds (1 to 1.5 litres of water) by using a smooth flowing water stream. Sample bottles for were filled directly using the smooth flowing water stream. 						
		 Where a tap was not present, a disposable bailer was lowered into the tank. Sample bottles were filled directly from the bailer. 						
		Samples collected were put into individual zip lock bags and placed on ice in a chilled esky.						
rivate Property, Public Bores &	Dates	14 – 24 January 2020						
Vater Carters	Sample IDs	Public Water Supply – PWS_POUND_BORE, PWS_KINGFISH_BORE B, PWS_HOSP_BORE, PWS_SCH_BORE						
		Private Properties - ID001_BORE, ID003_BORE, ID003_WELL, ID006_BORE1, ID006_BORE2, ID009_WELL, ID010_BORE, ID013_BORE, ID014_BORE, ID015_BORE						
		Water Carters - WC01, WC02, WC_03_BORE (Sample ID005_Tank was also known to have been recently filled by a fourth water carter).						
	Method	 Bore samples were collected by turning on the outlet to flush it of water for approximately 30 seconds (1 to 1.5 litres of water) by using a smooth flowing water stream. Sample bottles for were filled directly using the smooth flowing water stream. 						
		 Where a tap was not present, a disposable bailer was lowered into the bore. Sample bottles were filled directly from the bailer. 						
		Samples collected were put into individual zip lock bags and placed on ice in a chilled esky.						
Private Property and Public	Dates	14 – 24 January 2020						
Surface Water Sampling	Sample IDs	Public Water Supply – BUMORAS_SW01, COCKPIT_SW01, PWS_HEAD_DAM, PWS_HESSIES_RESV, PWS_DUCK_DAM, PWS_WWII_DAM.						
		Private Properties - ID003_SW01, ID007_SPRING, ID012_SW02, ID013_SW01. Creeks - TC_SW01, TC_SW02, BBC_SW01.						
	Method	 Sample spatial locations were located by using a Global Positioning System on a mobile smart phone. 						
		Surface water was collected by placing a laboratory supplied bottle approximately 5cm below the water surface.						
		Samples collected were put into individual zip lock bags and placed on ice in a chilled esky.						
Private Property Soil Sampling	Dates	20 – 21 January 2020						
	Sample IDs	BALL_SS01, BALL_SS02, CHAP_SS01 - CHAP_SS05, ID008_SS01 - ID008_SS03						
	Method	Soil samples were collected from 10 locations off-site.						
		 Sample spatial locations were located by using a Global Positioning System on a mobile smart phone. 						
		 Targeted soil samples were collected directly below the ground surface cover (grass/gravel) at depths <0.1 m. 						
		 Soil samples were collected from directly under the grass/gravel surface cover using either a hand trowel or gloved hand. Soil was then placed into laboratory supplied jars, put in individual zip lock bags and placed on ice in a chilled esky. 						

Activity	Item	Description
Private Property Sediment	Dates	20 – 21 January 2020
Sampling	Sample IDs	MC_SD01 - MC_SD10, ID010_SD01, ID011_SD01, ID011_SD02, ID012_SD01, ID012_SD02
	Method	Sediment samples were collected from 15 locations off-site.
		 Sample spatial locations were located by using a Global Positioning System on a mobile smart phone.
		 Where grass, reeds or vegetation growth covered the sediment, this material was moved aside using hand tools, with the sediment sample collected from directly underneath the vegetation layer (i.e. at 0-0.1 m bgl from the sediment layer).
		 The sediment was collected using a hand trowel or gloved hand. Sediment was then placed into laboratory supplied containers using disposable nitrile gloves.

General Investigation and Sampling Requirements

The following table details general investigation and sampling techniques associated with the site works.

Activity	Description and Further Information							
Field Parameter Measurement	Field water quality parameters were measured using a water quality meter in conjunction with sampling for all surface water and bore water sampling. The parameters include pH, electrical conductivity, dissolved oxygen, oxidation reduction potential (redox) and temperature.							
	Field observations were also noted of for both sediment and surface water including characteristics such as colour, particle size, odour, discoloration, presence of unusual materials such as waste, etc.							
Photographs	A photograph of each sample location was taken for records and was included in the georeferenced database application where records of sampling were also collected.							
Location Survey	A georeferenced database application was used on a portable device to establish all investigation sampling locations. The accuracy of such a method was within +/- 3-5 m of the proposed location coordinates, unless cloud cover or poor coverage reduced satellite accuracy.							
Sample Handling and	Samples were placed into laboratory-prepared and supplied jars and bottles.							
Preservation	 Sample containers were filled to the top with no head space. 							
	 Each individual sample container collected was placed into a separate individual LDPE zip-lock bag. 							
	 Samples were collected and stored on ice blocks prior to and during transit to the laboratory to minimise sample degradation. 							
	 All samples collected were recorded on field logs sheets or in the sampling database and within the georeferenced database application. 							
	Chain of Custody (COC) forms were completed for transport.							
	 Samples were couriered from Norfolk Island to the laboratories in Sydney. Due to customs, samples took up to 10 days to reach the laboratory. 							
	 Quality control samples were collected during the sampling program, Quality assurance is detailed in Appendix L. 							
Waste Disposal	No spoil was generated for surface water, surface soil and sediment sampling.							

Activity

Description and Further Information

Avoidance of Cross Contamination

Sampling procedures used to prevent cross contamination considered the guidance provided in Appendix 1 of the Interim Guideline of the Assessment and Management of PFAS (WA DER, 2016) during site works and involve:

- Samples were placed into laboratory-supplied jars / bottles appropriate for PFAS sampling (i.e. without Teflon liners). Sampling bottles for other contaminants were standard laboratory supplied containers.
- All sample containers were stored in individual LDPE zip-lock bags.
- Decontamination of re-usable sampling equipment was completed between sampling locations, using a Decon 90 and potable water wash, and a double rinse with potable water.
- Use of dedicated disposable latex free gloves that were replaced between each sample collection and location.
- Quality control samples were collected for each sample media to assess cross contamination as per the SAQP.
- Quality control samples to assess cross contamination were collected during the sampling program
 as per Appendix L of the report.

Decontamination procedures were performed in line with WA guidance, where Decon 90 solution was used. Results of field blank analysis are included in **Appendix K**.

Appendix K: Laboratory Analytical Results

CERTIFICATE OF ANALYSIS

Work Order : ES2002822

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number : ----

C-O-C number : ----

Client

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 29-Jan-2020

Issue Date : 04-Feb-2020 10:31

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Posit	ition	Accreditation Category
Alex Rossi	Orga	anic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorg	ganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Anal	lyst	Sydney Inorganics, Smithfield, NSW
Wisam Maras	ssa Inor	ganics Coordinator	Sydney Inorganics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Page : 3 of 6
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

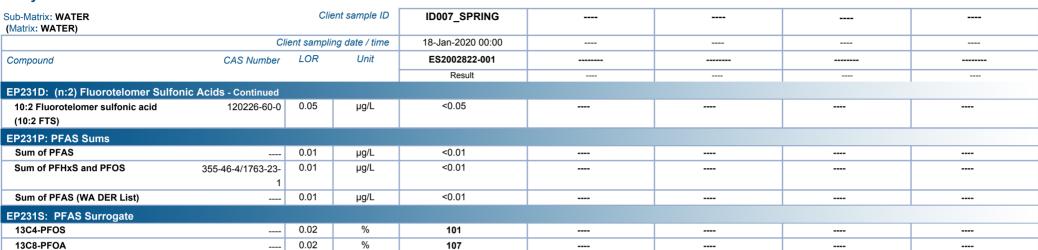
Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ID007_SPRING	 		
	Cli	ent samplii	ng date / time	18-Jan-2020 00:00	 		
Compound	CAS Number	LOR	Unit	ES2002822-001	 		
				Result	 		
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 		
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 		
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	40	 		
Total Alkalinity as CaCO3		1	mg/L	40	 		
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	14	 		
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	160	 		
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	6	 		
Magnesium	7439-95-4	1	mg/L	13	 		
Sodium	7440-23-5	1	mg/L	91	 		
Potassium	7440-09-7	1	mg/L	2	 		
EN055: Ionic Balance	7 1 10 00 7		3	_			
Ø Total Anions		0.01	meq/L	5.60	 		
Ø Total Cations		0.01	meg/L	5.38	 		
Ø Ionic Balance		0.01	%	2.05	 		
		0.01	70	2.00			
EP231A: Perfluoroalkyl Sulfonic Acids	075 70 5	0.02	ug/l	<0.02	l	I	I
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	\0.02	 		
Perfluoropentane sulfonic acid	2706-91-4	0.02	μg/L	<0.02	 		
(PFPeS)	2700-91-4	0.02	µg/L	-0.02	 		
Perfluorohexane sulfonic acid	355-46-4	0.02	μg/L	<0.02	 		
(PFHxS)	000 40 4		F-9-				
Perfluoroheptane sulfonic acid	375-92-8	0.02	μg/L	<0.02	 		
(PFHpS)							
Perfluorooctane sulfonic acid	1763-23-1	0.01	μg/L	<0.01	 		
(PFOS)							
Perfluorodecane sulfonic acid	335-77-3	0.02	μg/L	<0.02	 		
(PFDS)							
EP231B: Perfluoroalkyl Carboxylic Acid	s						
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	 		
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	 		
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	 		
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	 		

Page : 4 of 6
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

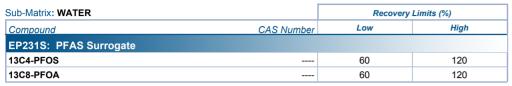

Gub-Matrix: WATER (Matrix: WATER)		Client sample ID		ID007_SPRING	 	
	CI	ient sampli	ng date / time	18-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002822-001	 	
				Result	 	
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued					
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	 	
EP231C: Perfluoroalkyl Sulfonamides	;					
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	 	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	 	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	 	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	 	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	 	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	 	
EP231D: (n:2) Fluorotelomer Sulfoni	c Acids					
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	 	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	 	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	 	

Page : 5 of 6 Work Order ES2002822

Client : SENVERSA PTY LTD

Project S17776 PSI

Analytical Results



Page : 6 of 6
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002822** Page : 1 of 5

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 04-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 5 Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Method	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Date extracted			Date analysed	Due for analysis	Days
			overdue			overdue
ED093F: Dissolved Major Cations						
Clear Plastic Bottle - Natural						
ID007_SPRING				31-Jan-2020	25-Jan-2020	6

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		unt	Rate	(%)	Quality Control Specification
Method	QC	Regular	Regular Actual Expected		
Laboratory Duplicates (DUP)					
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	1	20	5.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: **×** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) ID007_SPRING	18-Jan-2020				29-Jan-2020	01-Feb-2020	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) ID007_SPRING	18-Jan-2020				30-Jan-2020	15-Feb-2020	√
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G) ID007_SPRING	18-Jan-2020				30-Jan-2020	15-Feb-2020	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural (ED093F) ID007_SPRING	18-Jan-2020				31-Jan-2020	25-Jan-2020	×
EP231A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X) ID007_SPRING	18-Jan-2020	30-Jan-2020	16-Jul-2020	✓	31-Jan-2020	16-Jul-2020	√

Page : 3 of 5
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X) ID007_SPRING	18-Jan-2020	30-Jan-2020	16-Jul-2020	✓	31-Jan-2020	16-Jul-2020	✓
EP231C: Perfluoroalkyl Sulfonamides							
HDPE (no PTFE) (EP231X) ID007_SPRING	18-Jan-2020	30-Jan-2020	16-Jul-2020	✓	31-Jan-2020	16-Jul-2020	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE (no PTFE) (EP231X) ID007_SPRING	18-Jan-2020	30-Jan-2020	16-Jul-2020	1	31-Jan-2020	16-Jul-2020	✓
EP231P: PFAS Sums							
HDPE (no PTFE) (EP231X) ID007_SPRING	18-Jan-2020	30-Jan-2020	16-Jul-2020	✓	31-Jan-2020	16-Jul-2020	√

Page : 4 of 5 Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix WATER

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Alkalinity by PC Titrator	ED037-P	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	10.00)£	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Alkalinity by PC Titrator	ED037-P	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Chloride by Discrete Analyser	ED045G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Chloride by Discrete Analyser	ED045G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	0	20	0.00	5.00)c	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page : 5 of 5 Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : **ES2002822** Page : 1 of 5

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Kent Street Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

 Telephone
 : +61 03 9606 0070
 Telephone
 : +61 2 8784 8555

 Project
 : \$17776 PSI
 Date Samples Received
 : 29-Jan-2020

Order number : 29-Jan-2020

C-O-C number : ---- Issue Date : 04-Feb-2020

Sampler : LUCINDA TRICKEY

Site : ----

No. of samples received

Quote number : SY/665/19

No. of samples analysed : 1

: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Page : 2 of 5 Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
ED037P: Alkalinity b	y PC Titrator (QC Lot:	2832186)								
ES2002751-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	8	0.00	No Limit	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	9	8	0.00	No Limit	
ED041G: Sulfate (Τι	ırbidimetric) as SO4 2-	by DA (QC Lot: 2833986)								
ES2002447-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2	3	0.00	No Limit	
ES2002348-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	18	18	0.00	0% - 50%	
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 2833987)								
ES2002348-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	21	21	0.00	0% - 20%	
ES2002945-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	6	6	0.00	No Limit	
ED093F: Dissolved	Major Cations (QC Lot	: 2834390)								
ES2002111-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	40	40	0.00	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	26	25	0.00	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	62	61	0.00	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	9	8	0.00	No Limit	
ES2002822-001	ID007_SPRING	ED093F: Calcium	7440-70-2	1	mg/L	6	5	0.00	No Limit	
		ED093F: Magnesium	7439-95-4	1	mg/L	13	12	0.00	0% - 50%	
		ED093F: Sodium	7440-23-5	1	mg/L	91	88	3.21	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.00	No Limit	
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC	C Lot: 2833089)								
ES2002813-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	1.93	1.78	8.24	0% - 20%	
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	0.16	0.15	7.31	No Limit	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	0.17	0.14	19.2	No Limit	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	1.20	1.10	8.85	0% - 20%	

Page : 3 of 5
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC	C Lot: 2833089) - continued							
ES2002813-001	Anonymous	EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	0.08	0.07	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833089)							
ES2002813-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.05	0.04	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	0.04	0.04	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	0.15	0.15	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	0.02	0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2833089)							
ES2002813-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
` ,	rotelomer Sulfonic Acid				ı				
ES2002813-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)	07040.07.0	2.05	,	0.05	0.05		
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)	20400 24 4	0.05	//	40.05	10.05	0.00	No. 1 insit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)	120226-60-0	0.05	ua/l	<0.05	<0.05	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120220-00-0	0.00	μg/L	~0.00	~0.00	0.00	INO LIIIIIL
ED221D: DEAS Sum	s (QC Lot: 2833089)								
ES2002813-001	Anonymous	ED024V. Com of DEAC		0.01	ug/l	3.80	3.49	8.50	0% - 20%
L32002013-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	3.00	3.48	0.50	U /0 - ZU 70

Page : 4 of 5
Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
ED037P: Alkalinity by PC Titrator (QCLot: 2832186)										
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	94.0	81.0	111		
					50 mg/L	112	70.0	130		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (Q	CLot: 2833986)									
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	110	82.0	122		
				<1	500 mg/L	93.7	82.0	122		
ED045G: Chloride by Discrete Analyser (QCLot: 283	3987)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	106	80.9	127		
				<1	1000 mg/L	102	80.9	127		
ED093F: Dissolved Major Cations (QCLot: 2834390)										
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	104	80.0	114		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	107	90.0	116		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	98.7	82.0	120		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	94.6	85.0	113		
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2833	089)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	102	72.0	130		
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	108	71.0	127		
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	108	68.0	131		
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	115	69.0	134		
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	112	65.0	140		
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	112	53.0	142		
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2	833089)									
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	108	73.0	129		
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	125	72.0	129		
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	116	72.0	129		
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	119	72.0	130		
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	98.8	71.0	133		
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	117	69.0	130		
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	113	71.0	129		
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	108	69.0	133		
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	122	72.0	134		
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	106	65.0	144		
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	89.5	71.0	132		
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 28330)89)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	116	67.0	137		

Page : 5 of 5 Work Order : ES2002822

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833089) - continued										
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	128	70.0	130			
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	121	70.0	130			
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	113	70.0	130			
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	113	70.0	130			
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	113	65.0	136			
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135			
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 26	833089)										
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	119	63.0	143			
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	118	67.0	140			
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	120	67.0	138			
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	116	70.0	130			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

p-Matrix: WATER											
Spike SpikeRecovery(%) Re											
CAS Number	Concentration	MS	Low	High							
14808-79-8	10 mg/L	104	70.0	130							
ED045G: Chloride by Discrete Analyser (QCLot: 2833987)											
16887-00-6	250 mg/L	118	70.0	130							
	14808-79-8	CAS Number Concentration 14808-79-8 10 mg/L	Spike SpikeRecovery(%) CAS Number Concentration MS 14808-79-8 10 mg/L 104	CAS Number Concentration MS Low 14808-79-8 10 mg/L 104 70.0							

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2002824

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

Kent Street

E-mail : lucinda.trickey@senversa.com.au E-mail : Brenda.Hong@ALSGlobal.com

 Telephone
 : +61 03 9606 0070
 Telephone
 : +61 2 8784 8555

 Facsimile
 : +61 03 9606 0074
 Facsimile
 : +61-2-8784 8500

Project : S17776 PSI Page : 1 of 2

 Order number
 : --- Quote number
 : ES2019SENVER0020 (SY/665/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

Date Samples Received : 29-Jan-2020 16:45 Issue Date : 29-Jan-2020 Client Requested Due : 03-Feb-2020 Scheduled Reporting Date : 03-Feb-2020

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Intact.

No. of coolers/boxes : --- Temperature : 17.9'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 3 / 3

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 2 ES2002824 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP231X (solids) component OIL - EA055-103 **Aoisture Content** Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES2002824-001 20-Jan-2020 00:00 ID008_SS01 ES2002824-002 20-Jan-2020 00:00 ID008_SS02 ID008_SS03 ES2002824-003 20-Jan-2020 00:00

Proactive Holding Time Report

- *AU Certificate of Analysis - NATA (COA)

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

CHRISTOPHER SANDIFORD

, ,		ormotoprior.candiiora@convorca.cc
		m.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	christopher.sandiford@senversa.co
		m.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	christopher.sandiford@senversa.co
		m.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	christopher.sandiford@senversa.co
		m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co
		m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

Fmail

christopher.sandiford@senversa.co

senversa

Chain of Custody Documentation

Senversa	-				Laboratory:	ALS NSW								Ana	alysis	Requir	ed			
ABN 89 13	ersa.com.au 2 231 380				Address: Contact: Phone:	277-289 Woodpark Road, Sm Brenda Hong 02 8784 8515	ithfield	- Full Suite (28 Analytes)	ŀ										Comments:	
Job Numb	er:		S 1	17776	Purchase Order:			e (28										-		
Project Na	me:			PSI	Quote No:	SY -665-19) V2	Suit	ĺ			ļ	ł							
Sampled I	Ву:		נז	T/CW	Turn Around Time:	Stando		1 1 1 1 1 1	Ì											
Project Ma	ınager:		Lucino	da Trickey	Page:	1	of	- PFAS						İ						
Email Rep	ort To:		lucinda.trickey@	@senversa.com.au	Phone/Mobile:	+61 424 172	2 065							ľ						
			Sample Informati			Container Info	rmation	EP231X												
Lab ID	Sampl		Matrix *	Date	Time	Type / Code	Total Bottles													
	1D008_	SSOI	<u> </u>	20-1-20			1 JAR	X												
	10008_	\$\$07	<u> </u>	20-1-20			1	×												
	1000B	SS03	S	20-1-20				X						<u> </u>	•	-	•	-		
										T			_	Εn	virot	nmer	ıtal D	ivisio	n	
									$\neg +$					SVC	dne:	j.			<u> </u>	
							 		-+	-			\dashv	- Syc	Work	Orde	r Refe	rence		
	<u> </u>					<u> </u>							_			こつ(ነበዖ	rence 182	4 ——	
			-				ļ									<i>)</i>	, , _			
				 													11. 6. E J	JP_ 18 1	III	
				1/												$W_{\mathbf{z}}$	W. W		· III	
		1.									Ī		- T.		11			XI.	111	
													\top		H	IW.		\mathbf{N}	 	
													_		H	WV.		1	\	
									\dashv				\dashv		111					
			****				-	-	+				+	Tele	ephon	e:+61	-2-8784	8655		
							 		-				-4						т	
		-	<u></u>											\perp					·	
		-																		
							<u> </u>													

				-											-					
									<u> </u>			_		_				1	<u> </u>	
Total		(1944-15, 18 (1) (1) (1) (1) (1)		7 / O. A. 1917				0	2 2 2	ioning Pool					10.50					
Sampler: I	attest that prope	r field samplin	g procedures in a	accordance with Ser	versa standard prod	edures and/or project	Sampler Name:	111	cinda T	rickev		Signatura	}	$\overline{\sim}$	7 1/2		$\overline{}$	Date	~ ~	
specification	ons were used di	ring the colle	ction of these sar	mples:					on du	rioncy		Signature:	16	7		الما	1	Date.	20-1-20	
Relinquish	ed By:			- d		Method of Shipment (if ap	plicable):		IR	eceive	d by:	- (\	7	\rightarrow	n		/			
Name/Signa		L	ucinda Trickey		Date: 24/01	Carrier / Reference #:		•			gnature:	Lover		11	H				Date: 29/1/10	
Of:			Senversa		Time: 4:00	Date/Time:			o		PIL			///	_				Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Name/Signa	ature:				Date:	Carrier / Reference #:			N.	lame/Sid	gnature:			-/-	-	-			Date:	
Of:					Time:	Date/Time:			o										Time:	
Name/Signa	ature:				Date:	Carrier / Reference #:			N	ame/Sig	gnature:								Date:	
Of:				•	Time: .	Date/Time:			0	f:									Time:	
	V = VOA VIAI HVdoa	chloric Acid (HCf)	Preserved: VS = V	OA Vial Sulphuric Prese	rved: VSA # Sulphuric F	litric Preserved ORC; SH = Sodiu reserved Amber Glass; H = HCI F T = Sterile Bottle; UA = Unpreserv	Proconvod Disetie: UC	- UCI Droco	ned Car	aciatian I	Dattle C	D = 0.4-1.4-		and Discoul	41				rved plastic;	

Completed by: ____ Checked by: ____

CERTIFICATE OF ANALYSIS

Work Order : ES2002824

: SENVERSA PTY LTD Contact : LUCINDA TRICKEY

Address Address Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 : S17776 PSI Project

Order number C-O-C number

Client

Sampler : LUCINDA TRICKEY

Site

Quote number : SY/665/19

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555 **Date Samples Received** : 29-Jan-2020 16:45

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020 16:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW LCMS Coordinator Sydney Organics, Smithfield, NSW Franco Lentini

Page : 2 of 5 Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

Page : 3 of 5
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

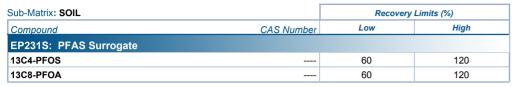
ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	ID008_SS01	ID008_SS02	ID008_SS03	
	C	lient samplii	ng date / time	20-Jan-2020 00:00	20-Jan-2020 00:00	20-Jan-2020 00:00	
ompound	CAS Number	LOR	Unit	ES2002824-001	ES2002824-002	ES2002824-003	
				Result	Result	Result	
A055: Moisture Content (Dried @ 10	5-110°C)						
Moisture Content		0.1	%	8.6	11.0	4.8	
P231A: Perfluoroalkyl Sulfonic Acid	s						
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0015	<0.0002	0.0003	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
P231B: Perfluoroalkyl Carboxylic A	cids						
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0002	<0.0002	<0.0002	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	
P231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	

Page : 4 of 5
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results


Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ID008_SS01	ID008_SS02	ID008_SS03		
	C	lient samplii	ng date / time	20-Jan-2020 00:00	20-Jan-2020 00:00	20-Jan-2020 00:00		
Compound	CAS Number	LOR	Unit	ES2002824-001	ES2002824-002	ES2002824-003		
				Result	Result	Result		
EP231C: Perfluoroalkyl Sulfonamide	es - Continued							
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002		
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002		
EP231D: (n:2) Fluorotelomer Sulfon	nic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005		
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0017	<0.0002	0.0003		
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.0015	<0.0002	0.0003		
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0017	<0.0002	0.0003		
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	106	116	116		
13C8-PFOA		0.0002	%	115	120	112		

Page : 5 of 5
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002824** Page : 1 of 4

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 ES2002824 Work Order

SENVERSA PTY LTD Client

Project S17776 PSI

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°	C)							
HDPE Soil Jar (EA055) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020				30-Jan-2020	03-Feb-2020	✓
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	√
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acid:	s							
HDPE Soil Jar (EP231X) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231P: PFAS Sums								
HDPE Soil Jar (EP231X) ID008_SS01, ID008_SS03	ID008_SS02,	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓

Page : 3 of 4 Work Order ES2002824

Client SENVERSA PTY LTD

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	entrol frequency r	not within specification ; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS in solid matrices	ORG73	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : E\$2002824

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number : ----

C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site · ____

Quote number : SY/665/19

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2834264)							
ES2002810-014	Anonymous	EA055: Moisture Content		0.1	%	13.6	13.8	1.85	0% - 20%
ES2002812-010	Anonymous	EA055: Moisture Content		0.1	%	13.0	12.1	7.14	0% - 20%
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC	Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
ES2002824-001	ID008_SS01	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0015	0.0020	23.7	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids((QC Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit

Page : 3 of 7
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

E29218 Perfuronally Carboyulia Acide (OC Lotz 2833569 - continued	Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	t	
ES2002812-001 Anonymous	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231X Perfluorotetaceanois acid (PFEpOA) 376-097 0.0005 mg/kg 4.0,0005 4.0,0005 0.00 No Limit	EP231B: Perfluoroa	lkyl Carboxylic Acids	(QC Lot: 2833566) - continued							
EP231C Perfluorantence and (PFEA) 375-24 0.001 mg/kg -0.001 0.001 0.00 No Limit	ES2002812-001	Anonymous	EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X Perfluorocharoic acid (PFDA) 270-9-03 0.0002 mg/kg			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231K Perfluorothepanole add (PFHA) 307-84 0,0002 mg/kg 40,0002 40,0002 0,00 No Limit			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X Perfluoroctanic acid (PFtpA) 378-45-5 0.0002 mg/kg 0.0002 0.0002 0.000 0.0001	ES2002824-001	ID008_SS01	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231K Perfluorocational caid (PFDA) 335-67- 0.0002 mg/kg 0.0002 0.0002 0.000 0.000 No Limit			EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluoronoanoic acid (PFNA) 375-95-1 0,0002 mg/kg <0,0002 <0,0002 0,000 No Limit			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorodecanoic acid (PFDA) 335-76-2 0.0002 mg/kg <0.0002 <0.0002 0.00 No Limit			EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0002	0.0002	0.00	No Limit
EP231X: Perfluoroundecanoic acid (PFUnDA) 2088 044 0,0002 mg/kg <0,0002 0,0002 0,000 No Limit			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
P231X: Perfluoroddecanoic acid (PFDDA) 307-55+1 0.0002 mg/kg 0.00002 0.0002 0.00 No Limit			EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
P231X: Perfluorotridecanoic acid (PFTDA) 72829-94-8 0.0002 mg/kg <0.0002 <0.0002 0.00 No Limit			EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluoroblanoic acid (PFTeDA) 376-08-7 0.0005 mg/kg < 0.0005			EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorobulanoic acid (PFBA) 375-224 0.001 mg/kg < 0.001 < 0.001 0.001 0.00 No Limit			EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231C Perfluoroalky Sulfonamides QC Lot: 283356			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002812-001			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No Limit	EP231C: Perfluoroal	lkyl Sulfonamides (QC	Lot: 2833566)							
Sulfonamidoacetic acid (MeFOSAA)	ES2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No Limit			EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
Sulfonamidoacetic acid (EIFOSAA)			sulfonamidoacetic acid (MeFOSAA)							
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA) EP231X: N-Methyl perfluorooctane sulfonamide (EIFOSA) EP231X: N-Methyl perfluorooctane (MeFOSE) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSE) EP231X: N-Methyl perfluorooctane (EIFOSA) EP231X: N-Methyl perfluorooctane (EIFOSA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSE) EP231X: N-Methyl perfluorooctane (EIFOSA) EP231X: N-Methyl perfluorooctane (EIFO			EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
MeFOSA EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane (FOSA) EP231X: N-Methyl perfluorooctane (FOSA) EP231X: N-Methyl perfluorooctane (FOSA) EP231X: N-Ethyl perfluorooctane (FOSA) MeFOSE EP231X: N-Ethyl perfluorooctane (FOSA) T54-91-6 0.0002 mg/kg <0.0005 <0.0005 0.00 No Limit			sulfonamidoacetic acid (EtFOSAA)							
EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA)			EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No Limit			(MeFOSA)							
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)			EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
Sulfonamidoethanol (MeFOSE) EP231X: N-Ethyl perfluorooctane sulfonamide (FOSA) T54-91-6 0.0002 mg/kg <0.0005 <0.0005 0.000 No Limit			(EtFOSA)							
EP231X: N-Ethyl perfluorooctane 1691-99-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No Limit			EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001 ID08_SS01 EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No Limit			sulfonamidoethanol (MeFOSE)							
EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No Limit			· ·	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No Limit sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane sulfonamide 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No Limit (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 0.00 No Limit (EtFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 0.00 No Limit (EtFOSA) EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 0.000 No Limit (EtFOSA)	50000004.004	IDOOO OOO4		754040	0.0000		0.0000	0.000	0.00	N
sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002 0.0002 0.000 0.00 No Limit	ES2002824-001	ID008_SS01	` ,							1 1
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002			• •	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005				2001 50 6	0.0003	malka	<0.0002	<0.0003	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005			· ·	2991-30-0	0.0002	mg/kg	<0.0002	<0.0002	0.00	NO LITTIL
(MeFOSA) Limit EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) 4151-50-2 0.0005 mg/kg <0.0005			. ,	31506-32-8	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) 4151-50-2 0.0005 mg/kg <0.0005			• •	31300-32-0	0.0003	mg/kg	40.0003	10.0003	0.00	NO LITTIC
(EtFOSA) EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No Limit sulfonamidoethanol (MeFOSE)			,	4151-50-2	0.0005	ma/ka	<0.0005	<0.0005	0.00	No I imit
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No Limit sulfonamidoethanol (MeFOSE)				7101 00 2	0.0000		2.3000	5.5000	5.00	
sulfonamidoethanol (MeFOSE)			,	24448-09-7	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
			• •			55				
* **				1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
sulfonamidoethanol (EtFOSE)						5 5				

Page : 4 of 7
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: SOIL						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231D: (n:2) Fluor	otelomer Sulfonic Acids	(QC Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001	ID008_SS01	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit

Page : 5 of 7
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283356	6)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130	
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	86.4	70.0	130	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	107	70.0	130	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	84.4	70.0	130	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	127	70.0	130	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2833	3566)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	118	70.0	130	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	103	70.0	130	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	82.0	70.0	130	
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	87.6	70.0	130	
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.2	70.0	130	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130	
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	81.6	70.0	130	
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	121	70.0	130	
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130	
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130	
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	109	70.0	130	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833566	5)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	89.4	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	84.8	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	70.4	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	112	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	109	70.0	130	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833566)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	74.8	70.0	130	

Page : 6 of 7

Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:	2833566) - continue	ed						
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	85.2	70.0	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	89.6	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	119	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	96.8	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	83.2	50.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	97.2	50.0	130
P231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	120	30.0	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	121	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	103	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	93.2	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	95.6	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	93.6	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	92.0	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	118	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	71.6	30.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	97.8	30.0	130
231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	116	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.00312 mg/kg	89.4	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	111	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	87.3	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	78.7	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	126	30.0	130

Page : 7 of 7
Work Order : ES2002824

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2833566) - continued						
ES2002812-001	Anonymous	EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	130	30.0	130
EP231D: (n:2) Fluo	protelomer Sulfonic Acids (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00125 mg/kg	102	50.0	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00125 mg/kg	86.8	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00125 mg/kg	89.2	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00125 mg/kg	111	50.0	130

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2002826 Work Order

: SENVERSA PTY LTD Client Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Intact.

SYDNEY NSW 2000

Kent Street

E-mail F-mail : lucinda.trickey@senversa.com.au : Brenda.Hong@ALSGlobal.com

Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555 Facsimile Facsimile : +61 03 9606 0074 : +61-2-8784 8500

Project : S17776 PSI Page · 1 of 2

Order number Quote number : ES2019SENVER0020 (SY/665/19) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

Date Samples Received : 29-Jan-2020 16:45 : 29-Jan-2020 Issue Date Scheduled Reporting Date : 03-Feb-2020 Client Requested Due 03-Feb-2020

Date

Mode of Delivery

Delivery Details : Undefined

No. of coolers/boxes **Temperature** : 27.9'c - Ice Bricks present

Security Seal

Receipt Detail No. of samples received / analysed : 1/1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Unable to add major cations and anions as no green bottle was received.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 2 ES2002826 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: WATER Client sample ID Laboratory sample Client sampling ID date / time ES2002826-001 20-Jan-2020 00:00 ID009_Well

Proactive Holding Time Report

- *AU Certificate of Analysis - NATA (COA)

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

CHRISTOPHER SANDIFORD

- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	m.au christopher.sandiford@senversa.co m.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	christopher.sandiford@senversa.co
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	m.au christopher.sandiford@senversa.co m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a u

Fmail

christopher.sandiford@senversa.co

Senversa Pty Ltd					Chain of	Cus	tody I	Dog	cumentation					
www.senversa.com.au ABN 89 132 231 380			Laboratory: Address:	ALS NSW 277-289 Woodpark Road,	Smithfield			Analysis Required						
			Contact:	Brenda Hong	omanielo	rtes)	7			Ī	1	laneo –		Comments:
			Phone:	02 8784 8515		la j	8							
lob Number:		S17776	Purchase Order:			Full Suite (28 Analytes)	Cattro			- 1		1	1 1	
Project Name:		PSI	Quote No:			- je	প্র				1			
ampled By:		LT/CW		SY-665	19 V2		*	ĺ				- 1	1 1	
roject Manager:			Turn Around Time	Stand	<u> </u>		ancons					- 1		
mail Report To:		nda Trickey	Page:		\ of ?	PFAS	3			1		Ì		
	Sample Information	y@senversa.com.au	Phone/Mobile:	+61 424 1	72 065	<u>a</u>		1					1 1	
Lab ID Sample ID	Matrix *	Date	·	Container In		EP231X	3						1 }	
1D009_We	II W	20-1-20	Time	Type / Code	Total Bottles	1 2	mayor						1 1	
V	11 / / / /	12-1-20			3	X	X	_					 	
										-+-		/	$\vdash \downarrow$	
													$\vdash \bot$	
		 	 					 -	+					
		 	<u> </u>				-		+	4				
		 							┦ _' '					
									Environmental Sydney	_ '	l			
							+	<u></u>	Sydney "Grital	Divis	ion			
								—/	Work Order Bos					
							- +		ES2000	rence				
								/	Sydney Work Order Refe	82	6		$\neg \neg$	
							$-\!$	_/			•			· · · · · · · · · · · · · · · · · · ·
								4			1		-+	
								1			-		-+	
								-			-	+-+	-+	
				 			/	7.				 		
					+			•	Telephone: +61-2-8784 6555	-	_	+		
									. I		<u> </u>	 	-+	
				 								+		
										+-		+		
re design as the co		Waki da sa kacamata		1 A 1982 A 1983 A 1984 A 1					 			+		
pler ¹ I affect that propos field an		<u> Barat etaleli bilingin P</u>			1 37 5	0				8.5 A. E. V	tial persons	89.23	THE CONTRACTOR	
pler! I attest that proper field san ifications were used during the	ollection of these san	ccordance with Senv	rersa standard proce	dures and/or project	Sampler Name:		raja al - T	2.1		1587			(1) Parkay	
quished By:	- throat dans	ipies.					ucinda Tr	пскеу	Signature:) ro	1 0	ate:	
/Signature:	Lucinda Trickey		01:1	Method of Shipment (if ap	olicable):		In-				\sim		<i>o</i>	104-20
	Senversa		Jate: 24/01	Carrier / Reference #:					ed by: Signature: VIVIO	M		\mathcal{O}_{-}		
/Signature:				Date/Time:			Of:	:	less :	41			Date	e: 29/1/20
				Carrier / Reference #:			Na	me/Si	Signature:	Д_			Time	
/Signature:				Date/Time:			Of:						Date	
				Carrier / Reference #:			Nar	me/Si	ignature:				Time	2.
Water Contolery Codes	Territoria de la companya della companya della companya de la companya della comp							THE TOIL	gnature.					
Water Container Codes; P = V = VOA Vial Hydochloric Acid (F = Formaldehyde Preserved G	Unpreserved Plastic; N =	Nitric Acid (HNO ₃) Prese	rved Plastic; ORC = Nitri	c Preserved ORC: SH = Sodium	Hydrovida (N-0)		lOf:		s = Sodium Hydroxide Preserved Pl Bottle; SP = Sulphuric Preserved plastic bottle; SW= sulfuric acid pl				Date	:

CERTIFICATE OF ANALYSIS

Work Order : E\$2002826

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

Order number : ---C-O-C number : ----

Client

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 30-Jan-2020

Issue Date : 02-Feb-2020 12:56

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

Page : 2 of 5

Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

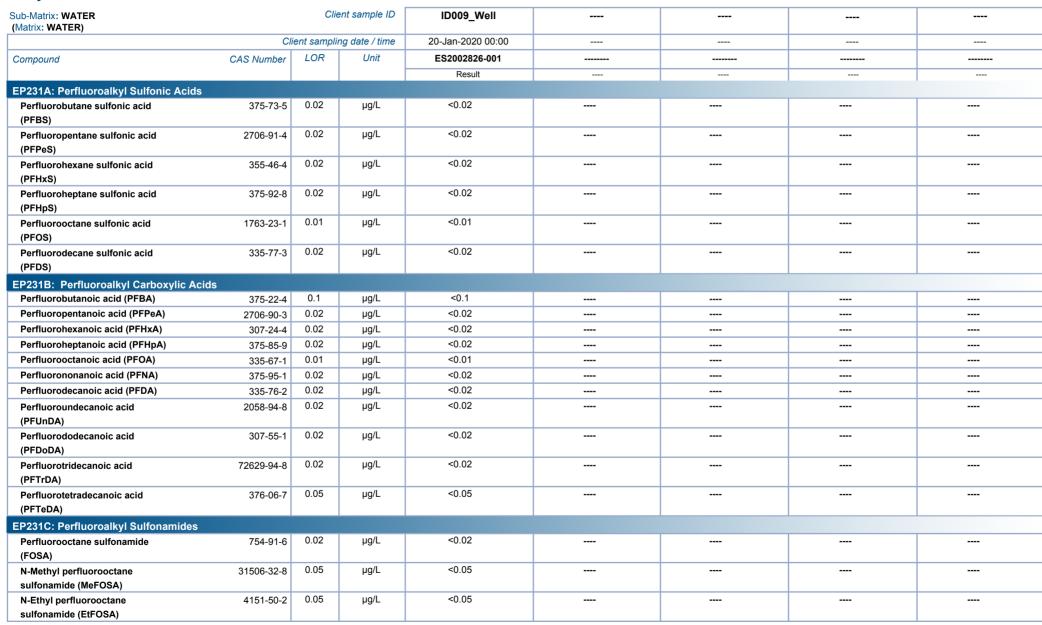
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

Page : 3 of 5 Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

Page : 4 of 5 Work Order ES2002826

Client : SENVERSA PTY LTD

Project S17776 PSI

Analytical Results

Sum of PFAS


13C4-PFOS

13C8-PFOA

Sum of PFHxS and PFOS

Sum of PFAS (WA DER List)

EP231S: PFAS Surrogate

0.01

0.01

0.01

0.02

0.02

355-46-4/1763-23-

μg/L

μg/L

μg/L

%

%

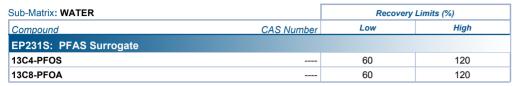
< 0.01

< 0.01

<0.01

98.5

106



Page : 5 of 5
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002826** Page : 1 of 4

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 02-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorohexane	355-46-4	Not		MS recovery not determined,
			sulfonic acid		Determined		background level greater than or
			(PFHxS)				equal to 4x spike level.
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X) ID009_Well	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓	
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X) ID009_Well	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓	
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X) ID009_Well	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓	
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE (no PTFE) (EP231X) ID009_Well	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓	
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X) ID009_Well	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓	

Page : 3 of 4 Work Order ES2002826

SENVERSA PTY LTD Client

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

trix: WATER Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification									
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification		
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	FP231X	1	5	20.00	5.00		NEPM 2013 B3 & ALS QC Standard		

Page : 4 of 4
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : ES2002826

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number : ----

C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 30-Jan-2020

Issue Date : 02-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC	C Lot: 2833090)									
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit		
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
EP231B: Perfluoro	alkyl Carboxylic Acids	(QC Lot: 2833090)									
ES2002831-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit		
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	0 No Limit 0 No Limit 0 No Limit		
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00			
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit		
EP231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2833090)									
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit		
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit		

Page : 3 of 6
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP231C: Perfluoroal	kyl Sulfonamides (QC Lot: 2	2833090) - continued									
ES2002831-001	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q0	C Lot: 2833090)									
ES2002831-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
EP231P: PFAS Sums	(QC Lot: 2833090)										
ES2002831-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.00	No Limit		

Page : 4 of 6
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283309	0)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	103	72.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	107	71.0	127
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	104	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	113	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	105	65.0	140
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	108	53.0	142
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 283	3090)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	108	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	120	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	117	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	122	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	101	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	119	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	117	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	118	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	106	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	90.7	71.0	132
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833090))							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	115	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	115	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	117	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	119	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833090)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	111	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	120	67.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	122	67.0	138

Page : 5 of 6

Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report							
	Report	Spike	Spike Recovery (%)	Recovery (%) Recovery Limit								
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	oncentration LCS Low						
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot	EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2833090) - continued											
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	127	70.0	130				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP231A: Perfluoro	oalkyl Sulfonic Acids (QCLot: 2833090)							
ES2002831-002	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 μg/L	105	50.0	130	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.25 μg/L	103	50.0	130	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	# Not Determined	50.0	130	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	120	50.0	130	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	# Not Determined	50.0	130	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	121	50.0	130	
P231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2833090)							
ES2002831-002	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	113	50.0	130	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	123	50.0	130	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	123	123 50.0 123 50.0 121 50.0 98.0 50.0 120 50.0 113 50.0 114 50.0 106 50.0	130	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	121		130	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	98.0		130	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	120		130	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	113		130	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	113		130	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	114	50.0	130	
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	106	50.0	130	
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	88.0	50.0	150	
P231C: Perfluoro	oalkyl Sulfonamides (QCLot: 2833090)							
ES2002831-002	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	121	50.0	130	
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	123	50.0	150	
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	103	50.0	150	
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	130	50.0	150	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	135	50.0	150	

Page : 6 of 6
Work Order : ES2002826

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833090) - continued							
ES2002831-002	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	104	50.0	130	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	98.4	50.0	130	
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2833090)							
ES2002831-002	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	113	50.0	130	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 μg/L	124	50.0	130	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 μg/L	128	50.0	130	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 μg/L	125	50.0	130	

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2002827

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

SYDNEY NSW 2000

Kent Street

Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555 Facsimile : +61 03 9606 0074 Facsimile : +61-2-8784 8500

Project : S17776 PSI Page : 1 of 3

 Order number
 : --- Quote number
 : ES2019SENVER0020 (SY/665/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

E-mail

Date Samples Received : 29-Jan-2020 16:45 Issue Date : 29-Jan-2020 Client Requested Due : 03-Feb-2020 Scheduled Reporting Date : 03-Feb-2020

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Intact.

No. of coolers/boxes : ---- : 27.9'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 2 / 2

General Comments

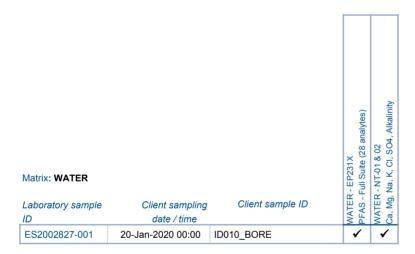
This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 3 ES2002827 Amendment 0 Work Order Client : SENVERSA PTY LTD


Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date FAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP231X (solids) component OIL - EA055-103 Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES2002827-002 20-Jan-2020 00:00 ID010_SD01

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method	Method		Due for	Samples Re	eceived	Instructions Received					
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation				
ED093F: Major Catio	ED093F: Major Cations - Dissolved										
ID010_BORE	Clear Plastic Bottle - Natural		27-Jan-2020	29-Jan-2020	×						

Issue Date : 29-Jan-2020

Page

: 3 of 3 : ES2002827 Amendment 0 : SENVERSA PTY LTD Work Order Client

Requested Deliverables

- *AU Certificate of Analysis - NATA (COA)	Email	christopher.sandiford@senversa.co m.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	christopher.sandiford@senversa.co m.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	christopher.sandiford@senversa.co m.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	christopher.sandiford@senversa.co m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au

SUPPLIER ACCOUNTS

- A4 - AU Tax Invoice (INV)

supplieraccounts@senversa.com.a

Email

10	-
7	استستستهر
(المعمد المعمد
son	vorsa

Chain of Custody Documentation

Senversa Pty Ltd	Analysis Required Comments:
Job Number: S17776 Purchase Order:	
Job Number: S17776 Purchase Order:	
Project Name: PSI Quote No: SY-665-19 Y2 Sampled By: LT/CW Turn Around Time: Standard Project Manager: Lucinda Trickey Page:	
Sampled By: LT/CW Turn Around Time: Standard 2	
Project Manager: Lucinda Trickey Page: of (\$\frac{1}{2} \frac{3}{2} \]	
Sample Information Container Information Sample ID Matrix * Date Time Type / Code Total Bottles	
10010-BORE W 20-1-20 3 XX	
10010-5001 5 20-1-20	
	
	Environmental Division
	Sydney Work Order Reference
	Work Order Reference
	ES2002827
	LO2002021
	III MAN LINGS III II
	Felephone: + 61-2-8784 8555
otal	
	(atur): 20-1-20
elingulshed By: Method of Shipment (if applicable): Received by:	
	Date: 24/1/20
ame/Signature: Lucinda Trickey Date: 216/01 Carrier / Reference #: Name/Signature: f: Senversa Time: 4:00 Date/Time: Of: PL)	Time: \L:\\
lame/Signature: Date: Carrier / Reference #: Name/Signature:	
f: Date/Time: Of:	Date:
ame/Signature: Date: Carrier / Reference #: Name/Signature:	Date:
f: Date/Time: Of:	Time:
Water Container Codes: P = Unpreserved Plastic: N = Nitric Acid (HNO ₃) Preserved Plastic: ORC = Nitric Preserved ORC; SH = Sodium Hydroxide (NaOH)/Cadmium (Cd) Preserved; S = Sodium Hydroxide (NaOH)/Cadmium (Cd) Preserved (NaOH)/Cadmium (Cd) Preserved (NaOH)/Cadmium (ydroxide Preserved Plastic; STH = Sodium thiosulfate preserved plastic;
V = VOA Vial Hydochloric Acid (HCl) Preserved; VS = VOA Vial Sulphuric Preserved; VSA = Sulphuric Preserved Amber Glass; H = HCl Preserved Plastic; HS = HCl Preserved Speciation Bottle; SP = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; UA = Unpreserved Amber Glass; L=Lugol's lodine preserved white plastic bottle	Sulphuric Preserved Plastic:
npleted by:	S17776 C

S17776 COC

CERTIFICATE OF ANALYSIS

Work Order : **ES2002827**

2002021

Client : SENVERSA PTY LTD
Contact : LUCINDA TRICKEY

Address : Level 5 Grafton Bond Building 201 Kent Street Address : 277-289 W

ddress : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

Order number : ---C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 2

No. of samples analysed : 2

Page : 1 of 8

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 29-Jan-2020

Issue Date : 03-Feb-2020 19:18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryAnkit JoshiInorganic ChemistSydney Inorganics, Smithfield, NSWCeline ConceicaoSenior SpectroscopistSydney Inorganics, Smithfield, NSWFranco LentiniLCMS CoordinatorSydney Organics, Smithfield, NSW

Page : 2 of 8
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Page : 3 of 8
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ID010_SD01	 	
	Client sampling date / time			20-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002827-002	 	
·				Result	 	
EA055: Moisture Content (Dried @ 105	-110°C)					
Moisture Content		0.1	%	25.5	 	
EP231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	 	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	 	
EP231B: Perfluoroalkyl Carboxylic Ac	ids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	 	
EP231C: Perfluoroalkyl Sulfonamides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	 	

Page : 4 of 8 Work Order ES2002827

Client : SENVERSA PTY LTD

Project S17776 PSI

4:2 Fluorotelomer sulfonic acid	757124-72-4	0.0005	mg/kg	<0.0005						
(4:2 FTS)										
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg	<0.0005						
(6:2 FTS)										
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005						
(8:2 FTS)										
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.0005	mg/kg	<0.0005						
(10:2 FTS)										
EP231P: PFAS Sums										
Sum of PFAS		0.0002	mg/kg	<0.0002						
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.0002	mg/kg	<0.0002						
	1									
Sum of PFAS (WA DER List)		0.0002	mg/kg	<0.0002						
EP231S: PFAS Surrogate	EP231S: PFAS Surrogate									
13C4-PFOS		0.0002	%	100						
13C8-PFOA		0.0002	%	114						
				•		•				

Page : 5 of 8
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ID010_BORE	 	
	Cli	ent sampli	ng date / time	20-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002827-001	 	
				Result	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	35	 	
Total Alkalinity as CaCO3		1	mg/L	35	 	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	35	 	
ED045G: Chloride by Discrete Analyser						
Chloride	16887-00-6	1	mg/L	124	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	8	 	
Magnesium	7439-95-4	1	mg/L	12	 	
Sodium	7440-23-5	1	mg/L	83	 	
Potassium	7440-09-7	1	mg/L	2	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	4.92	 	
Ø Total Cations		0.01	meg/L	5.05	 	
ø Ionic Balance		0.01	%	1.23	 	
EP231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid	375-73-5	0.02	μg/L	<0.02	 	
(PFBS)	373-73-3	0.02	M9	0.02		
Perfluoropentane sulfonic acid	2706-91-4	0.02	μg/L	<0.02	 	
(PFPeS)	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10			
Perfluorohexane sulfonic acid	355-46-4	0.02	μg/L	<0.02	 	
(PFHxS)						
Perfluoroheptane sulfonic acid	375-92-8	0.02	μg/L	<0.02	 	
(PFHpS)						
Perfluorooctane sulfonic acid	1763-23-1	0.01	μg/L	<0.01	 	
(PFOS)						
Perfluorodecane sulfonic acid	335-77-3	0.02	μg/L	<0.02	 	
(PFDS)						
EP231B: Perfluoroalkyl Carboxylic Acid	ls					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	 	

Page : 6 of 8 Work Order ES2002827

Client : SENVERSA PTY LTD

S17776 PSI Project

6:2 Fluorotelomer sulfonic acid

8:2 Fluorotelomer sulfonic acid

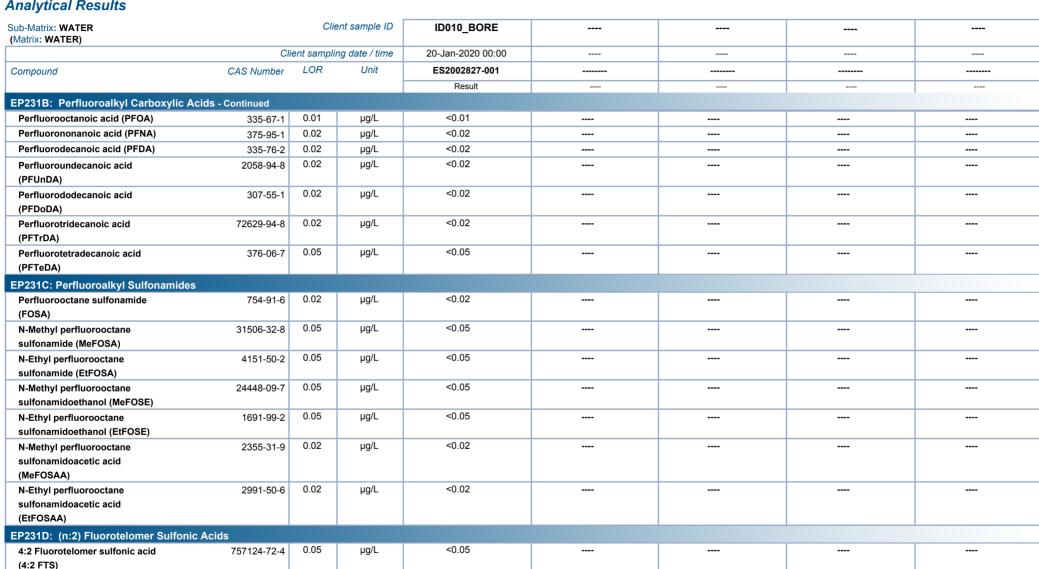
(6:2 FTS)

(8:2 FTS)

27619-97-2

39108-34-4

0.05


0.05

μg/L

μg/L

< 0.05

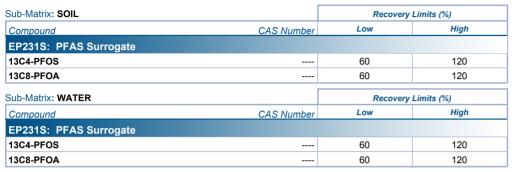
< 0.05

Page : 7 of 8
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS


Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	ID010_BORE					
	CI	ient sampl	ing date / time	20-Jan-2020 00:00					
Compound	CAS Number	LOR	Unit	ES2002827-001					
				Result					
EP231D: (n:2) Fluorotelomer Sulfonic Acids - Continued									
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05					
EP231P: PFAS Sums									
Sum of PFAS		0.01	μg/L	<0.01					
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	μg/L	<0.01					
Sum of PFAS (WA DER List)		0.01	μg/L	<0.01					
EP231S: PFAS Surrogate									
13C4-PFOS		0.02	%	110					
13C8-PFOA		0.02	%	111					

Page : 8 of 8
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002827** Page : 1 of 6

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment		
Matrix Spike (MS) Recoveries									
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorohexane	355-46-4	Not		MS recovery not determined,		
			sulfonic acid		Determined		background level greater than or		
			(PFHxS)				equal to 4x spike level.		
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorooctane	1763-23-1	Not		MS recovery not determined,		
			sulfonic acid (PFOS)		Determined		background level greater than or		
							equal to 4x spike level.		

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
ED093F: Dissolved Major Cations						
Clear Plastic Bottle - Natural						
ID010_BORE				31-Jan-2020	27-Jan-2020	4

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation:	· -	Holding	timo	broach :	1	_	Within holding time	
Evaluation.	_		IIIIIe	Dreach	v		vviimin noidina iime	

Method	Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)								
HDPE Soil Jar (EA055) ID010_SD01	20-Jan-2020				30-Jan-2020	03-Feb-2020	✓	
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X) ID010_SD01	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓	
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X) ID010_SD01	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓	
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X) ID010_SD01	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓	

Page : 3 of 6
Work Order : ES2002827

Client : SENVERSA PTY LTD

Matrix: SOIL				Evaluation	n: × = Holding time	breach ; ✓ = With	n holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE Soil Jar (EP231X)	00.1000	04 1000	40 1.1.0000	,	04 10000	44 Mar 0000	
ID010_SD01	20-Jan-2020	31-Jan-2020	18-Jul-2020	√	31-Jan-2020	11-Mar-2020	✓
EP231P: PFAS Sums							
HDPE Soil Jar (EP231X) ID010_SD01	20-Jan-2020	31-Jan-2020	18-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
Matrix: WATER	•			Evaluation	n: × = Holding time	breach ; ✓ = With	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P)							
ID010_BORE	20-Jan-2020				29-Jan-2020	03-Feb-2020	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) ID010 BORE	20-Jan-2020				30-Jan-2020	17-Feb-2020	
_	20-3411-2020				30-3a11-2020	17-1 65-2020	√
ED045G: Chloride by Discrete Analyser		T					
Clear Plastic Bottle - Natural (ED045G) ID010 BORE	20-Jan-2020				30-Jan-2020	17-Feb-2020	1
ED093F: Dissolved Major Cations					1		
Clear Plastic Bottle - Natural (ED093F)							
ID010_BORE	20-Jan-2020				31-Jan-2020	27-Jan-2020	3c
EP231A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X)							
ID010_BORE	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X)	20-Jan-2020	30-Jan-2020	18-Jul-2020	1	31-Jan-2020	18-Jul-2020	
ID010_BORE	20-3dii-2020	30-Jan-2020	10-301-2020	√	31-Jan-2020	10-301-2020	✓
EP231C: Perfluoroalkyl Sulfonamides		l			I	I	
HDPE (no PTFE) (EP231X) ID010 BORE	20-Jan-2020	30-Jan-2020	18-Jul-2020	1	31-Jan-2020	18-Jul-2020	1
EP231D: (n:2) Fluorotelomer Sulfonic Acids					11 12		-
HDPE (no PTFE) (EP231X)							
ID010_BORE	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓
EP231P: PFAS Sums							
HDPE (no PTFE) (EP231X)							
ID010_BORE	20-Jan-2020	30-Jan-2020	18-Jul-2020	✓	31-Jan-2020	18-Jul-2020	✓

Page : 4 of 6
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	on: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	no: v = Ouglity Co	entral fraguancy	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type			ount	⊏vaiuatio	Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	Quality Control Specification
Laboratory Duplicates (DUP)		40	rtedular	Actuur	Expected		
Alkalinity by PC Titrator	ED037-P	1	5	20.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	9	22.22	10.00	√	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	11	18.18	10.00	√	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 6
Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions

Page : 6 of 6
Work Order : ES2002827

Client : SENVERSA PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS in solid matrices	ORG73	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is
			exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US
			DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : **ES2002827** Page : 1 of 11

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Kent Street Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

 Telephone
 : +61 03 9606 0070
 Telephone
 : +61 2 8784 8555

 Project
 : \$17776 PSI
 Date Samples Received
 : 29-Jan-2020

Order number : ---- Date Analysis Commenced : 29-Jan-2020

C-O-C number : ---- Issue Date : 03-Feb-2020

Sampler : LUCINDA TRICKEY

Site : ----

Quote number : SY/665/19

No. of samples received : 2

No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2834264)								
ES2002810-014	Anonymous	EA055: Moisture Content		0.1	%	13.6	13.8	1.85	0% - 20%	
ES2002812-010	Anonymous	EA055: Moisture Content		0.1	%	13.0	12.1	7.14	0% - 20%	
EP231A: Perfluoroa	lkyl Sulfonic Acids (QC	Lot: 2833566)								
ES2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
ES2002824-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0015	0.0020	23.7	No Limit	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
EP231B: Perfluoroa	alkyl Carboxylic Acids((QC Lot: 2833566)								
ES2002812-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	

Page : 3 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

EP231E Perfluoroality Cerboxylle Acids (QC Lot: 283566) continued	Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
E82002812-001 Ananymous	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-86-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No.	EP231B: Perfluoroa	alkyl Carboxylic Acids((QC Lot: 2833566) - continued							
EP231K Perfluorotalensis add (PFEA) 375-224 0.001 mg/kg <0.0002 <0.0002 0.00 No No	ES2002812-001	Anonymous	EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
ES2002824-001 Anonymous			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X Perfluorohexanoic acid (PFHxA)			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X: Perfluoroteptanole acid (PFHpA)	ES2002824-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X Perfluorooctanoic acid (PFOA)			EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorodecanoic acid (PFDA) 338-76-2 0.0002 mg/kg <0.0002 <0.0002 0.00 No			EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0002	0.0002	0.00	No Limit
EP231X: Perfluorododecanoic acid (PFUnDA)			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorodecanoic acid (PFDDA) 307-55-1 0.0002 mg/kg <0.0002 <0.0002 0.000 0.00 No			EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluoroindecandic acid (PFTDA) 72629-94-8 0.0002 mg/kg <0.0002 <0.0002 0.000 0.00 No eP231X: Perfluoroitetradecanoic acid (PFTDA) 376-07 0.0005 mg/kg <0.0005 <0.0005 <0.0005 0.00 No eP231X: Perfluoroitetradecanoic acid (PFTEDA) 376-07 0.0005 mg/kg <0.0005 <0.0005 <0.0005 0.00 No eP231X: Perfluoroitetradecanoic acid (PFBA) 376-07 0.0005 mg/kg <0.001 <0.001 <0.001 0.000 No eP231X: Perfluoroitetradecanoic acid (PFBA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No eP231X: Nethyl perfluoroitetrade 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 0.0005 0.0005 0.0005 0.0005 0			EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.0005 mg/kg < 0.0005 < 0.0005 0.000 No			EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorobutanoic acid (PFBA) 375-224 0.001 mg/kg <0.001 <0.001 <0.001 0.00 No			EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231C Perfluoroalky Sulfonamides (QC Lot: 2833566)			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002812-001			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide sulfonamide (EIFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA)	EP231C: Perfluoroal	Ikyl Sulfonamides (QC	Lot: 2833566)							
Sulfonamidoacetic acid (MeFOSAA)	ES2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No No			EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
Sulfonamidoacetic acid (EIFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) Sulfonamidoacetic acid (EIFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (EIFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (EIFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (EIFOSAA) Sulfonamidoacetic			sulfonamidoacetic acid (MeFOSAA)							
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EFOSA)		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
Comparison			sulfonamidoacetic acid (EtFOSAA)							
EP231X: N-Ethyl perfluorooctane sulfonamide			EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (MeFOSE)			(MeFOSA)							
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (MeFOSE)			EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
Sulfonamidoethanol (MeFOSE) Sulfonamidoethanol (MeFOSE) EP231X: N-Ethyl perfluorooctane 1691-99-2 0.0005 mg/kg <0.0005 <0.0005 0.000 No sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSA) T54-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (EtFOSAA) Sulfonamido			(EtFOSA)							
EP231X: N-Ethyl perfluorooctane sulfonamide (FOSA) T54-91-6 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (EtFOSE)			EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001 Anonymous EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.0005 0.000 No No Sulfonamide Sulfonami			sulfonamidoethanol (MeFOSE)							
ES2002824-001 Anonymous EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA) EP231X: N-Methyl perfluorooctane 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethy			, .	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA)	E0000004 004			754040	0.0000	,	2 2222	0.000	0.00	N
sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002	ES2002824-001	Anonymous								No Limit
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002			, .	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005 0.0005 0.00 No				2004 50 6	0.0000	ma/lra	<0.0002	<0.0000	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005			, .	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	NO LITTIL
(MeFOSA) (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005			, ,	31506 32 8	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No			, .	31300-32-6	0.0003	mg/kg	~0.0003	~ 0.0003	0.00	NO LITTIL
a a six in a siy, pointed contains contained				4151-50-2	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
			(EtFOSA)	1101 30 2	3.0000				0.00	THO EITH
			,	24448-09-7	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
sulfonamidoethanol (MeFOSE)			• •			J g				
			` '	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
sulfonamidoethanol (EtFOSE)						3 3				

Page : 4 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231D: (n:2) Fluor	otelomer Sulfonic Acids (Q	C Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
Sub-Matrix: WATER					Laboratory L	Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED037P: Alkalinity b	y PC Titrator (QC Lot: 2832								
ES2002751-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	8	0.00	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	9	8	0.00	No Limit
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by D	A (QC Lot: 2833986)							
ES2002447-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2	3	0.00	No Limit
ES2002348-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	18	18	0.00	0% - 50%
ED045G: Chloride by	y Discrete Analyser (QC Lo	t: 2833987)							
ES2002348-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	21	21	0.00	0% - 20%
ES2002945-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	6	6	0.00	No Limit
ED093F: Dissolved	Major Cations (QC Lot: 2834	4390)							
ES2002111-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	40	40	0.00	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	26	25	0.00	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	62	61	0.00	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	9	8	0.00	No Limit
ES2002822-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	6	5	0.00	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	13	12	0.00	0% - 50%
		ED093F: Sodium	7440-23-5	1	mg/L	91	88	3.21	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.00	No Limit
EP231A: Perfluoroal	kyl Sulfonic Acids (QC Lot	2833090)							
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
	•					•			

Page : 5 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	Ikyl Sulfonic Acids (Q	C Lot: 2833090) - continued							
ES2002831-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833090)							
ES2002831-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2833090)							
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
EP231D: (n:2) Fluor	rotelomer Sulfonic Acid	ds (QC Lot: 2833090)							
ES2002831-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							

Page : 6 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Sub-Matrix: WATER	Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP231P: PFAS Sums	(QC Lot: 2833090)											
ES2002831-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.00	No Limit			

Page : 7 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	4		Method Blank (MB)		Laboratory Control Spike (LC	S) Report	rt	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283356	6)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	86.4	70.0	130
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	107	70.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	84.4	70.0	130
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	127	70.0	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2833	3566)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	118	70.0	130
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	103	70.0	130
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	82.0	70.0	130
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	87.6	70.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.2	70.0	130
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	81.6	70.0	130
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	121	70.0	130
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	109	70.0	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833566	5)							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	89.4	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	84.8	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	70.4	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	112	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	109	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833566)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	74.8	70.0	130

Page : 8 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

ub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
ethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot	: 2833566) - continued								
P231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	85.2	70.0	130	
b-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
ethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
0037P: Alkalinity by PC Titrator (QCLot: 2832186)									
0037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	94.0	81.0	111	
					50 mg/L	112	70.0	130	
041G: Sulfate (Turbidimetric) as SO4 2- by DA (Q0	CLot: 2833986)								
0041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	110	82.0	122	
				<1	500 mg/L	93.7	82.0	122	
0045G: Chloride by Discrete Analyser (QCLot: 283	3987)								
0045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	106	80.9	127	
-				<1	1000 mg/L	102	80.9	127	
D093F: Dissolved Major Cations (QCLot: 2834390)									
0093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	104	80.0	114	
0093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	107	90.0	116	
0093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	98.7	82.0	120	
0093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	94.6	85.0	113	
231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2833	090)								
P231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 µg/L	103	72.0	130	
P231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	107	71.0	127	
P231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	104	68.0	131	
P231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	113	69.0	134	
P231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 µg/L	105	65.0	140	
P231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	108	53.0	142	
P231B: Perfluoroalkyl Carboxylic Acids (QCLot: 28	222000)		10		1.0				
P231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 µg/L	108	73.0	129	
231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.25 µg/L	120	72.0	129	
231X: Perfluoropernanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.25 µg/L	117	72.0	129	
2231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.25 μg/L	122	72.0	130	
231X: Perlluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.25 μg/L	101	71.0	133	
P231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	0.25 μg/L	119	69.0	130	
231X: Perfluoroficianoic acid (PFNA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	117	71.0	129	
231X: Perlluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	133	
P231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	118	72.0	134	
P231X: Perfluorotridecanoic acid (PFDoDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	106	65.0	144	
P231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	90.7	71.0	132	
20 17. 1 CHIUOFOLELI AUGUATION AGIU (FT TEDA)	3.0 00 .	J.J.J	r3, -	3.00	0.020 pg/L	55.7		102	

Page : 9 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Project : S17776 PSI

ub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833090) - continued								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	115	67.0	137	
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	115	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	117	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	119	65.0	136	
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833090)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	111	63.0	143	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	120	67.0	140	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	122	67.0	138	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	127	70.0	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	89.6	50.0	130	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	106	50.0	130	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	119	50.0	130	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	96.8	50.0	130	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	83.2	50.0	130	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	97.2	50.0	130	
EP231B: Perfluoro	palkyl Carboxylic Acids (QCLot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	120	30.0	130	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	121	50.0	130	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	103	50.0	130	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	93.2	50.0	130	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	95.6	50.0	130	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	93.6	50.0	130	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	92.0	50.0	130	

Page : 10 of 11
Work Order : ES2002827

Client : SENVERSA PTY LTD

ub-Matrix: SOIL				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231B: Perfluoro	alkyl Carboxylic Acids (QCLot: 2833566) - continued						
ES2002812-001	Anonymous	EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	118	50.0	130
	,	EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	71.6	30.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	97.8	30.0	130
P231C: Perfluoro	alkyl Sulfonamides (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	116	50.0	130
	·	EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.00312 mg/kg	89.4	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	111	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	87.3	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	78.7	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	126	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	130	30.0	130
EP231D: (n:2) Fluc	protelomer Sulfonic Acids (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00125 mg/kg	102	50.0	130
	,	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00125 mg/kg	86.8	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00125 mg/kg	89.2	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00125 mg/kg	111	50.0	130
ub-Matrix: WATER		'		Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 2833986)						
ES2002348-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	104	70.0	130
-D045G: Chloride	by Discrete Analyser (QCLot: 2833987)						
ES2002348-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	118	70.0	130
	· , · · ·	EBUTOO. Official	.555, 65 5			. 5.0	100
	alkyl Sulfonic Acids (QCLot: 2833090)	ED004V/ Devilence below and 11 (DED0)	275 72 5	0.25~//	105	50.0	130
ES2002831-002	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5 2706-91-4	0.25 μg/L	105 103	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)		0.25 μg/L		50.0	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	# Not Determined	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	120	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	# Not Determined	50.0	130

Page : 11 of 11 Work Order : ES2002827

Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 2833090) - continued						
ES2002831-002	Anonymous	EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	121	50.0	130
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	113	50.0	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	123	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 µg/L	123	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	121	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	98.0	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	120	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	113	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	113	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	114	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	106	50.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	88.0	50.0	150
EP231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	121	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.625 μg/L	123	50.0	150
		(MeFOSA)					
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	103	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	0.625 μg/L	130	50.0	150
		(MeFOSE)	1691-99-2	0.625 µg/L	135	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1091-99-2	0.625 µg/L	135	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic	2355-31-9	0.25 μg/L	104	50.0	130
		acid (MeFOSAA)	0004 50 0	0.05 #	20.4		100
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	98.4	50.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	113	50.0	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 µg/L	124	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 μg/L	128	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 μg/L	125	50.0	130

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2002829

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Kent Street SYDNEY NSW 2000

31DNL1 N3W 2000

E-mail : lucinda.trickey@senversa.com.au E-mail : Brenda.Hong@ALSGlobal.com

Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555
Facsimile : +61 03 9606 0074 Facsimile : +61-2-8784 8500

Project : S17776 PSI Page : 1 of 2

 Order number
 : --- Quote number
 : ES2019SENVER0020 (SY/665/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

Date Samples Received : 29-Jan-2020 16:45 Issue Date : 29-Jan-2020 Client Requested Due : 03-Feb-2020 Scheduled Reporting Date : 03-Feb-2020

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Intact.

No. of coolers/boxes : ---- Temperature : 17.9'C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 2 / 2

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 2 ES2002829 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP231X (solids) component OIL - EA055-103 Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES2002829-001 21-Jan-2020 00:00 ID011_SD01 ES2002829-002 21-Jan-2020 00:00 ID011_SD02

Proactive Holding Time Report

- *AU Certificate of Analysis - NATA (COA)

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

CHRISTOPHER SANDIFORD

- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	m.au
- Ad litterpretive QC Report - DEI ADET (Alloh QCI Rep) (QCI)	Liliali	christopher.sandiford@senversa.co m.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	christopher.sandiford@senversa.co
, is as report 22, rest (allow as rep) (in the (as)		m.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	christopher.sandiford@senversa.co
		m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co
LUCINDA TRIOVEY		m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

Fmail

christopher.sandiford@senversa.co

onversa

Chain of Custody Documentation

Senversa Pty Ltd www.senversa.com.au ABN 89 132 231 380				Laboratory: Address: Contact:	Laboratory: ALS NSW Address: 277-289 Woodpark Road Smithfield			Analysis Required										
				Phone:	02 8784 8515		alyte					-					Comments:	
Job Numi	ber:		S17776	T			Suite (28 Analytes)											
Project N	Project Name:			Purchase Order			.e (2		1 1		- 1			- 1	-		1	
	Sampled By:			Quote No:	SY-665-		Suit		1				ĺ	ł	į		1	
			LT/CW	Turn Around Tin	ie: Stand	ard	ᆲ				İ	-		- }	Ì		1	
Project Ma		Luc	cinda Trickey	Page:		\ of \	sp			J	- 1		ł	- 1	1] ,	ĺ	
Email Rep	ort To:	lucinda.tricke	ey@senversa.com.au	Phone/Mobile:	164 404 4		EP231X - PFAS	ľ					-	Ì		١.	İ	
Lab ID	Commit 17	Sample Informa	ation		+61 424 1 Container In		- 	ľ	- 1	1		1			1		1	
Eub ID	Sample ID IDOI - SDOI	Matrix *	Date	Time	Type / Code	Total Bottles	3]		- 1	1	-		- 1	İ	1 [
	10011-5001	Soil	21-1-2			1 JAR	╁╬┼		 -								,	
	10011-SD02	Sou	121-7-20				121				·							
						IJMR	+~+	+				\perp						
						 -	+	$-\!$					\top		1			
						· 	├								†			
										T	7 _				 			
			 					T			En	Viro i	men	al Div	. '	' +		
				+	<u>-</u>						Sy	dnev	r	al DIV	rision ^œ 29	- +		
		 	 -							-+-	1	Work	Order i	anta-		1		
		 					 	+			- I	5S	201	JOO	ce _			
		 -				 		-+			-		~ U (ノとと	29	T		
						+					_) 				\top		
				_		+						1111111	7.112		H H)	+		
						 							UNI.		11111	-+		
	·			 						77			(1)/1		1111			
			 	 	- -		_					$ K_i $	11.34	112	1111	-		
			+	+						+	Telepha-		ur = Hil	ן אוי	111	-+		
			 -							- 	Telephon	e:+61	-2-8784 6	555				_
			 				-					ı						
						 		-+-		_	 		↓					
					<u> </u>	 												
	1 60 CM					 	-				⊥ ∣							
otal						TANCOT DEF. of Theory of												
mpler: I att	est that proper field sampling	o procedure :		2225 200 420 420			0				3 8 Sept		107-1538		arit dans	- 590 VA	AA - Gagera - Harris da	BOTA CARONA AND AND
ecification:	est that proper field samplir s were used during the colle	ction of these sar	accordance with Se	nversa standard pro-	edures and/or project	Sampler Name:	Luc	inda Tri	ckov	lo							<u>and American Treations.</u> And Michigan American	
linguished						L		midd i'r	ckey	Signa		α	240	0. 1) D	ate: 7	1-1-20	
me/Signatu		ucinda Trickey		415.44	Method of Shipment (if app	olicable):		ID.	ceived by					-			1-1-20	
		Senversa		Date: 24/01	Carrier / Reference #:						(2 -	-7		\bigcirc				
ne/Signatu		, city craa		Time: 4:00	Date/Time:			Of:	ne/Signati	ire: Vດ	<u>/ኒ</u>	-U				Dat	te: 29/1/20	
				Date:	Carrier / Reference #:			_	ne/Signatu			-7 /				Tim	ne: 16:45	
ne/Signature:			Time:	Date/Time:			Of:	grigitatt	ire.						Dat			
Date:					Carrier / Reference #:			→	ne/Signatu	re:						Tim	e:	
Wa	ter Container Codes: P = Unp	reserved Plastic; N =			Date/Time: itric Preserved ORC; SH = Sodium reserved Amber Glass; H = HCI Pre = Sterile Bottle: UA = Lingreserved											Dat	ə:	
v= F≈	Formaldehyde Preserved Classic	Preserved: VS = VO	A Vial Sulphuric Prese	ved; VSA = Sulphuric P	reserved Amber Glace: H = Doctor	Hydroxide (NaOH)/Ca	dmium (Cd)	Preserve	ed; S = Soc	lium Hydro	xide Presen	ved Plac	tic STP -	Sadium	nlogulf-t-	Tim	b :	
eted by; ed by:	Class,	4 - Zinc Acetaté Pre	eserved Bottle; E = ED	A Preserved Bottles; S	itric Preserved ORC; SH = Sodium eserved Amber Glass; H ≈ HCl Pre = Sterile Bottle; UA = Unpreserved	d Amber Glass; L=Lugo	HCI Preserve l's lodine pr	ed Special eserved	ation Bottle white plasti	: SP = Sul c bottle; SV	phuric Prese V= sulfuric a	erved Pl acid pres	astic; served wic	le mouth g	позилате р lass jar	reserved p	lastic;	

S17776_COC_PSI

CERTIFICATE OF ANALYSIS

Work Order : **ES2002829**

52002023

Client : SENVERSA PTY LTD
Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street Address : 277-289 W

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

Order number : ---C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 2

No. of samples analysed : 2

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020 15:43

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 5

Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

Page : 3 of 5
Work Order : ES2002829

Client : SENVERSA PTY LTD

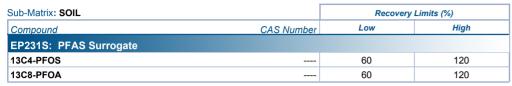
Project : S17776 PSI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ID011_SD01	ID011_SD02	 	
	C	lient samplii	ng date / time	21-Jan-2020 00:00	21-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002829-001	ES2002829-002	 	
•				Result	Result	 	
EA055: Moisture Content (Dried @ 105	-110°C)						
Moisture Content		0.1	%	15.5	4.0	 	
EP231A: Perfluoroalkyl Sulfonic Acids							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0003	0.0005	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0008	0.0051	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	 	
EP231B: Perfluoroalkyl Carboxylic Ac	ids						
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	 	
EP231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	 	

Page : 4 of 5
Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI


Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ID011_SD01	ID011_SD02	 	
	C	lient samplii	ng date / time	21-Jan-2020 00:00	21-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002829-001	ES2002829-002	 	
				Result	Result	 	
EP231C: Perfluoroalkyl Sulfonamide	es - Continued						
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	 	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	 	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	 	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	 	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	 	
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids						
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	 	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	 	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	 	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	 	
EP231P: PFAS Sums							
Sum of PFAS		0.0002	mg/kg	0.0011	0.0056	 	
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.0011	0.0056	 	
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0011	0.0056	 	
EP231S: PFAS Surrogate							
13C4-PFOS		0.0002	%	111	96.0	 	
13C8-PFOA		0.0002	%	118	108	 	

Page : 5 of 5
Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002829** Page : 1 of 4

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 2

Order number : --- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis 10 04-Feb-2020 11-Mar-2020 11-Mar-2020 11-Mar-2020	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)								
HDPE Soil Jar (EA055) ID011_SD01,	ID011_SD02	21-Jan-2020				30-Jan-2020	04-Feb-2020	√
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X) ID011_SD01,	ID011_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X) ID011_SD01,	ID011_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X) ID011_SD01,	ID011_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE Soil Jar (EP231X) ID011_SD01,	ID011_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	√
EP231P: PFAS Sums								
HDPE Soil Jar (EP231X) ID011_SD01,	ID011_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓

Page : 3 of 4 Work Order ES2002829

Client SENVERSA PTY LTD

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: x = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification								
Quality Control Sample Type	C	ount		Rate (%)		Quality Control Specification				
Analytical Methods	Method	OC Reaular		Actual	Expected	Evaluation				
Laboratory Duplicates (DUP)										
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Matrix Spikes (MS)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4
Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS in solid matrices	ORG73	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : ES2002829

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number : ----

C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site · ---

Quote number : SY/665/19

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
A055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2834264)								
ES2002810-014	Anonymous	EA055: Moisture Content		0.1	%	13.6	13.8	1.85	0% - 20%	
ES2002812-010	Anonymous	EA055: Moisture Content		0.1	%	13.0	12.1	7.14	0% - 20%	
P231A: Perfluoroa	Ikyl Sulfonic Acids (QC	Lot: 2833566)								
S2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
S2002824-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0015	0.0020	23.7	No Limit	
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
P231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833566)								
ES2002812-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	

Page : 3 of 7
Work Order : ES2002829

Client : SENVERSA PTY LTD

EP231E Perfluoroality Cerboxylle Acids (QC Lot: 283566) continued	Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
E82002812-001 Ananymous	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-86-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No.	EP231B: Perfluoroa	alkyl Carboxylic Acids((QC Lot: 2833566) - continued							
EP231K Perfluorotalensis add (PFEA) 375-224 0.001 mg/kg <0.0002 <0.0002 0.00 No No	ES2002812-001	Anonymous	EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
ES2002824-001 Anonymous			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X Perfluorohexanoic acid (PFHxA)			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X: Perfluoroteptanole acid (PFHpA)	ES2002824-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X Perfluorooctanoic acid (PFOA)			EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X			EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorodecanoic acid (PFDA) 338-76-2 0.0002 mg/kg <0.0002 <0.0002 0.00 No			EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0002	0.0002	0.00	No Limit
EP231X: Perfluorododecanoic acid (PFUnDA)			EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorodecanoic acid (PFDDA) 307-55-1 0.0002 mg/kg <0.0002 <0.0002 0.000 0.00 No			EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluoroindecandic acid (PFTDA) 72629-94-8 0.0002 mg/kg <0.0002 <0.0002 0.000 0.00 No eP231X: Perfluoroitetradecanoic acid (PFTDA) 376-07 0.0005 mg/kg <0.0005 <0.0005 <0.0005 0.00 No eP231X: Perfluoroitetradecanoic acid (PFTEDA) 376-07 0.0005 mg/kg <0.0005 <0.0005 <0.0005 0.00 No eP231X: Perfluoroitetradecanoic acid (PFBA) 376-07 0.0005 mg/kg <0.001 <0.001 <0.001 0.000 No eP231X: Perfluoroitetradecanoic acid (PFBA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No eP231X: Nethyl perfluoroitetrade 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0005 <0.0005 0.00 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 2355-31-9 0.0005 mg/kg <0.0005 <0.0005 0.000 No eP231X: Nethyl perfluoroitetrade 0.0005 0.0005 0.0005 0.0005 0			EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorotetradecanoic acid (PFTeDA) 376-06-7 0.0005 mg/kg < 0.0005 < 0.0005 0.000 No			EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: Perfluorobutanoic acid (PFBA) 375-224 0.001 mg/kg <0.001 <0.001 <0.001 0.00 No			EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231C Perfluoroalky Sulfonamides (QC Lot: 2833566)			EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002812-001			EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide sulfonamide (EIFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EIFOSA)	EP231C: Perfluoroal	Ikyl Sulfonamides (QC	Lot: 2833566)							
Sulfonamidoacetic acid (MeFOSAA)	ES2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No No			EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
Sulfonamidoacetic acid (EIFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) Sulfonamidoacetic acid (EIFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (EIFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (EIFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (EIFOSAA) Sulfonamidoacetic			sulfonamidoacetic acid (MeFOSAA)							
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide (FOSA) EP231X: N-Ethyl perfluorooctane sulfonamide (EFOSA)		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit	
Comparison			sulfonamidoacetic acid (EtFOSAA)							
EP231X: N-Ethyl perfluorooctane sulfonamide			EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (MeFOSE)			(MeFOSA)							
EP231X: N-Methyl perfluorooctane 24448-09-7 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (MeFOSE)			EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
Sulfonamidoethanol (MeFOSE) Sulfonamidoethanol (MeFOSE) EP231X: N-Ethyl perfluorooctane 1691-99-2 0.0005 mg/kg <0.0005 <0.0005 0.000 No sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSE) Sulfonamidoethanol (EtFOSA) T54-91-6 0.0002 mg/kg <0.0002 <0.0002 0.000 No sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (MeFOSAA) Sulfonamidoacetic acid (EtFOSAA) Sulfonamido			(EtFOSA)							
EP231X: N-Ethyl perfluorooctane sulfonamide (FOSA) T54-91-6 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoethanol (EtFOSE)			EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001 Anonymous EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No Sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.0005 0.000 No No Sulfonamide Sulfonami			sulfonamidoethanol (MeFOSE)							
ES2002824-001 Anonymous EP231X: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA) EP231X: N-Methyl perfluorooctane 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane 2991-50-6 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide 31506-32-8 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (MeFOSA) EP231X: N-Ethy			, .	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide 2355-31-9 0.0002 mg/kg <0.0002 <0.0002 0.00 No sulfonamidoacetic acid (MeFOSAA)	E0000004 004			754040	0.0000	,	2 2222	0.000	2.22	N
sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002	ES2002824-001	Anonymous								No Limit
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) 2991-50-6 0.0002 mg/kg <0.0002			, .	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
sulfonamidoacetic acid (EtFOSAA) EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005 0.0005 0.00 No				2004 50 6	0.0000	ma/lra	<0.0002	<0.0000	0.00	No Limit
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 31506-32-8 0.0005 mg/kg <0.0005			, .	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	NO LITTIL
(MeFOSA) (MeFOSA) EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005			, ,	31506 32 8	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
EP231X: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0005 mg/kg <0.0005 <0.0005 0.00 No			, .	31300-32-6	0.0003	mg/kg	~0.0003	~ 0.0003	0.00	NO LITTIL
a a six in a siy, pointed contains contained				4151-50-2	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
			(EtFOSA)	1101 30 2	3.0000				0.00	THO EITH
			,	24448-09-7	0.0005	ma/ka	<0.0005	<0.0005	0.00	No Limit
sulfonamidoethanol (MeFOSE)			• •			J g				
			` '	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
sulfonamidoethanol (EtFOSE)						3 3				

Page : 4 of 7
Work Order : ES2002829

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL						Laboratory I	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231D: (n:2) Fluor	otelomer Sulfonic Acids	(QC Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit

Page : 5 of 7
Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283356	6)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	86.4	70.0	130
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	107	70.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	84.4	70.0	130
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	127	70.0	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2833	3566)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	118	70.0	130
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	103	70.0	130
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	82.0	70.0	130
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	87.6	70.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.2	70.0	130
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	81.6	70.0	130
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	121	70.0	130
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	109	70.0	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833566	5)							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	89.4	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	84.8	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	70.4	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	112	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	109	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833566)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	74.8	70.0	130

Page : 6 of 7

Work Order : ES2002829

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot	: 2833566) - continue	ed							
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	85.2	70.0	130	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	89.6	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	119	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	96.8	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	83.2	50.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	97.2	50.0	130
P231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	120	30.0	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	121	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	103	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	93.2	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	95.6	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	93.6	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	92.0	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	118	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	71.6	30.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	97.8	30.0	130
231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	116	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.00312 mg/kg	89.4	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	111	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	87.3	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	78.7	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	126	30.0	130

Page : 7 of 7
Work Order : ES2002829

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2833566) - continued						
ES2002812-001	Anonymous	EP231X: N-Ethyl perfluorooctane sulfonamidoacetic 2 acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	130	30.0	130
EP231D: (n:2) Fluc	protelomer Sulfonic Acids (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 7	757124-72-4	0.00125 mg/kg	102	50.0	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00125 mg/kg	86.8	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00125 mg/kg	89.2	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00125 mg/kg	111	50.0	130

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2002830 Work Order

: SENVERSA PTY LTD Client Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Kent Street

SYDNEY NSW 2000

E-mail

: lucinda.trickey@senversa.com.au : Brenda.Hong@ALSGlobal.com Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555

Facsimile Facsimile : +61 03 9606 0074 : +61-2-8784 8500

Project : S17776 PSI Page · 1 of 3

Order number Quote number : ES2019SENVER0020 (SY/665/19) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

E-mail

Date Samples Received : 29-Jan-2020 16:45 : 29-Jan-2020 Issue Date Scheduled Reporting Date : 03-Feb-2020 Client Requested Due 03-Feb-2020

Date

Delivery Details

Mode of Delivery Security Seal : Undefined Intact.

No. of coolers/boxes **Temperature** : 27.9'C - Ice Bricks present

Receipt Detail No. of samples received / analysed : 3/3

General Comments

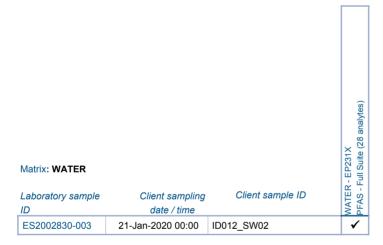
This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 3 ES2002830 Amendment 0 Work Order Client : SENVERSA PTY LTD


Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time EP231X (solids) component OIL - EA055-103 **Aoisture Content** Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES2002830-001 21-Jan-2020 00:00 ID012_SD01 ES2002830-002 21-Jan-2020 00:00 ID012_SD02

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 29-Jan-2020

Page

3 of 3 ES2002830 Amendment 0 Work Order Client : SENVERSA PTY LTD

Requested Deliverables

- A4 - AU Tax Invoice (INV)

CLIDICTORII		
CHRISTOPH	FR SANDIFORD	ı

CHRISTOPHER SANDIFORD		
- *AU Certificate of Analysis - NATA (COA)	Email	christopher.sandiford@senversa.co
		m.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	christopher.sandiford@senversa.co
		m.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	christopher.sandiford@senversa.co
		m.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	christopher.sandiford@senversa.co
		m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co
,		m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co
		m.au
LUCINDA TRICKEY		III.au
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
		, •
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		

Email

supplieraccounts@senversa.com.a

Chain of Custody Documentation

						r					Analysis Required	Comments:
De-1 44					ALS NSW	ald	~ T	-T				Comments:
versa Pty Ltd r.senversa.com.au	11				277-289 Woodpark Road, Smithfi Brenda Hong		Analytes)				1 1 1 1	
89 132 231 380	≚				02 8784 8515	ì	la la	1		1		1 1
				Filotie.			8	- }	İ			1 1
			17776	Purchase Order:			Suite (28	Ì		Ì		
lumber:				Quote No:	SY-665-19 V	2	S	Ì		į į		· ·
ect Name:			PSI		Standar	a\ ∣	4	1	l			
pled By:		L	T/CW	Turn Around Time:			PFAS - Full		!	Ì		
ect Manager:		Lucine	da Trickey	Page:		of \		- 1	Ì	1		
_		lucinda trickevi	@senversa.com.au	Phone/Mobile:	+61 424 172 0		EP231X		1	Ì		
il Report To:		Sample Informat			Container Inform	nation	P2	1	l			
		Matrix *	Date	Time	Type / Code	Total Bottles	- "- +		_+			
ab ID	Sample ID	<u> </u>	21-1-20			<u> </u>	- Z-}					
100	12 - SDOI		21-1-20	\			X	+		-+-	_ 	
100		>				2	$\perp X \perp$					
100	12_ SNO2	<u></u>	21-1-20	+						L	_ 	+
	·			 					_[_			
					ļ							
			\				-				Employ	
						<u> </u>	├─ ─┼	-+			Environmental Division	
							 	+		_	Sydney Work Order Reference ES2002830	
											Work Order Reference	
				+			•				ES2002830	+-+
					+				1	1		 -
					 					7	11 11 11 11 11 11 11 11 11 11 11 11 11	
						 	-			-		
				· .						7		
						ļ	<u></u>			+		
		 					-			7	三 化聚戊烷 医皮肤 医多二氏	
		 		+		Ì	<u> </u>			Te	Menhana	-
_\	<u> </u>			 						i	elephone: + 61-2-8784 8555	
					`							
		l										
						+	-					1
						- 1 400 - 1 UKWASEN	THE STATE OF		in date in	gara a		
3		ANTO LINE COL					0					Date: 11 / 20
tal				Sonversa standard pro-	cedures and/or project	Sampler Name	:	Lucinda	a.Trickey	[Signature Quality	1 1-1-2U.
mpler: I attest t	that proper field same ere used during the c	pling procedures	samples:	Senversa standard pro-		_1						
ecifications we	ere used during the c	one date is a second			Method of Shipment (if a	pplicable):			Receive		Valen	Date: 24/\120
linquished By:	·	In Thisteen		Date: 24/01	Carrier / Reference #:				Name/S Of:	ignature:	(J) 1	Time: 16:45
me/Signature:		Lucinda Trickey Senversa		Time: 4:00	Date/Time:							Date:
		Senversa		Date:	Carrier / Reference #:				Of:	ignature		Time:
ame/Signature:				Time:	Date/Time:					ignature		Date:
f:				Date:	Carrier / Reference #:			· ·			·	Time:
lame/Signature:				Time	Date/Time:	lium Hudravida /NaC	H)/Cadmin	m (Cd) Pr	eserved: \$	S = Sodiu	m Hydroxide Preserved Plastic; STH = Sodlum SP = Sulphuric Preserved Plastic; bottle; SW= sulfuric acid preserved wide mouth	thiosulfate preserved plastic;
rf:			N Nitria Apid (HNO) Preserved Plastic: ORC =	Nitric Preserved ORC; SH = Sor Preserved Amber Glass; H = HC ST = Sterile Bottle; UA = Unpres	Julii riyuloxide (Nac	. poadino	(,	Consisting	a Dottle:	SP = Sulphuric Preserved Plastic; bottle; SW= sulfuric acid preserved wide mouth	

Completed by: _____

\$17776_COC_F

CERTIFICATE OF ANALYSIS

Work Order : ES2002830

: SENVERSA PTY LTD Contact : LUCINDA TRICKEY

Address Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 : S17776 PSI **Project**

Order number C-O-C number

Client

Sampler : LUCINDA TRICKEY

Site

Quote number : SY/665/19

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555 **Date Samples Received** : 29-Jan-2020 16:45

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020 16:40

Sydney Organics, Smithfield, NSW

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Franco Lentini

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW

LCMS Coordinator

Page : 2 of 7

Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

Page : 3 of 7
Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ID012_SD01	ID012_SD02	 	
· · · · · · · · · · · · · · · · · · ·	C	lient samplii	ng date / time	21-Jan-2020 00:00	21-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002830-001	ES2002830-002	 	
Compound	07.07.14		-	Result	Result	 	
EA055: Moisture Content (Dried @ 10	5-110°C)						
Moisture Content		0.1	%	84.1	81.8	 	
EP231A: Perfluoroalkyl Sulfonic Acid	e						
Perfluorobutane sulfonic acid	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	 	
(PFBS)	0.0.00						
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0041	0.0020	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0167	0.0090	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	 	
EP231B: Perfluoroalkyl Carboxylic A	cids						
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.001	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0006	<0.0006	 	
EP231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0006	<0.0006	 	

Page : 4 of 7
Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

,	CAS Number	ient samplin LOR	g date / time	21-Jan-2020 00:00	21-Jan-2020 00:00		
,		LOR	1.1.24		21-Jan-2020 00.00	 	
	an and		Unit	ES2002830-001	ES2002830-002	 	
	arred.			Result	Result	 	
EP231C: Perfluoroalkyl Sulfonamides - Conti							
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg	<0.0006	<0.0006	 	
sulfonamide (EtFOSA)							
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0006	<0.0006	 	
sulfonamidoethanol (MeFOSE)							
N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0006	<0.0006	 	
sulfonamidoethanol (EtFOSE)	2255 24 0	0.0002	mg/kg	<0.0002	<0.0002	 	
N-Methyl perfluorooctane sulfonamidoacetic acid	2355-31-9	0.0002	ilig/kg	<0.0002	<0.0002	 	
(MeFOSAA)							
N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	 	
sulfonamidoacetic acid	200.000		3 3				
(EtFOSAA)							
EP231D: (n:2) Fluorotelomer Sulfonic Acids	;						
	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	 	
(4:2 FTS)							
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	 	
(6:2 FTS)		0.0005		0.0005	0.0005		
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	 	
(8:2 FTS)	100000 00 0	0.0005	ma/ka	<0.0005	<0.0005		
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	 	
EP231P: PFAS Sums							
Sum of PFAS		0.0002	mg/kg	0.0208	0.0120	 	
	16-4/1763-23-	0.0002	mg/kg	0.0208	0.0110	 	
000 4	1		3 3				
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0208	0.0120	 	
EP231S: PFAS Surrogate							
13C4-PFOS		0.0002	%	94.5	104	 	
13C8-PFOA		0.0002	%	116	115	 	

Page : 5 of 7
Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

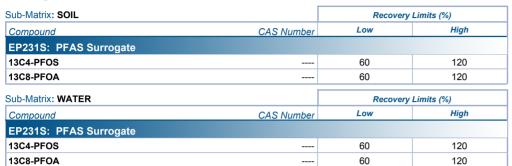
Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ID012_SW02	 	
	CI	ient sampli	ng date / time	21-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002830-003	 	
				Result	 	
P231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid	375-73-5	0.02	μg/L	<0.02	 	
(PFBS)						
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	0.08	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.10	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	 	
P231B: Perfluoroalkyl Carboxylic Acid	s					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	 	
P231C: Perfluoroalkyl Sulfonamides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	 	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	 	

Page : 6 of 7

Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI



Page : 7 of 7
Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002830** Page : 1 of 5

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 3
Order number : ---- No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorohexane	355-46-4	Not		MS recovery not determined,
			sulfonic acid		Determined		background level greater than or
			(PFHxS)				equal to 4x spike level.
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	Anonymous	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: **×** = Holding time breach; **√** = Within holding time.

Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)									
HDPE Soil Jar (EA055) ID012_SD01,	ID012_SD02	21-Jan-2020				30-Jan-2020	04-Feb-2020	✓	
EP231A: Perfluoroalkyl Sulfonic Acids									
HDPE Soil Jar (EP231X) ID012_SD01,	ID012_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	1	31-Jan-2020	11-Mar-2020	✓	
EP231B: Perfluoroalkyl Carboxylic Acids									
HDPE Soil Jar (EP231X) ID012_SD01,	ID012_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓	
EP231C: Perfluoroalkyl Sulfonamides									
HDPE Soil Jar (EP231X) ID012_SD01,	ID012_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	1	31-Jan-2020	11-Mar-2020	√	
EP231D: (n:2) Fluorotelomer Sulfonic Acids									
HDPE Soil Jar (EP231X) ID012_SD01,	ID012_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	1	31-Jan-2020	11-Mar-2020	√	
EP231P: PFAS Sums									
HDPE Soil Jar (EP231X) ID012_SD01,	ID012_SD02	21-Jan-2020	31-Jan-2020	19-Jul-2020	✓	31-Jan-2020	11-Mar-2020	✓	

Matrix: **WATER**Evaluation: **×** = Holding time breach ; ✓ = Within holding time.

Page : 3 of 5
Work Order : ES2002830

Client : SENVERSA PTY LTD

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X) ID012_SW02	21-Jan-2020	30-Jan-2020	19-Jul-2020	✓	31-Jan-2020	19-Jul-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X) ID012_SW02	21-Jan-2020	30-Jan-2020	19-Jul-2020	✓	31-Jan-2020	19-Jul-2020	✓
EP231C: Perfluoroalkyl Sulfonamides							
HDPE (no PTFE) (EP231X) ID012_SW02	21-Jan-2020	30-Jan-2020	19-Jul-2020	✓	31-Jan-2020	19-Jul-2020	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE (no PTFE) (EP231X) ID012_SW02	21-Jan-2020	30-Jan-2020	19-Jul-2020	✓	31-Jan-2020	19-Jul-2020	√
EP231P: PFAS Sums							
HDPE (no PTFE) (EP231X) ID012_SW02	21-Jan-2020	30-Jan-2020	19-Jul-2020	✓	31-Jan-2020	19-Jul-2020	✓

Page : 4 of 5 Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5

Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS in solid matrices	ORG73	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : **ES2002830**

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number : ----

C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 10

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Franco Lentini
 LCMS Coordinator
 Sydney Inorganics, Smithfield, NSW

 Franco Lentini
 LCMS Coordinator
 Sydney Organics, Smithfield, NSW

Page : 2 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2834265)							
ES2002886-001	Anonymous	EA055: Moisture Content		0.1	%	1.0	1.4	28.0	0% - 50%
EP231A: Perfluoroa	lkyl Sulfonic Acids (Q0	C Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
ES2002824-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0015	0.0020	23.7	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
P231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit

Page : 3 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P231B: Perfluoroa	Ilkyl Carboxylic Acids	(QC Lot: 2833566) - continued							
ES2002812-001	Anonymous	EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
ES2002824-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0002	0.0002	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
P231C: Perfluoroal	lkyl Sulfonamides (QC	Lot: 2833566)							
ES2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
	, , , , , , ,	EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)			0 0				
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit

Page : 4 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL						Laboratory I	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231D: (n:2) Fluor	rotelomer Sulfonic Aci	ds (QC Lot: 2833566) - continued							
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
	Client sample ID D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot 2812-001 Anonymous EP2 EP2 EP2 EP2 EP2 EP2 EP2 EP	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ES2002824-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
Sub-Matrix: WATER		,				Laboratory I	Duplicate (DUP) Report		·
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	lkyl Sulfonic Acids (Q							, ,	
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833090)							
ES2002831-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231C: Perfluoroa	lkvl Sulfonamides (Q0								1
ES2002831-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
	1,	Li 2017. I efficiolociane sunonamice (I OSA)		0.02	ra -	0.02	0.02	0.00	

Page : 5 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2833090) - continued							
ES2002831-001	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
EP231D: (n:2) Fluoi	rotelomer Sulfonic Acid	ds (QC Lot: 2833090)							
ES2002831-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit
EP231P: PFAS Sum	s (QC Lot: 2833090)								
ES2002831-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.00	No Limit

Page : 6 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283356	6)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	86.4	70.0	130
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	107	70.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	84.4	70.0	130
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	127	70.0	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2833	3566)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	118	70.0	130
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	103	70.0	130
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	82.0	70.0	130
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	87.6	70.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	83.2	70.0	130
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.2	70.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	81.6	70.0	130
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	121	70.0	130
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	78.4	70.0	130
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	109	70.0	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833566	5)							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	89.4	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	84.8	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	70.4	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	112	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	109	70.0	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833566)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	76.4	70.0	130
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	74.8	70.0	130

Page : 7 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL				Method Blank (MB) Report		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833566) - continued							
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	85.2	70.0	130
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	6) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 283309	0)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	103	72.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	107	71.0	127
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	104	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	113	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	105	65.0	140
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	108	53.0	142
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 283	3090)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	108	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	120	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	117	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	122	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	101	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	119	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	117	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	118	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	106	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	90.7	71.0	132
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833090	D)							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	115	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	115	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	117	70.0	130
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	119	65.0	136
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	833090)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	111	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	120	67.0	140

Page : 8 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
		Report	Spike	Spike Recovery (%)	Recovery Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 28	833090) - continu	ed						
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	122	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	127	70.0	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	89.6	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	119	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	96.8	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	83.2	50.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	97.2	50.0	130
P231B: Perfluor	palkyl Carboxylic Acids (QCLot: 28335	566)					
S2002812-001	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	120	30.0	130
	_	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	121	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	103	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	93.2	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	95.6	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	93.6	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	92.0	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	118	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	106	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	71.6	30.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	97.8	30.0	130
P231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833566)						
S2002812-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	116	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.00312 mg/kg	89.4	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	111	30.0	130
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.00312 mg/kg	87.3	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.00312 mg/kg	78.7	30.0	130

Page : 9 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833566) - continued						
ES2002812-001	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.00125 mg/kg	126	30.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.00125 mg/kg	130	30.0	130
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2833566)						
ES2002812-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00125 mg/kg	102	50.0	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00125 mg/kg	86.8	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00125 mg/kg	89.2	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00125 mg/kg	111	50.0	130
Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	oalkyl Sulfonic Acids (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 μg/L	105	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.25 μg/L	103	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	# Not Determined	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	120	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	# Not Determined	50.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	121	50.0	130
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	113	50.0	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	123	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	123	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	121	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	98.0	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	120	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	113	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	113	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	114	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	106	50.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 µg/L	88.0	50.0	150
EP231C: Perfluoro	oalkyl Sulfonamides (QCLot: 2833090)						
ES2002831-002	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	121	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	123	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 µg/L	103	50.0	150

Page : 10 of 10 Work Order : ES2002830

Client : SENVERSA PTY LTD

Sub-Matrix: WATER		Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID Method: Compound CAS Number				MS	Low	High	
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2833090) - continued							
ES2002831-002	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	130	50.0	150	
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	0.625 μg/L	135	50.0	150		
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	104	50.0	130	
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	0.25 μg/L	98.4	50.0	130		
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2833090)							
ES2002831-002	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	113	50.0	130	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 μg/L	124	50.0	130	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 μg/L	128	50.0	130	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 μg/L	125	50.0	130	

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2002831 Work Order

: SENVERSA PTY LTD Client Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Intact.

Kent Street

SYDNEY NSW 2000

E-mail : lucinda.trickey@senversa.com.au : Brenda.Hong@ALSGlobal.com

Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555 Facsimile Facsimile : +61 03 9606 0074 : +61-2-8784 8500

Project : S17776 PSI Page · 1 of 2

Order number Quote number : ES2019SENVER0020 (SY/665/19) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

Mode of Delivery

Date Samples Received : 29-Jan-2020 16:45 : 29-Jan-2020 Issue Date Scheduled Reporting Date : 03-Feb-2020 Client Requested Due 03-Feb-2020

Date

E-mail

Delivery Details : Undefined

No. of coolers/boxes **Temperature** : 27.9'C - Ice Bricks present

Security Seal

Receipt Detail No. of samples received / analysed : 2/2

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 2 ES2002831 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will Alkalinity default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, component Matrix: WATER Client sample ID Laboratory sample Client sampling Sa, ID date / time ES2002831-001 22-Jan-2020 00:00 ID013_BORE ES2002831-002 22-Jan-2020 00:00 ID013_SW01

Proactive Holding Time Report

- *AU Certificate of Analysis - NATA (COA)

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

CHRISTOPHER SANDIFORD

		m.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	christopher.sandiford@senversa.co
		m.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	christopher.sandiford@senversa.co
		m.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	christopher.sandiford@senversa.co
		m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co
		m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

Fmail

christopher.sandiford@senversa.co

senversa

Chain of Custody Documentation

Senversa Pty Ltd				Laboratory: ALS NSW				Analysis Required										
www.senve	rsa.com.au			Address: Contact: Phone:	277-289 Woodpark Road, Smit Brenda Hong 02 8784 8515	hfield	EP231X - PFAS - Full Suite (28 Analytes)	+					Anar	ysis Requ	irea		Comments:	
Job Numb	er:	s	17776	Purchase Order:			e (28	~ Y]									
Project Na			PSI	Quote No:	SY-665-19	V2	Suit	5 t										
Sampled E			T/CW	Turn Around Time: 2 DAY TAT			E.	3 5										
Project Ma			da Trickey	Page: of			AS	8 3	,								•	
Email Rep			@senversa.com.au	Phone/Mobile:	+61 424 172		= }	ò										
		Sample Informat		i noncimobile.	Container Infor		231X	श्चि										
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	EP	٤										
	10013_BORE	سي	22-1-20			45	×	×									extra bottles f	6-
	10013-5WOI	Ω	22-1-20			4	X									ļ	lab QC	
								<u> </u>										
											<u> </u>							
									ļ									
			<u> </u>						<u> </u>	<u></u>		I	•	,	_			
									<u> </u>	4	Environ	menta	al Div	ision	_			
		- · · · · · · · · · · · · · · · · · · ·						ļ		<u> </u>	Sydney	!						
				ļ				<u>.</u>	<u> </u>	-	Sydney Work ES	Order	Referei	10e 101	_			
									<u> </u>	—	ES	520	UZC	1 00	_			
								ļ	 	44			=		_			
									├				, 10,7		_			
						-		ļ	ļ		111		L N	2 8 1111	-			
					<u> </u>			ļ	ļ	-		WKK	$\langle \cdot, \cdot \rangle$	\$. TIN				
										—		NV.	<i>ት ነ</i> ሙ					
								_			Telephon	 	-8784 85	55				
· · · · · · · · · · · · · · · · · · ·									-		1 6t9btion	.						
			1		-		4	 			,							
		-	-					 	-						1-		*	
ero estala, e	s Euclus (Mars) - Pri Reg Sport (1 - Berliger	an si ya sa sa sa sa sa sa sa sa sa sa sa sa sa		Lacinimanké security III.		Police et also established in colo	12 + 14 <u>2</u> 1150	eletera ye.	S1 85 F	in a grade die	0.0040.04 20 1.00	rin, a la Pint	T7-20-895.0	orationes	100 1250 524 574	Walasa naw		Sept-agus Se.
Total						Page States and States	0	y OFA and							1			AND SOL
	attest that proper field sampli ons were used during the coll			nversa standard proc	edures and/or project	Sampler Name:		Lucinda	Tricke	ey	Signature	محصر	*	00/	∇	Date:	24/01/20	,
Relinquish				A	Method of Shipment (if app	olicable):				ived by:			<i>7</i>	ΔZ)			
Name/Signature: Lucinda Trickey Date: 14 (0) Of: Senversa Time: 4-90			Carrier / Reference #:				Name/Signature: \(\Omega(\omega)\)					<u></u>	Date: 29/1/20					
Of: Senversa Time: Name/Signature: Date:			Date:	Date/Time: Carrier / Reference #:				Of: Name	(Signatur	_			<i></i>			Time: אַנ נוּאַל Date:		
			Time:	Date/Time:				Of:	Joignatur							Time:		
Name/Signature: Date:			 	Carrier / Reference #:				Name	e/Signatur	B:						Date:		
Of:		***		Time:	Date/Time:				Of:	_							Time:	
	Water Container Codes: P = Un V = VOA Vial Hydochloric Acid (HC F = Formaldehyde Preserved Glass	Preserved; VS = \(\)	OA Vial Sulphuric Prese	erved; VSA = Sulphuric F	reserved Amber Glass; H = HCl P	reserved Plastic; HS	= HCI P	reserved :	Speciat	tion Bottle;	SP = Sulphur	ric Presen	ed Plastic	;			/ed plastic;	

Completed by: _____ Checked by: _____

CERTIFICATE OF ANALYSIS

Work Order : ES2002831

Client : SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

Order number : ---C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 29-Jan-2020

Issue Date : 03-Feb-2020 09:14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Page : 3 of 6
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	ID013_BORE	ID013_SW01	 	
	Cli	ient samplii	ng date / time	22-Jan-2020 00:00	22-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002831-001	ES2002831-002	 	
				Result	Result	 	
D037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1		 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1		 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	52		 	
Total Alkalinity as CaCO3		1	mg/L	52		 	
:D041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	20		 	
D045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	237		 	
D093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	16		 	
Magnesium	7439-95-4	1	mg/L	22		 	
Sodium	7440-23-5	1	mg/L	114		 	
Potassium	7440-09-7	1	mg/L	4		 	
N055: Ionic Balance			<u> </u>				
Total Anions		0.01	meg/L	8.14		 	
Total Cations		0.01	meq/L	7.67		 	
Jonic Balance		0.01	%	2.98		 	
		0.01	70	2.00			
P231A: Perfluoroalkyl Sulfonic Acids	275 72 5	0.02	μg/L	<0.02	0.14		l
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	\0.02	0.14	 	
Perfluoropentane sulfonic acid	2706-91-4	0.02	μg/L	<0.02	0.17	 	
(PFPeS)	2700-91-4	0.02	µg/L	0.02	V		
Perfluorohexane sulfonic acid	355-46-4	0.02	μg/L	<0.02	1.72	 	
(PFHxS)	000 10 4		"				
Perfluoroheptane sulfonic acid	375-92-8	0.02	μg/L	<0.02	0.14	 	
(PFHpS)			'-				
Perfluorooctane sulfonic acid	1763-23-1	0.01	μg/L	<0.01	2.78	 	
(PFOS)							
Perfluorodecane sulfonic acid	335-77-3	0.02	μg/L	<0.02	<0.02	 	
(PFDS)							
P231B: Perfluoroalkyl Carboxylic Acid	ls						
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.03	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.14	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.03	 	

Page : 4 of 6
Work Order : ES2002831

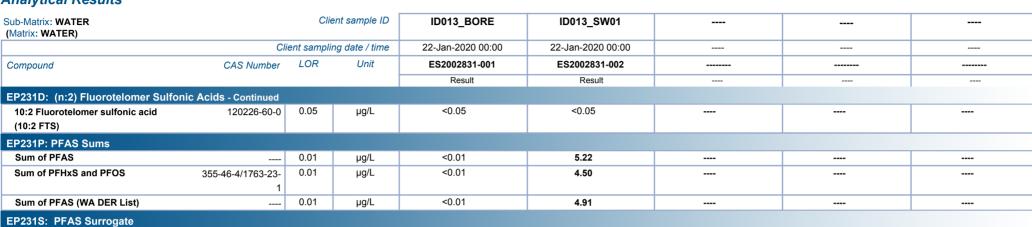
Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	ID013_BORE	ID013_SW01	 	
•	Cli	ient samplii	ng date / time	22-Jan-2020 00:00	22-Jan-2020 00:00	 	
ompound	CAS Number	LOR	Unit	ES2002831-001	ES2002831-002	 	
				Result	Result	 	
P231B: Perfluoroalkyl Carboxylic A	cids - Continued						
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.07	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	 	
P231C: Perfluoroalkyl Sulfonamides	;						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	 	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	 	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	 	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	 	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	 	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	 	
P231D: (n:2) Fluorotelomer Sulfoni	c Acids						
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	 	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	 	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	 	

Page : 5 of 6 Work Order : ES2002831


Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

13C4-PFOS

13C8-PFOA

113

106

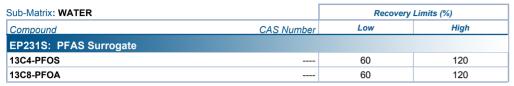
102

110

0.02

0.02

%



Page : 6 of 6
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002831** Page : 1 of 5

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 2
Order number : ---- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	ID013_SW01	Perfluorohexane	355-46-4	Not		MS recovery not determined,
			sulfonic acid		Determined		background level greater than or
			(PFHxS)				equal to 4x spike level.
EP231A: Perfluoroalkyl Sulfonic Acids	ES2002831002	ID013_SW01	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

MORE TO THE CONTRACT OF THE CO						
Method	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
ED093F: Dissolved Major Cations						
Clear Plastic Bottle - Natural						
ID013_BORE				31-Jan-2020	29-Jan-2020	2

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: x = Holding time breach: √ = Within holding time

atrix: WATER Evaluation: * = Holding time breach, * = Within Holding time									
Method	Sample Date	Ex	traction / Preparation			Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
ED037P: Alkalinity by PC Titrator									
Clear Plastic Bottle - Natural (ED037-P) ID013_BORE	22-Jan-2020				29-Jan-2020	05-Feb-2020	✓		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Clear Plastic Bottle - Natural (ED041G) ID013_BORE	22-Jan-2020				30-Jan-2020	19-Feb-2020	✓		
ED045G: Chloride by Discrete Analyser									
Clear Plastic Bottle - Natural (ED045G) ID013_BORE	22-Jan-2020				30-Jan-2020	19-Feb-2020	✓		
ED093F: Dissolved Major Cations									
Clear Plastic Bottle - Natural (ED093F) ID013_BORE	22-Jan-2020				31-Jan-2020	29-Jan-2020	*		

Page : 3 of 5
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X) ID013_BORE,	ID013_SW01	22-Jan-2020	30-Jan-2020	20-Jul-2020	✓	31-Jan-2020	20-Jul-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X) ID013_BORE,	ID013_SW01	22-Jan-2020	30-Jan-2020	20-Jul-2020	✓	31-Jan-2020	20-Jul-2020	✓
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X) ID013_BORE,	ID013_SW01	22-Jan-2020	30-Jan-2020	20-Jul-2020	✓	31-Jan-2020	20-Jul-2020	√
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE (no PTFE) (EP231X) ID013_BORE,	ID013_SW01	22-Jan-2020	30-Jan-2020	20-Jul-2020	✓	31-Jan-2020	20-Jul-2020	√
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X) ID013_BORE,	ID013_SW01	22-Jan-2020	30-Jan-2020	20-Jul-2020	✓	31-Jan-2020	20-Jul-2020	✓

Page : 4 of 5 Work Order ES2002831

Client SENVERSA PTY LTD

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	1	200.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	1	200.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5

Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : ES2002831

Client : SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number · ----

C-O-C number · ----

Sampler : LUCINDA TRICKEY

Site · ___

Quote number : SY/665/19

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 29-Jan-2020

Issue Date : 03-Feb-2020

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
ED037P: Alkalinity	by PC Titrator (QC Lot:	2832176)									
ES2002603-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	696	697	0.00	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	696	697	0.00	0% - 20%		
ES2002744-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	27	28	6.68	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	27	28	6.68	0% - 20%		
ED041G: Sulfate (T	urbidimetric) as SO4 2-	by DA (QC Lot: 2833751)									
ES2002831-001	ID013_BORE	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	20	20	0.00	0% - 20%		
ED045G: Chloride b	y Discrete Analyser (C	IC Lot: 2833752)									
ES2002831-001	ID013_BORE	ED045G: Chloride	16887-00-6	1	mg/L	237	242	2.02	0% - 20%		
ED093F: Dissolved	Major Cations (QC Lot	: 2834390)									
ES2002111-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	40	40	0.00	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	26	25	0.00	0% - 20%		
		ED093F: Sodium	7440-23-5	1	mg/L	62	61	0.00	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	9	8	0.00	No Limit		
ES2002822-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	6	6	0.00	No Limit		
		ED093F: Magnesium	7439-95-4	1	mg/L	13	13	0.00	0% - 50%		
		ED093F: Sodium	7440-23-5	1	mg/L	88	86	2.58	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.00	No Limit		
EP231A: Perfluoroa	ılkyl Sulfonic Acids (Q0	C Lot: 2833090)									
ES2002831-001	ID013_BORE	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit		
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit		

Page : 3 of 7
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	lkyl Sulfonic Acids (Q	C Lot: 2833090) - continued							
ES2002831-001	ID013_BORE	EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
	_	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2833090)							
ES2002831-001	ID013_BORE	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
	_	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231C: Perfluoroa	lkyl Sulfonamides (Q0								
ES2002831-001	ID013 BORE	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)			15				
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
EP231D: (n:2) Fluo	rotelomer Sulfonic Aci	ds (QC Lot: 2833090)							
ES2002831-001	ID013_BORE	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)					_	_	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
EP231P: PFAS Sum	s (QC Lot: 2833090)								

Page : 4 of 7
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP231P: PFAS Sums	(QC Lot: 2833090) - contin	ued										
ES2002831-001	ID013_BORE	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.00	No Limit			

Page : 5 of 7
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR Unit		Result	Concentration	LCS	Low	High	
D037P: Alkalinity by PC Titrator (QCLot: 2832176)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	99.6	81.0	111	
					50 mg/L	111	70.0	130	
D041G: Sulfate (Turbidimetric) as SO4 2- by DA (Q	CLot: 2833751)								
D041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	95.5	82.0	122	
				<1	500 mg/L	102	82.0	122	
ED045G: Chloride by Discrete Analyser (QCLot: 283	3752)								
D045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	110	80.9	127	
				<1	1000 mg/L	102	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 2834390)									
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	104	80.0	114	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	107	90.0	116	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	98.7	82.0	120	
D093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	94.6	85.0	113	
P231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2833	(090)								
P231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	103	72.0	130	
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	107	71.0	127	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	104	68.0	131	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	113	69.0	134	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	105	65.0	140	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	108	53.0	142	
P231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2	833090)								
P231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	108	73.0	129	
P231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	120	72.0	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	117	72.0	129	
P231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	122	72.0	130	
P231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	101	71.0	133	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	119	69.0	130	
P231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	117	71.0	129	
P231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	110	69.0	133	
P231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	118	72.0	134	
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	106	65.0	144	
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	90.7	71.0	132	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 28330	090)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	115	67.0	137	

Page : 6 of 7
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

Sub-Matrix: WATER	Sub-Matrix: WATER						Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833090) - continued											
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130				
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	115	70.0	130				
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	126	70.0	130				
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	117	70.0	130				
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	119	65.0	136				
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	103	61.0	135				
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 26	833090)											
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	111	63.0	143				
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	120	67.0	140				
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	122	67.0	138				
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	127	70.0	130				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

			Ma	trix Spike (MS) Report		
			Spike	SpikeRecovery(%)	Recovery Li	imits (%)
Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
Turbidimetric) as SO4 2- by DA (QCLot: 2833751)						
ID013_BORE	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	95.7	70.0	130
by Discrete Analyser (QCLot: 2833752)						
ID013_BORE	ED045G: Chloride	16887-00-6	250 mg/L	108	70.0	130
oalkyl Sulfonic Acids (QCLot: 2833090)						
ID013_SW01	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 μg/L	105	50.0	130
	EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.25 μg/L	103	50.0	130
	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	# Not	50.0	130
				Determined		
	EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	120	50.0	130
	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	# Not	50.0	130
				Determined		
	EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	121	50.0	130
oalkyl Carboxylic Acids (QCLot: 2833090)						
ID013_SW01	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	113	50.0	130
	Turbidimetric) as SO4 2- by DA (QCLot: 2833751) ID013_BORE by Discrete Analyser (QCLot: 2833752) ID013_BORE palkyl Sulfonic Acids (QCLot: 2833090) ID013_SW01	Turbidimetric) as SO4 2- by DA (QCLot: 2833751) ID013_BORE ED041G: Sulfate as SO4 - Turbidimetric by Discrete Analyser (QCLot: 2833752) ID013_BORE ED045G: Chloride Dalkyl Sulfonic Acids (QCLot: 2833090) EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFPeS) EP231X: Perfluorohexane sulfonic acid (PFHxS) EP231X: Perfluorooctane sulfonic acid (PFHpS) EP231X: Perfluorooctane sulfonic acid (PFDS) EP231X: Perfluorodecane sulfonic acid (PFDS) EP231X: Perfluorodecane sulfonic acid (PFDS)	ID013_BORE	Client sample ID Method: Compound CAS Number Concentration	Client sample ID Method: Compound CAS Number Concentration MS	Client sample ID Method: Compound CAS Number Concentration MS Low

Page : 7 of 7
Work Order : ES2002831

Client : SENVERSA PTY LTD

Project : S17776 PSI

ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 2833090) - continued						
ES2002831-002	ID013_SW01	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	123	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	123	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	121	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	98.0	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	120	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	113	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	113	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	114	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	106	50.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	88.0	50.0	150
P231C: Perfluoro	palkyl Sulfonamides (QCLot: 2833090)						
S2002831-002	ID013_SW01	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	121	50.0	130
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.625 μg/L	123	50.0	150
		(MeFOSA)					
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	103	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	0.625 μg/L	130	50.0	150
		(MeFOSE)					
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol	1691-99-2	0.625 μg/L	135	50.0	150
		(EtFOSE)					
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	104	50.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.25 μg/L	98.4	50.0	130
		acid (EtFOSAA)					
P231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2833090)						
S2002831-002	ID013_SW01	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	113	50.0	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 μg/L	124	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 μg/L	128	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 µg/L	125	50.0	130

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2002833

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Kent Street SYDNEY NSW 2000

E-mail : lucinda.trickey@senversa.com.au E-mail : Brenda.Hong@ALSGlobal.com

Telephone : +61 03 9606 0070 Telephone : +61 2 8784 8555 Facsimile : +61 03 9606 0074 Facsimile : +61-2-8784 8500

Project : S17776 PSI Page : 1 of 2

 Order number
 : --- Quote number
 : ES2019SENVER0020 (SY/665/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : LUCINDA TRICKEY

Dates

Date Samples Received : 29-Jan-2020 16:45 Issue Date : 29-Jan-2020 Client Requested Due : 03-Feb-2020 Scheduled Reporting Date : 03-Feb-2020

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Not Available

No. of coolers/boxes : --- Temperature : 27.6'c - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 29-Jan-2020 Issue Date

Page

2 of 2 ES2002833 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date PFAS - Full Suite (28 analytes) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: WATER Client sample ID Laboratory sample Client sampling ID date / time

Proactive Holding Time Report

- *AU Certificate of Analysis - NATA (COA)

Sample(s) have been received within the recommended holding times for the requested analysis.

24-Jan-2020 00:00 FRE_UL_TENDER1

Requested Deliverables

CHRISTOPHER SANDIFORD

ES2002833-001

		III.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	christopher.sandiford@senversa.co
		m.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	christopher.sandiford@senversa.co
		m.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	christopher.sandiford@senversa.co
		m.au
- Chain of Custody (CoC) (COC)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ENMRG (ENMRG)	Email	christopher.sandiford@senversa.co
		m.au
- EDI Format - ESDAT (ESDAT)	Email	christopher.sandiford@senversa.co
		m.au
LUCINDA TRICKEY		
- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au
SUPPLIER ACCOUNTS		, ,
- A4 - AU Tax Invoice (INV)	Email	supplieraccounts@senversa.com.a
		u

Fmail

christopher.sandiford@senversa.co

m.au

Sen	v⊘rsa					Chain	of Custoo	dy Documenta	ation					
Senversa www.senve ABN 89 13	ersa.com.au			Laboratory: Address: Contact: Phone:	ALS NSW 277-289 Woodpark Road, S Brenda Hong 02 8784 8515		Analytes)			Analy	sis Require	ed	Comments:	
Job Numb	er:		S17776	Burchasa Ordan									pure concert.	
Project Na				Purchase Order:			Suite (28,						1	
			PSI	Quote No:	SY-665-1		š			1			}**	٠.
Sampled E		<u>!</u>	LT/CW	Turn Around Time:	stand	and	5 4						1 Concent.	71H
Project Ma		Lucir	nda Trickey	Page:	l	of 1	PFAS						Cor Cor	, -40
Email Rep	ort To:		@senversa.com.au	Phone/Mobile:	+61 424 17	2 065								
Lab ID	Caralla ID	Sample Informat		7	Container Inf	ormation	les III		İ					
Lau ID	Sample ID FIRE_UL_TENDER1	Matrix *	Date	Time	Type / Code	Total Bottl	es û		ļ				İ	
	PINE UM I DIVIVERI	<u> </u>	24/1/20	AM		2	×					- 	NERY HIG	7.7
		<u> </u>		<u> </u>									/ * L N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>
				<u> </u>							-	TX	PEAS	
												-	11000	
												-///-	COMETE	ለ ለጉሙ
												· /	CONCENTI	27//0
											- 		500 HILL)<- -
								- - - - - - - - - - 			 		JEE MSV	<u>'</u>
						 							uchoed.	
							'	. m. dalon	-			·		
						Er	vironmen	ial Division						
		-				s	dney	D-foronce	+			_		
					 -	 	Work Order	Reference 02833	4					
					 		F2570	102000			$\perp \perp \perp$			
		<u> </u>							<u> </u>					
		· · · · · · · · · · · · · · · · · · ·		<u> </u>		 								
			 						<u></u>					
						 								
		 -	 		-	 	10 K.V.	医外型状态[1]]						
			 		 	 	Militar as	BI WILL I SEE						
otal		in Constant	<u> </u>	North to Table / District Committee	Service management of the service of	1	Felephone: +61	-2.8784 6000				7		
	200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg 200 mg				to the state of th	<u> </u>				12 17 LAC	A Maria	Santa Maria		
iampler: I a	ttest that proper field sampling	g procedures in	accordance with Ser	versa standard proc	edures and/or project	Sampler Nam	e: Luc	inda Trickey Sie	gnature:	200000000000000000000000000000000000000				277-37-3
	ns were used during the colle	ction of these sa	mples:						gnature.			Date	:	
telinquishe lame/Signa					Method of Shipment (if ap	plicable):		Received by:						
iaineroigna f:		ucinda Trickey Senversa		Date:	Carrier / Reference #:			Name/Signature:					Date:	
lame/Signa		Deliversa		Time: Date:	Date/Time:	·		Of:					Time:	
ıf:				Time:	Carrier / Reference #: Date/Time:			Name/Signature:					Date:	
ame/Signa	ure:			Date:	Carrier / Reference #:		***	Of:					Time:	
f:				Timo:	Date / Flores			Name/Signature: Of:					Date:	
,	Vater Container Codes: P = Unp / = VOA Vial Hydochloric Acid (HCI)	reserved Plastic; N	= Nitric Acid (HNO ₃) Pre	served Plastic; ORC = N	itric Preserved ORC; SH = Sodiu	m Hydroxide (NaO	H)/Cadmlum (Cd)	Preserved: S = Sodium H	lydroxide Press	ved Diartic CTI	d es Continue "		Time:	
F	/ = VOA Vial Hydochloric Acid (HCI) = Formaldehyde Preserved Glass;	Z = Zinc Acetate Pi	OA VIAI Suiphuric Preser reserved Bottle; E = ED	ved; VSA = Sulphuric Pr [A Preserved Bottles: St	reserved Amber Glass; H = HCI F	Preserved Plastic;	HS = HCI Preserv	ed Speciation Bottle; SP	= Sulphuric Pres	erved Plastic;	i = Sodium th	nosunate pres	erved plastic;	
					Onpreserv	eu Amber Glass; L	Lugors todine pr	eserved white plastic bottl	e; SW= sulfuric	acid preserved v	wide mouth gl	ass jar		

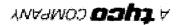
Completed by: _____

ANSULITE 6%AFFF AFC-5

Other Information Calls 133 166

Emergency Telephone No. 133 166 or 000

TAREMAL SAFETY DATA SHEET


Manufacturer's Name

One Stanton, Street Marinette, WI

ANSUL INCORPORATED

	euoN 2	biovs a	Conditions t	ot Occur X	OVI IIIVV	ır	Мау Осси	uc	Hazardous Polymerizatio
.e.	ring fire conditions		Hall Stript of the control of					rākun bile:	Hazardous Decompositio
	_	equipment, or st					_ :		incompatibility (material
	əuoN	- 記述 数 本 単 で 日 棚 に ス	2 :\$435:44 td 15-47 1		Stable		Unstable		gilldist
	N. H. Server		A TOR BEFORE OF THE TOP OF					azards	ZECTION 4 - Physical H
									Explosion Hazards
	•							Jone	& sni3 isuzunU
								ano <i>l</i> i	Special Fire Fighting Procedures
114 11 12 12 12 12 12 12 12 12 12 12 12 12	「原語」如 14 (基語) 日本(A)	TN3DA DNIHSI	4 16 3	Media		- 10 miles (12 h 12 h	oV γd % ηΑ	441	人名英格兰克斯 电电子电阻 · · · · · · · · · · · · · · · · · · ·
A\N qmə	JT noilingl-ofuA	N∀	A 2I 2IHT 19	Extinguishe			Flammable L		Jaio9 dzs14
			60		et odour,	and and the latest	ra i un altra e con 174 de	Straw yellow c	Appearance & Odour
	医乳蛋素酶量	16부 13 16학교(1) 공 <u>원</u>	∀/N			n water	Reactivity in	J eldisciM	Solubility in Water
900 [.]	o.O qqA	그 교육이 그 전기를 받아가 보고를 받아.	Evaporation (Butyl aceta	ι>	il.	ur) (Jis	Asbont Deug	Ca. 95 ∴	Percent Volatile by Volume (%)
etermined 200		(6µ ww) ə.inss	Beallthir.	20.1			Specific Gra	- 6 e - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Boiling Point Percept Volstile by
	July 77-19 23 String for the second s	Commence of the second of the						17.75	SECTION 3 – Physical 8
		A/N		A\V		A\N ava & ania'	A\N 1) solitainoten	sdO-looiss-10-0	
	steU V.	Acute Toxicit		VCGIH TLV	to an employed	MVB CV2 M	%'1M %'1M	化碱基苯甲酰 克斯	Other Component(s)
				ALL DISS.		1200	76 41VA		(2) Inanormo 7 304+0
յկլ/ _w/i	ւլ) LC ₅₀ >310 mg/	Inhalation ya							
3	л ТС >310 шолко О 3200 шолко			wdd ga	ا-5 د.	LÞ-701	5.0		Hexylene Glycol
	~-n	Gre A				V 20-			100mg , ,,
			the second secon	.500mg/m 3 3 500mg/m					
		om) noitsladni) mqq00S:AW1					
	20 1870 mg/kg	Oral (rat) LD,		STEL:250ppm(s		71-23-	2.0		1 - Propanol
/кд	/gm 007S ₀₂ 01 (ji	race it ibilliad		8 (m/gm0392)					
~- ₁ ,	it) FD ^{co} S300 ma _\ ka		mqq0001 :A	WT J39 AH20	0	. ~ =1.1	01	חמראו במיני (בי	····· ································
	04/0m 0553	((464) 0-0	•	mqq003 :AWT	T 2 N	112-34	61	(S) 1901T Ivande	Diethylene Glycol Mono
							ς	stants, inorganic	surfactants, fuorosurfac
and the second	and the second second					Α\N	08 <		Proprietary mixture of h
	ty Data	Acute Toxicit		ALCGIH TLV	A ol	CV2 N	%7M	(s) juəuodı	Pricipal Hazardous Com
							61990 Co.	STN	ZECLION S - INCREDIEL
							Α/N		Formula
	nre	Mixtu	mical Family	Cher	ſ	anutxim s	s ei eidt A\N		Chemical Name
<u>.</u>		A/N	ON	SYD	FC-5	'A 777A &	%9 ətiluenA	(əlqe) u	Common Name (used o
			Garage at the second					Marie and the second	SECTION 1 - IDENTITY
	5004	linqA	Prepared	əreQ		ervices	Zechnical S		Prepared By
				47.4 Eas		ζ,	24143-254		

The toxicity of the product mixture has not been determined.

Skin Contact: May cause mild to moderate Eye Contact:

tansient imitation.

oral dose could produce narcosis. Initating to mucous membranes. Large :noiteagnl Mor an expected toute of entry. jupajation:

lititation of the eyes, skin and mucous membrane. Signs & Symptons - Acute

Kidney, liver, gastrointestinal and spleen. Signs & Symptons – Chronic

National Toxicology Program:

Prior disease of the kidney and liver. Medical Conditions Generally

Aggravated by Exposure

Carcinogen or Potential Chemical Listed as

SECTION 6 - Emergency & First Aid Procedures

Flush with large amounts of water. If intation persists, seek medical attention.

Wash thoroughly with soap and water. If irritation persists, seek medical attention.

Remove victim to fresh air. Seek medical attention if discomfort continues.

If patient is conscious, give large amount of water and induce vomiting. Seek medical help.

ZECTION 7 - Special Protection Information

Respiratory Protection

(Specify Type)

noiteagni

uoneledal

Skin Contact

Eye Contact

Overexposure

Overexposure

Routes of Entry

Threshold Limit Value

Ventilation

Protective Gloves

Other Protective Clothing or

showers are good safety practices. Equipment Standard fire fighting safety equipment should provide all protection which is necessary. Eye wash and safety

SECTION 8 - Special Precautions & Spill/Leak Procedures

Do not mix with other fire fighting agents. See incompatibility in section 4. Store in original container. Rep tightly closed Lyoid skin and eye contact. Avoid ingestion.

Eye Protection

Mechanical (General):

I.A.R.C Monographs:

and/or dermatitis.

May cause mild transient imitation

Chemical goggles are recommended.

Recommended,

:AH20

οN

See section 7.

Rubber or latex gloves are recommended.

None expected to be needed.

A\N

Focal Exhaust:

Z – Måderate;

NOT Hazardaus

Flammability

slippery. Prevent material from reaching sewers or waterways to avoid nuisance foaming disposal. Wash spill area with large amounts of water to remove traces as material is very Stop leaks. Contain spill, Remove as much as possible. Place in a closed container for proper

Dispose of in compliance with local, state and federal regulations.

Precautions to be Taken in Handling & Storage

Other Precautions

Released/Spilled Steps to be Taken in Case Material is

Waste Disposal Methods

SECTION 9 - Transport Information

or Division Australian Dangerous Goods Code Hazard Class...

Hazardous Material Identification System Ratings

N/A -Not applicable,

,9ldelisvA sasd oli – AdN , suoine 2 - S 4 - Sevěre, Hazard Index

Health

Ansul is a registered trademark.

- None Established

3/N

้า<mark>ปฏ</mark>ิเเร — ูโ

Reactivity

O - Migimal hazard,

blione, 336 aree BJAMROW-s-0080 renord bristes work 981 EE1 90044

CERTIFICATE OF ANALYSIS

Work Order : ES2002833

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

Order number : ---C-O-C number : ----

Client

Sampler : LUCINDA TRICKEY

Site : ---

Quote number : SY/665/19

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020 09:14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

Page : 2 of 5 Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

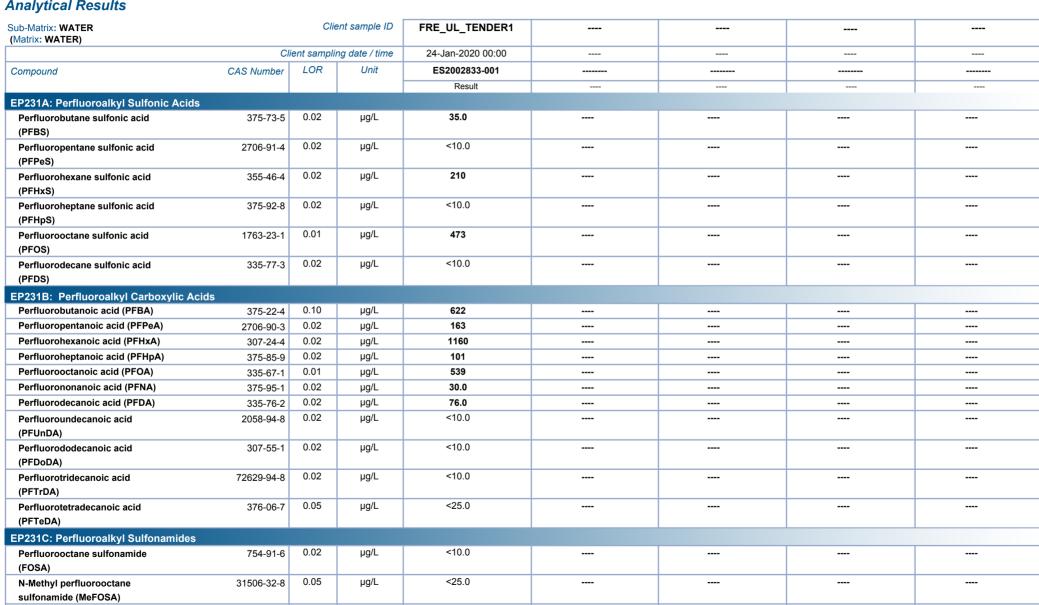
Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X: Surrogates diluted out of analytical range, therefore % recoveries could not be determined.
- EP231X: Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.

Page : 3 of 5 Work Order ES2002833


Client : SENVERSA PTY LTD

S17776 PSI Project

Analytical Results

N-Ethyl perfluorooctane

sulfonamide (EtFOSA)

<25.0

0.05

μg/L

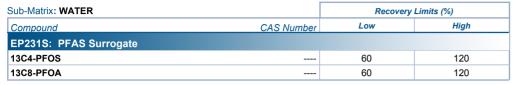
4151-50-2

Page : 4 of 5
Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results


Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	FRE_UL_TENDER1	 	
	CI	ent sampli	ng date / time	24-Jan-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2002833-001	 	
				Result	 	
EP231C: Perfluoroalkyl Sulfonamid	es - Continued					
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<25.0	 	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<25.0	 	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<10.0	 	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<10.0	 	
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids					
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<10.0	 	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	141	 	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	614	 	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<10.0	 	
EP231P: PFAS Sums						
Sum of PFAS		0.01	μg/L	4160	 	
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	μg/L	683	 	
Sum of PFAS (WA DER List)		0.01	μg/L	4060	 	
EP231S: PFAS Surrogate						
13C4-PFOS		0.02	%	Not Determined	 	
13C8-PFOA		0.02	%	Not Determined	 	

Page : 5 of 5
Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2002833** Page : 1 of 4

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 03-Feb-2020

Sampler : LUCINDA TRICKEY No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4 Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Laboratory Duplicates (DUP)					
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER	✓ = Within holding time
---------------	-------------------------

Matrix: WATER				⊏valuation	. A - Holding time	breach; ▼ = within	in notating time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X-INJ) FRE_UL_TENDER1	24-Jan-2020	30-Jan-2020	22-Jul-2020	✓	31-Jan-2020	22-Jul-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X-INJ) FRE_UL_TENDER1	24-Jan-2020	30-Jan-2020	22-Jul-2020	✓	31-Jan-2020	22-Jul-2020	✓
EP231C: Perfluoroalkyl Sulfonamides							
HDPE (no PTFE) (EP231X-INJ) FRE_UL_TENDER1	24-Jan-2020	30-Jan-2020	22-Jul-2020	✓	31-Jan-2020	22-Jul-2020	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE (no PTFE) (EP231X-INJ) FRE_UL_TENDER1	24-Jan-2020	30-Jan-2020	22-Jul-2020	✓	31-Jan-2020	22-Jul-2020	✓
EP231P: PFAS Sums							
HDPE (no PTFE) (EP231X-INJ) FRE_UL_TENDER1	24-Jan-2020	30-Jan-2020	22-Jul-2020	✓	31-Jan-2020	22-Jul-2020	✓

Page : 3 of 4 Work Order ES2002833

Client SENVERSA PTY LTD

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER	Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specific									
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification			
Analytical Methods	Method	ОС	Regular	Actual	Expected	Evaluation				
Laboratory Duplicates (DUP)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-INJ	0	1	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard			
Laboratory Control Samples (LCS)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-INJ	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-INJ	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Matrix Spikes (MS)										
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-INJ	0	1	0.00	5.00	3c	NEPM 2013 B3 & ALS QC Standard			

Page : 4 of 4
Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-INJ	WATER	In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.
Preparation Methods	Method	Matrix	Method Descriptions
Preparation for PFAS in water.	EP231-PR	WATER	Method presumes direct injection without workup. Preparation includes addition of internal standard and surrogate, and filtration prior to analysis.

QUALITY CONTROL REPORT

Work Order : **ES2002833**

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070 Project : \$17776 PSI

Order number · ----

C-O-C number : ----

Sampler : LUCINDA TRICKEY

Site · ___

Quote number : SY/665/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020

Date Analysis Commenced : 30-Jan-2020

Issue Date : 03-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

Page : 2 of 4
Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 4
Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

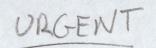
The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2833807)								
EP231X-INJ: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.5 μg/L	84.4	70.0	130	
EP231X-INJ: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.5 μg/L	92.0	70.0	130	
EP231X-INJ: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.5 μg/L	95.8	70.0	130	
EP231X-INJ: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.5 μg/L	96.4	70.0	130	
EP231X-INJ: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.5 μg/L	86.0	70.0	130	
EP231X-INJ: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.5 μg/L	102	70.0	130	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2833)	307)								
EP231X-INJ: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.10	2.5 μg/L	91.3	70.0	130	
EP231X-INJ: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.5 μg/L	101	70.0	130	
EP231X-INJ: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.5 μg/L	93.0	70.0	130	
EP231X-INJ: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.5 μg/L	98.4	70.0	130	
EP231X-INJ: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.5 μg/L	96.4	70.0	130	
EP231X-INJ: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.5 μg/L	89.2	70.0	130	
EP231X-INJ: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.5 μg/L	90.0	70.0	130	
EP231X-INJ: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	μg/L <0.02 0.5 μg/L		90.2	70.0	130	
EP231X-INJ: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.5 μg/L	86.0	70.0	130	
EP231X-INJ: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.5 μg/L	80.8	70.0	130	
EP231X-INJ: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	1.25 μg/L	83.4	70.0	150	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2833807)									
EP231X-INJ: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.5 μg/L	112	70.0	130	
EP231X-INJ: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	μg/L	<0.05	1.25 μg/L	99.4	70.0	150	
(MeFOSA)									
EP231X-INJ: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	1.25 μg/L	83.8	70.0	150	
EP231X-INJ: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	1.25 μg/L	98.2	70.0	150	
EP231X-INJ: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	1.25 μg/L	105	70.0	150	
EP231X-INJ: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.5 μg/L	85.2	70.0	130	
EP231X-INJ: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.5 μg/L	86.8	70.0	130	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 28	33807)								
EP231X-INJ: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.5 μg/L	89.6	60.0	120	
EP231X-INJ: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.5 μg/L	99.6	60.0	120	

Page : 4 of 4 Work Order : ES2002833

Client : SENVERSA PTY LTD

Project : S17776 PSI


Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report								
	Report	Spike	Spike Recovery (%)	Recovery Limits (%)						
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2833807) - continued										
EP231X-INJ: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.5 μg/L	102	70.0	130		
EP231X-INJ: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.5 μg/L	101	70.0	130		
EP231P: PFAS Sums (QCLot: 2833807)										
EP231X-INJ: Sum of PFAS		0.01	μg/L	<0.01						
EP231X-INJ: Sum of PFHxS and PFOS	355-46-4/17	0.01	μg/L	<0.01						
	63-23-1									
EP231X-INJ: Sum of PFAS (WA DER List)		0.01	μg/L	<0.01						

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

 $\bullet \quad \text{No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.} \\$

31.01.20

Chain of Custody Documentation

Comme		-
	1	
Se	nve	rsa

301140130				Laborato	orv:	ALS NSW								Analysis	Required			Asy supplied by
Senversa Pty Ltd www.senversa.com.au ABN 89 132 231 380				Address Contact: Phone:	:	277-289 Woodpark Road, S Brenda Hong 02 8784 8515	mithfield	(28 Analytes)	catory							Comm	ents:	
	S1	7776		Purchas	e Order:			ite (2)	+								mano	2
Job Number:	PSI '			Quote N	o:	SY-665-1		III Suite	anions								9926	9
Project Name:	LT	r/cw <		Turn Arc	ound Time:	STANDAR	0	EP231X - PFAS - Full	im									
Sampled By:	Lucind	la Trickey		Page:			of	PFA8										
Project Manager:	lucinda.trickey@	enversa.c	com.au	Phone/Mobile:		+61 424 1	72 065	×	apor									
Email Report To:	Sample Information	Control of the Control of the Control				Container Int		231	100									
Lab ID Sample ID	Matrix *	Da	ite		Time	Type / Code	Total Bottles	iii iii	1						7.00			
1 PWS-SCH-BORE	W	16 01	120				3	X	X									
TOLLA CALL THAIVE	· W	16/01					2	X										
2 PWS_SCH_TAR	· W	16/01					2	X										
	W	16/01	120				2	X.									2.0	
y QCID2	W	16/01					7	X					Element I		Land Contain	Force	ward to	conting
2 OCLOR	W	16 01					2	X.										
8 QC300	W	10 0	100					1							BES SERV			
									promonent	- Continues			BASIN E			C 28 25 3		
									1	- Innerent	1	1	-					
		1000000									1/1	1				1	. Division	
阿斯爾 图 图 图 图 图 图 图 图				1	****						1/	1			En En	vironmen	tal Division	
	Subcon AF	rward	Lab) Split							1	1	9 9		Sydney Work Order Reference ES200262		- (
	Lab / Analy			Eun	Olias -	a year and			Bana	A	4	11	Ш			Work Order	Reference 00620	
			ite.	OC2	09											ES2U	102020	
	Organised !	De:	Date	0														
	Relinquish	QQ 129.																
	Connote /	Courie			Name and Asses topic dis-				1.40						Assert			
	WO No: E	525	226	10				P - Felt	100								阿沙斯克图 [[
	Attach By		nerna	al She	ct:				2729							470	[74,131,1743 III]	
	Milach 25																EASTALL I FEBRUARY	
									10000	State of		1000			Т	elephone: +61	-2-8784 8555	2.10
							STATE OF THE PARTY	0										
Total			i4b C		tandard are	anduran and/or project	Sampler Name		Lucinda	Tricke	v	Signat	ure:		100	Date: 1/	Luha	
Sampler: I attest that proper field samp specifications were used during the co	oling procedures in ollection of these sa	accordanc	e with S	enversa si	tanuaru pro	cedures and/or project	Campier Hame						A	age	beig	16	pillo	
						Method of Shipment (if	applicable):			Recei	ved by:				9,			
Relinquished By: Name/Signature: Lucinda Trickey			Date:		Carrier / Reference #:	Co. State of the second				/Signatur	e: /	Sep!	1	8/1/				
Of:	Senversa	4	XX	Time:	8:30	Date/Time:				Of:			1 PA	1	4	Time		20
Name/Signature:			0,	Date:	U	Carrier / Reference #:				Name.	/Signatur	e:	MA	an		Date:		SPM
Of:				Time:		Date/Time:				Nome	/Signatur	0.				Date	The state of the s	31,,,
Name/Signature:				Date:		Carrier / Reference #: Date/Time:				Of:		A PAGE				Time		
Of: Water Container Codes: P =	Harmond Plantic: 1	N = Nitric Acid	d (HNO ₂) F	Time:	lastic: ORC =	Nitria Procented OPC: SH = St	odium Hydroxide (NaOH	1)/Cadmiui	m (Cd) Pre	eserved	S = Sodi	um Hydro	xide Preser	ved Plastic; ST	H = Sodium thiosul	fate preserved pl	astic;	T123.2
Water Container Codes: P = V = VOA Vial Hydochloric Acid (F = Formaldehyde Preserved Gl	HCI) Preserved; VS = ass; Z = Zinc Acetate	VOA Vial Sul Preserved Bo	lphuric Pre	eserved; VS EDTA Prese	SA = Sulphuric erved Bottles;	Preserved Amber Glass; H = H ST = Sterile Bottle; UA = Unpre	ICI Preserved Plastic; F served Amber Glass; La	HS = HCI F =Lugol's io	reserved dine prese	Speciati erved wh	ion Bottle; hite plastic	SP = Su bottle; S'	lphuric Pres W= sulfuric	erved Plastic; acid preserved	wide mouth glass j	ar	620	

Environment Testing

Senversa Pty Ltd NSW Level 5, The Grafton Bond Building, 201 Kent Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Lucinda Trickey

Report 699263-W

Project ID Project ID S17776
Received Date Jan 30, 2020

Client Sample ID			QC202
Sample Matrix			Water
Eurofins Sample No.			S20-Ja29794
•			
Date Sampled			Jan 16, 2020
Test/Reference	LOR	Unit	
Perfluoroalkyl carboxylic acids (PFCAs)			
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01
Perfluoroundecanoic acid (PFUnDA)N11	0.01	ug/L	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01
Perfluorotridecanoic acid (PFTrDA)N15	0.01	ug/L	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01
13C4-PFBA (surr.)	1	%	135
13C5-PFPeA (surr.)	1	%	98
13C5-PFHxA (surr.)	1	%	104
13C4-PFHpA (surr.)	1	%	101
13C8-PFOA (surr.)	1	%	109
13C5-PFNA (surr.)	1	%	99
13C6-PFDA (surr.)	1	%	104
13C2-PFUnDA (surr.)	1	%	142
13C2-PFDoDA (surr.)	1	%	98
13C2-PFTeDA (surr.)	1	%	64
Perfluoroalkyl sulfonamido substances			
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	0.05	ug/L	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05
13C8-FOSA (surr.)	1	%	88
D3-N-MeFOSA (surr.)	1	%	89
D5-N-EtFOSA (surr.)	1	%	90

Report Number: 699263-W

Client Sample ID			QC202
Sample Matrix			Water
Eurofins Sample No.			S20-Ja29794
Date Sampled			Jan 16, 2020
Test/Reference	LOR	Unit	
Perfluoroalkyl sulfonamido substances	•	•	
D7-N-MeFOSE (surr.)	1	%	146
D9-N-EtFOSE (surr.)	1	%	153
D5-N-EtFOSAA (surr.)	1	%	72
D3-N-MeFOSAA (surr.)	1	%	75
Perfluoroalkyl sulfonic acids (PFSAs)	•	•	
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	< 0.01
Perfluorodecanesulfonic acid (PFDS)N15	0.01	ug/L	< 0.01
13C3-PFBS (surr.)	1	%	108
18O2-PFHxS (surr.)	1	%	135
13C8-PFOS (surr.)	1	%	131
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	0.01	ug/L	< 0.01
13C2-4:2 FTSA (surr.)	1	%	97
13C2-6:2 FTSA (surr.)	1	%	102
13C2-8:2 FTSA (surr.)	1	%	92
PFASs Summations			
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1

Page 2 of 10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Sydney Unit F3. Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #: 699263 Phone:

02 9994 8016

03 9606 0074 Fax:

Received: Jan 30, 2020 12:05 PM

Due: Feb 6, 2020 Priority: 5 Dav

Contact Name: Lucinda Trickey

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Perand Polyfluoroalkyl Substances (PFASs) Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794 Χ Perth Laboratory - NATA Site # 23736 **External Laboratory** No Sample ID Sample Date Sampling Matrix LAB ID Time QC202 Jan 16, 2020 Water S20-Ja29794 Χ 1 Test Counts

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank	J				
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank	ug/L	\ 0.00	0.00	1 433	
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)		< 0.01	0.01	Pass	
` '	ug/L		0.01		
Perfluence of the soulf or in soid (PFHpS)	ug/L	< 0.01		Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)				_	
Perfluorobutanoic acid (PFBA)	%	106	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	136	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	107	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	86	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	95	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	106	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	84	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	88	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	122	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	107	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	113	50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA	.)		%	98	50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	78	50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	66	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	 -	%	94	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	67	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC	DSAA)	%	94	50-150	Pass	
N-methyl-perfluorooctanesulfonamid	loacetic acid (N-Me	FOSAA)	%	84	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)						
Perfluorobutanesulfonic acid (PFBS))		%	83	50-150	Pass	
Perfluorononanesulfonic acid (PFNS	5)		%	82	50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	rS)		%	117	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	85	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	S)		%	88	50-150	Pass	
Perfluoroheptanesulfonic acid (PFH)	oS)		%	88	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS))		%	98	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	73	50-150	Pass	
LCS - % Recovery							
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfon	nic acid (4:2 FTSA)		%	105	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni	ic acid (6:2 FTSA)		%	98	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	127	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesult	fonic acid (10:2 FT	SA)	%	95	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	S20-Ja28320	NCP	%	99	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja28320	NCP	%	131	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja28320	NCP	%	108	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja28320	NCP	%	83	50-150	Pass	
Perfluorooctanoic acid (PFOA)	S20-Ja28320	NCP	%	91	50-150	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja28320	NCP	%	103	50-150	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja28320	NCP	%	82	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Ja28320	NCP	%	89	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja28320	NCP	%	125	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja28320	NCP	%	125	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja28320	NCP	%	109	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	S20-Ja28320	NCP	%	100	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja28320	NCP	%	76	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja28320	NCP	%	68	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja28320	NCP	%	95	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja28320	NCP	%	77	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja28320	NCP	%	84			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja28320	NCP	%	81			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	S20-Ja28320	NCP	%	84			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja28320	NCP	%	78			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja28320	NCP	%	136			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja28320	NCP	%	96			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S20-Ja28320	NCP	%	93			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja28320	NCP	%	83			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	S20-Ja28320	NCP	%	89			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja28320	NCP	%	80			50-150	Pass	
Spike - % Recovery				I	ı				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja28320	NCP	%	103			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja28320	NCP	%	102			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja28320	NCP	%	126			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja28320	NCP	%	104			50-150	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pf	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)	I		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja28319	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja28319	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Ursula Long Analytical Services Manager Sarah McCallion Senior Analyst-PFAS (QLD)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

31.01.20

	1	3
	ź	
sonv	or	Sa

Chain of Custody Documentation

URGENT. # 6,99266

	·			Laboratory:	ALS NSW					- 0	15	Analye	s Required				
www.senversa.cor ABN 69 132 231 3				Address: Contact: Phone:	277-289 Woodpark Road, Sm Brenda Hong 02 8784 8515	nithfield	PFAS - Full Suite (28 Analytes)	(costions		UTTER		Pilays	Keyarea		Comments:		
Job Number:		\$	17776 /	Purchase Order:			628	\$		13		- 1	lean.	remained to	1	and the same	- College
Project Name:			PSI	Quote No:	SY-665-19 V2) Š			2	1				₩ \ \	77	_1
Sampled By: LT/CW - Turn Around Time:			STANDAR	O	Ī	anions		gr.	-PAPS		32		$M = M \times M$				
Project Manager:	·	Lucino	da Trickey /	Page:		of	A.A.S	8		J					1		
Email Report To:		lucinda.trickey(@senversa.com.au -	Phone/Mobile:	+61 424 17	2 065		1	3	EP231X	1			- ~	Ť -	<u> </u>	
		Sample Informati			Container Info	rmation	EP231X	Major	2	12			1 1				
Lab ID	Sample ID	Matrix *	Date	Time	Type / Code	Total Bottles	iii ii	ε	4	Ti			1 1				
	S_WWII_DAM	W	13-01-20	PM		2 bothes	X								1		
	S_POUND_BORE		14-01-20			2	X				T = 1				1		
3 TC	- SWOI -	M	14-01-20			2	X										
	HESSIES_REVER	DIR-W	14-01-20	t. E	ELET	3	X	X					1 1	_			
	_DUCK_DOM	" W	14-01-20			2	X							_			
	Moras_swoi	" W	14-01-20	0 4 1	4 1 1 1	2	X										
	-HEND-DAM	- W	14-01-20	3, 50.	J	87	1	X		X	1 1				*LOW	tne	
8 PUS	-KINGFISH-BU	EA W	14-01-20	# 05	4 1 10	3	.4/:-		X	-	1 1	_		-	2003	COR	
9 PWS	-KINGFISH- BOR		14-01-20		8 18	3	V	V	-	_	Emulian	mantal I	Nicota ta	_			
	-AHRPORT_BORK		14-01-20	1 TOIL	1.01	3	\Diamond	X	_	-	Endnor	mental [IVISION	3			
	BOREL .	10	14-01-20	da i i	a of H	2	\Diamond	/ \			Work	Order Refe	rence	-	-		
	C_SMO1	W	15-01-20	13 1 1 2 1	2	2	V.				FS	2002	626	-			
	100 -	V	14-01-20	2 0	2 5 O E	2	\Diamond		-		0	2002	.020				
	101	W	14-01-20	ww s:	T T O	3 2	♦				800 H	TW BULL BY	UNIC MINITED IN	-			
The second secon	103		16-01-20	B VS O	3 3 7 2	192	\(\)			-				-			
	200	W	14-01-20	E	N N	2	X.	_	-	-				-	1	- 1 1 /	0.0
× QC		W	14-01-20	Ann	0: 0: 3	12	X	_	\rightarrow	-			92 III	-	+areway	10 8	wofins wofins
	103	- 0	16-01-20	oco o//	e de la companya de l	2	$\langle \mathcal{S} \rangle$	_		_		Control of the	17		torena	id to	Chypurz
A TC	SIND	6	1601020	Sub ab	3 5 2 4	2	\Q		-	1	elephone :	+ 61-2-8784 8	555	-			
18 QC	301	[W		<u> </u>	¥ 0 3 4	2	Q							-			
Total			17-01-20	And the second s	ga. wangi sagara gagara gag		\sim	Strane	(** *	्ं के रेक्टन	100 1 T A	0 9903 - 00 - 0		100000	x 3.	r jetou sastr	
	hat proper field samplin	n noncedures in	accordance with Sou	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0		500 P.L	9/10/9		262			等。		- 107
specifications wer	re used during the coile	ction of these sar	mples:	Iversa scandard proced	mpress andror project	Sampler Name:		Lucinda	Іпскеу	Signa /	Voy	epe	1	Date:	15-01	-20	
Relinquished By:					Method of Shipment (if ap	plicable):			Received b	by:		do	0.1				
Name/Signature: Lucinda Trickey Date:				Carrier / Reference #.				Mame/Signa		V21 (ar	2871/2	IJ	Date:			
Of: Name/Signature:		Senversa			Date/Time:				Of:	-	SA 1		17	_	Time:		
Name/Signature: Of:				Date: Time;	Carrier / Reference #:				Name/Signs	ature:	1/24	pen	1			30012	0
Name/Signature:				Date:				Ur. •			-			Time:	12.05	YM	
Of:				Time:	Date/Time:			Name/Signature:					Date:				
V = VUA	A ANN LLAGOCUIDUS WOR (MCI)	Preserved: VS = V	OA Vial Sulphuric Presei	rved: VSA = Sulnhuric Pre:	c Preserved ORC; SH = Sodfu served Amber Glass; H = HCI I = Sterile Bottle; UA = Unpresen	Processed Placific HS	= HCI Dro	Pourooc	neclation Red	WILL CD - C.	tobusta Dance	and Disette.			ved plestic;	1616	

Tyler Cachia

From: Carlyn Williams < Carlyn.Williams@senversa.com.au>

Sent: Friday, 17 January 2020 1:25 PM

To: Tyler Cachia

Cc: Christopher Sandiford; Lucinda Trickey; Katie Richardson; Brenda Hong

Subject: RE: [EXTERNAL] - 17776 - COC for incoming samples from Norfolk Island

Categories: COC

Hi Tyler,

We need to update sample PWS_HEAD_DAM to standard LORs instead of ultratrace, i.e. all samples should be on standard LORs.

My understanding is that these are on standard TAT (however we cannot afford any delays beyond the 5 days). I'll confirm with the PM tonight that we don't need them any more urgently than this and let you know.

Kind regards, Carlyn Williams Environmental Geologist

senversa

Senversa Pty Ltd Level 6, 15 William Street, Melbourne VIC 3000

m: +61.481.773.078 | e: <u>carlyn.williams@senversa.com.au</u> t: +61.3.9606.0070 | w: <u>www.senversa.com.au</u> |

Note: This email and any attachments are for the intended recipient(s) only and may be confidential and/or privileged. Any opinions are those of the sender and not necessarily Serversa. If this email has been received in error, please delete all copies and contact the sender. Serversa accepts no liability for any consequences arising from the recipient's use of this email and/or the information contained in and/or attached.

Senversa management systems are certified to ISO 9001 (Quality) and OHSAS 18001 & ASNZS 4801 (Health and Safety) standards. Please consider the environment before printing this email. Senversa is a carbon neutral company and certified B Corp.

From: Tyler Cachia <tyler.cachia@ALSGlobal.com>

Sent: Friday, 17 January 2020 12:51 PM

To: Carlyn Williams < Carlyn.Williams@senversa.com.au>; Brenda Hong < Brenda.Hong@alsglobal.com>

Cc: Christopher Sandiford < Christopher.Sandiford@Senversa.com.au>; Lucinda Trickey

<Lucinda.Trickey@senversa.com.au>; Katie Richardson <Katie.Richardson@senversa.com.au>

Subject: RE: [EXTERNAL] - 17776 - COC for incoming samples from Norfolk Island

Hi Carlyn,

Thanks for sending this through. Do you have a tracking number for this so we can track the consignment?

Can you also please confirm what date you require these samples by as I can see you have noted on your COCs that these are urgent, however you have also marked the turn around time as standard?

Kind Regards,

Tyler Cachia

Senversa Pty Ltd NSW Level 5, The Grafton Bond Building, 201 Kent Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Lucinda Trickey

Report 699266-W

Project ID Project ID S17776
Received Date Jan 30, 2020

Client Sample ID			QC200	QC201
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Ja29796	S20-Ja29797
Date Sampled			Jan 14, 2020	Jan 14, 2020
Test/Reference	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs)				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	0.15
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	0.27
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	1.2
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	0.25
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	^{N09} 0.57
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	105	107
13C5-PFPeA (surr.)	1	%	86	62
13C5-PFHxA (surr.)	1	%	105	59
13C4-PFHpA (surr.)	1	%	105	70
13C8-PFOA (surr.)	1	%	99	47
13C5-PFNA (surr.)	1	%	91	80
13C6-PFDA (surr.)	1	%	96	34
13C2-PFUnDA (surr.)	1	%	134	120
13C2-PFDoDA (surr.)	1	%	112	101
13C2-PFTeDA (surr.)	1	%	100	99
Perfluoroalkyl sulfonamido substances		•		
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C8-FOSA (surr.)	11	%	84	124
D3-N-MeFOSA (surr.)	1	%	99	76
D5-N-EtFOSA (surr.)	1	%	133	78

Client Sample ID			QC200	QC201
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Ja29796	S20-Ja29797
Date Sampled			Jan 14, 2020	Jan 14, 2020
Test/Reference	LOR	Unit		
Perfluoroalkyl sulfonamido substances	•			
D7-N-MeFOSE (surr.)	1	%	119	79
D9-N-EtFOSE (surr.)	1	%	132	73
D5-N-EtFOSAA (surr.)	1	%	62	INT
D3-N-MeFOSAA (surr.)	1	%	68	INT
Perfluoroalkyl sulfonic acids (PFSAs)	•			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	1.1
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	^{N09} 0.10
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	0.50
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	1.2
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	10
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01	^{N09} 0.62
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	N09< 0.01	22
Perfluorodecanesulfonic acid (PFDS)N15	0.01	ug/L	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	97	60
18O2-PFHxS (surr.)	1	%	128	110
13C8-PFOS (surr.)	1	%	123	89
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	93	104
13C2-6:2 FTSA (surr.)	1	%	112	84
13C2-8:2 FTSA (surr.)	1	%	88	92
PFASs Summations				
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	32
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	22.57
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	32.57
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	35.54
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	37.96

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Per-

and Polyfluoroalkyl Substances (P

Χ

2

S20-Ja29797

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3. Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290 IANZ # 1327

Company Name:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776

Jan 14, 2020

Order No.:

Report #: Phone:

02 9994 8016

699266

03 9606 0074 Fax:

Received: Jan 30, 2020 12:05 PM

Due: Feb 6, 2020 **Priority:** 5 Day

Contact Name: Lucinda Trickey

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Sample Detail

							FASs)		
Melbourne Laboratory - NATA Site # 1254 & 14271									
Sydney Laboratory - NATA Site # 18217									
	Brisbane Laboratory - NATA Site # 20794								
	Perth Laboratory - NATA Site # 23736								
	Exte	rnal Laboratory	•						
	No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
	1	QC200	Jan 14, 2020		Water	S20-Ja29796	Х		

Water

QC201

Test Counts

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank	J				
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank	ug/L	V 0.00	0.00	1 433	
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)		< 0.01	0.01	Pass	
` '	ug/L		0.01		
Perfluence of the soulf or in soid (PFHpS)	ug/L	< 0.01		Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)				_	
Perfluorobutanoic acid (PFBA)	%	106	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	136	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	107	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	86	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	95	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	106	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	84	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	88	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	122	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	107	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	113	50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA	.)		%	98	50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	78	50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	66	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	 -	%	94	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	67	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC	DSAA)	%	94	50-150	Pass	
N-methyl-perfluorooctanesulfonamid	loacetic acid (N-Me	FOSAA)	%	84	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)						
Perfluorobutanesulfonic acid (PFBS))		%	83	50-150	Pass	
Perfluorononanesulfonic acid (PFNS	5)		%	82	50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	rS)		%	117	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	85	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	S)		%	88	50-150	Pass	
Perfluoroheptanesulfonic acid (PFH)	oS)		%	88	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS))		%	98	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	73	50-150	Pass	
LCS - % Recovery							
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfon	nic acid (4:2 FTSA)		%	105	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni	ic acid (6:2 FTSA)		%	98	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor	nic acid (8:2 FTSA)		%	127	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesult	fonic acid (10:2 FT	SA)	%	95	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	S20-Ja28320	NCP	%	99	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja28320	NCP	%	131	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja28320	NCP	%	108	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja28320	NCP	%	83	50-150	Pass	
Perfluorooctanoic acid (PFOA)	S20-Ja28320	NCP	%	91	50-150	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja28320	NCP	%	103	50-150	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja28320	NCP	%	82	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Ja28320	NCP	%	89	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja28320	NCP	%	125	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja28320	NCP	%	125	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja28320	NCP	%	109	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	S20-Ja28320	NCP	%	100	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja28320	NCP	%	76	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja28320	NCP	%	68	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja28320	NCP	%	95	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja28320	NCP	%	77	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja28320	NCP	%	84			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja28320	NCP	%	81			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	S20-Ja28320	NCP	%	84			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja28320	NCP	%	78			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja28320	NCP	%	136			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja28320	NCP	%	96			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S20-Ja28320	NCP	%	93			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja28320	NCP	%	83			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	S20-Ja28320	NCP	%	89			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja28320	NCP	%	80			50-150	Pass	
Spike - % Recovery				I	ı				
n:2 Fluorotelomer sulfonic acids (1:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja28320	NCP	%	103			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja28320	NCP	%	102			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja28320	NCP	%	126			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja28320	NCP	%	104			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pf	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	S20-Ja29797	СР	ug/L	0.15	0.15	1.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja29797	СР	ug/L	0.27	0.28	2.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja29797	СР	ug/L	1.2	1.1	2.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja29797	СР	ug/L	0.25	0.26	1.0	30%	Pass	,
Perfluorooctanoic acid (PFOA)	S20-Ja29797	СР	ug/L	0.57	0.58	1.0	30%	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	,
Perfluoroundecanoic acid (PFUnDA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja29797	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	S20-Ja29797	СР	ug/L	1.1	1.1	1.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja29797	СР	ug/L	0.10	0.10	2.0	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja29797	СР	ug/L	0.50	0.52	5.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja29797	СР	ug/L	1.2	1.2	4.0	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S20-Ja29797	СР	ug/L	10	11	1.0	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja29797	СР	ug/L	0.62	0.64	3.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	S20-Ja29797	СР	ug/L	22	22	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja29797	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja29797	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

N09 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Ursula Long Analytical Services Manager Sarah McCallion Senior Analyst-PFAS (QLD)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to me ended teadlines and lost production arising from this record to a front in the time stead of the limited to the time stead teaching and to the consequent to the stead of the st

Laboratory:

Address:

Contact:

ALS NSW

Brenda Hong

277-289 Woodpark Road, Smithfield

rsa

Senversa Pty Ltd www.senversa.com.au ABN 89 132 231 380

Chain of Custody Documentation

699303

Environmental	Division
Sydney	DIAISIOU

Work Order Reference ES2002803

					Analyt		1		1		1			UU28	-00	
s	17776	Purchase Order:			(28/								احالها	U.S. SUP.	= 1.111	
	PSI	Quote No:	SV-665-4	10 V2	Silfe	1										
L	T/CW				Ē											
Lucino	da Trickey		7. 1										M.C.	L. Hilly		
			+61 404 41								1	elephone		un.u. 1 [7]		
		i Holleriaobile,			3 ×				1			o.opiione	+ 67-2-	8784 8555		
Matrix *	Date	Time	Type / Code	Total Bottles	E 2							Í	1 7		¥	
M	18-1-20			2	V											
W	18-1-20			a	X						200				Farariand	to ourogai
WA 5	20-1-20			JAR	X										TURNOUG	10 EUVOTUI
	20-1-20				X			1	-						Guar wood 1	0110000
S	20-1-20				X	000	200	1	9 a (4)	to the	10 /-	PER S	9		TOREWOOD 1	o fundani
S	20-1-20			11	X	LAID	192	22 Y	is:	6	itou	-3 Ve	5		Ema road 1	o outobio
S	20-1-20			1	X	Dru	27338	NO ES	V / I	218					TUREWOVE	-0 eurorum
	20-1-20				X	& mi	15211	piro	E.	7.130	tiens				Coxon Void 1	2 DIL OFFIC
S	21-1-20				X	1	312-4	7.00		1.20	LE.	59	1115	9	POPELSVO (a environ
S	21-1-20			1	X	100 D	34114	300	1	100					Cana 1000 1	0.006.00
S					X	775)	Mes	6	20	028	0.3				INTENDICE E	o evacui
S				1	X	3112	ch t	100	-		4,00	4	8,4		(C-2) 10 cd	0.40
N				13	Ź						-		- 2		HOLEWAY CI	to evinin
1/1	21-1-20			2.	X		_						-		Canal Coal	b 0.106.
W	20-1-20			2	X									_	TOTOLING	to euoti
W	21-1-20			12	×											
$-\omega$	21-1-20			0											0.00	60.1.
S	22-1-20			17									-		With a	v ecrop-
S	22-1-20												-	_	10	t 0 /
S	22-1-20										_		-+		porvary,	o eurof
				i i								-			-	
	Lucinda.trickeye Sample Informati Matrix * W SS SS SS SS SS SS SS SS SS SS SS SS	N 18-1-20 N 5 20-1-20 N 5 20-1-20 S 20-1-20 S 20-1-20 S 20-1-20 S 21-1-20 S 21-1-20 S 21-1-20 N 21-1-20 N 21-1-20 N 21-1-20 N 21-1-20 N 21-1-20 S 22-1-20 S 22	PSI Quote No: LT/CW Turn Around Time: Lucinda Trickey Page: lucinda.trickey@senversa.com.au Phone/Mobile: Sample Information Matrix Date Time VI 18-1-20 VI 18-1-20 VI 20-1-20 S 20-1-20 S 20-1-20 S 20-1-20 S 21-1-20 PSI Quote No: SY-665-1 LT/CW Turn Around Time:	PSI Quote No: SY-865-19 V2 Ltricw	PSI Quote No: SY-665-19 V2 Page:	Lucinda Trickey	Lucinda Trickey	Lucinda Trickey Page:	Lucinda Trickey	Lucinda Trickey Page:	Lucinda Trickey Page: 1 of 2	Lucinda Trickey	Licinda Trickey	Lucinda Trickey Page: Phone/Mobile: +61 424 172 065 Lucinda Trickey Page: Phone/Mobile: +61 424 172 065 Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Total Bottles Matrix Date Time Type / Code Total Bottles Matrix Date Date Date Date Matrix Date Da	Lichal Trickey Page: 1 of 2 2 2 2 2 2 2 2 2 2	

Lucinda Trickey specifications were used during the collection of these samples: Relinquished By: Method of Shipment (if applicable): Received by: Lucinda Trickey Date: 24(01 Carrier / Reference #:

Name/Signature: Lales Name/Signature: 79/11W. Date: Senversa 9:00 Time: Date/Time: Of: PIL Time: Name/Signature: Date: Carrier / Reference #: Name/Signature: Date: Time: Date/Time: Of: Time: Name/Signature: Date: Carrier / Reference #: Name/Signature: Date: Time: Date/Time: Of:

Water Container Codes: P = Unpreserved Plastic; N = Nitric Acid (HNO₃) Preserved Plastic; ORC = Nitric Preserved Plastic; STH = Sodium Hydroxide (NaOH)/Cadmium (Cd) Preserved; S = Sodium Hydroxide Preserved Plastic; STH = Sodium thiosulfate preserved plastic; V = VOA Vial Hydochloric Acid (HCl) Preserved; VS = VOA Vial Sulphuric Preserved: VSA = Sulphuric Preserved Amber Glass; H = HCl Preserved Plastic; HS = HCl Preserved Speciation Bottle; SP = Sulphuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; UA = Unpreserved Amber Glass; L=Lugol's iodine preserved white plastic bottle; SW= sulfuric acid preserved wide mouth glass jar

Completed by:	
Checked by:	

sonvorsa

Checked by:

Chain of Custody Documentation

4 0	1 380 er:	L' Lucind lucinda.trickey@ Sample Informati Matrix * S S S S S	ion Di	ate	Address; Contact: Phone: Purchase Order: Quote No: Turn Around Time: Page: Phone/Mobile:	277-289 Woodpark Road, Si Brenda Hong 02 8784 8515 SY-665- +61 424 17 Container Inf. Type / Code	9 V2 of 2 2 065	EP231X - PFAS Full Suite (28 Analytes)							Comments:	
oject Name: Impled By: oject Manage nall Report To	Sample ID C 2 12 C 1 1 3 C 2 1 3 C 1 1 4 C - 2 14	L' Lucind lucinda.trickey@ Sample Informati Matrix * S S S S S	PSI T/CW da Trickey @senversa. ion Di	ate	Quote No: Turn Around Time: Page: Phone/Mobile:	2 +61 424 17 Container Inf	of 2 2 065 primation	PFAS.								
impled By: oject Manage nail Report To	Sample ID C 2 12 C 1 1 3 C 2 1 3 C 1 1 4 C - 2 14	Lucinda trickeyé Sample Informati Matrix * S S S S S S	T/CW da Trickey @senversa. ion De	ate	Turn Around Time: Page: Phone/Mobile:	2 +61 424 17 Container Inf	of 2 2 065 primation	PFAS.								
oject Manage nail Report To Lab ID	Sample ID C 2 12 C 1 1 3 C 2 1 3 C 1 1 4 C - 2 14	Lucinda.trickey@Sample Informati Matrix * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	da Trickey @senversa. ion Di	ate	Turn Around Time: Page: Phone/Mobile:	2 +61 424 17 Container Inf	of 2 2 065 primation	PFAS.								
oject Manage nail Report To Lab ID	Sample ID C 2 12 C 1 1 3 C 2 1 3 C 1 1 4 C - 2 14	Lucinda.trickey@Sample Informati Matrix * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	da Trickey @senversa. ion Di	ate	Page: Phone/Mobile:	Container Inf	2 065 ormation	PFAS.								
Lab ID C	Sample ID C 2 12 C 1 1 3 C 2 1 3 C 1 1 4 C - 2 14	Sample Informati Matrix * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	@senversa. ion Di	ate	Phone/Mobile:	Container Inf	2 065 ormation	P231X - PFA								
Lab ID	Sample ID (2)2 (1)3 (2)3 (1)4 (-2)4	Sample Informati Matrix * S S S S S	ion Di	ate		Container Inf	ormation	231X -					1 1			
11 (C212 C113 C(213 C(114 C(214	Matrix * S S S S S	D		Time			3								
11 (C212 C113 C(213 C(114 C(214	\$ \$ \$ \$			Time	Type / Code	l otal Bottles									
12 6	20113 20213 20114 20214	\$ \$ \$					i		_		-					
12 8	QC214 QC214	\$ \$ \$						X	_						forward to ev.	Ufin.
	QC214 QC214	5 <i>\$</i>						X								N.
	QC214 QC115	5					1	×							forward to en	ofi-
1-2	00115						1 !	X							1	7
		(C	1					X							Howard to e	erefe
-		S		/		+)	X								
11 /	00110	S		1-20			1	×							Howard recen	ohis
14 (CC216	5	the state of the s	1-20			1	x							1	1
15	00117	2	23-				1	×							forward to e	woh
10	Q (217	4	_			-	2	X							0	1
-3-	C. C.	<u> </u>	-	1-20			2	×							forward 70 ca	rotte
		<u> </u>	21-				2	×								7:
-	QC304	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		-20			2	X								
	QC305	10	22-	1-20			2	X								
-	CC306	6	23	1-20	No.		-2	X								
														1		
tal								.0					1			
mpler: I attest	t that proper field sampli vere used during the coll	ng procedures in a ection of these sa	accordance	e with Sen	versa standard proc	edures and/or project	Sampler Name:	Lu	cinda Trickey	8 ign	ature	0	Ce	Date:	24/01/2	0
linquished By	у:					Method of Shipment (if a	pplicable):		Receive	d bu	10		7	/		
me/Signature:		Lucinda Trickey			Date: 2:101 Time: 4:50	Carrier / Reference #:			Name/Si		loan	1/1/	-0		Date: 24/1/2	
(7)		Senversa				Date/Time:			Of:	MA	Λ	1/1/1			Time: 1.14	
me/Signature:					Date:	Carrier / Reference #:			Name/Si	gnature:	lan	pein			Date: 30/0/20	
me/Signature:					Time: Date:	Date/Time:			Of:		P	000			Time:	nΛ
					Time:	Carrier / Reference #: Date/Time:			Name/Si						Date:	7
Water	r Container Codes: P = Un	preserved Plastic; N	= Nitric Acid	(HNO _a) Pres	served Plastic: ORC - N	litric Processed OPC, CLL - Cadi	Im Hydroxide (Na∩H)/	Cadmium (Ca	Of:	= Sodium Lt	Irovido D	and Disease or			Time:	
V = V	OA Vial Hydochloric Acid (HC	I) Preserved; VS = Vi	OA Vial Sulpi	huric Preser	ved; VSA = Sulphuric P	reserved Amber Glass; H = HCl T = Sterile Bottle; UA = Unpreser	Preserved Plastic; HS	= HCl Preser	ved Speciation	– Sodiom Hyd Bottle; SP ≈ \$	nuxiue Preserv Sulphuric Prese	eu Plastic; STF rved Plastic:	r = Sodium th	osulfate pres	erved plastic;	

Senversa Pty Ltd NSW Level 5, The Grafton Bond Building, 201 Kent Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Lucinda Trickey

 Report
 699303-S

 Project name
 PSI

 Project ID
 \$17776

 Received Date
 Jan 30, 2020

Client Sample ID			QC205	QC206	QC207	QC208
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ja30174	S20-Ja30175	S20-Ja30176	S20-Ja30177
Date Sampled			Jan 20, 2020	Jan 20, 2020	Jan 20, 2020	Jan 21, 2020
Test/Reference	LOR	Unit				
		•				
% Moisture	1	%	11	19	9.4	2.7
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	120	109	85	110
13C5-PFPeA (surr.)	1	%	111	96	73	101
13C5-PFHxA (surr.)	1	%	164	140	106	143
13C4-PFHpA (surr.)	1	%	143	137	98	127
13C8-PFOA (surr.)	1	%	132	129	94	130
13C5-PFNA (surr.)	1	%	110	100	74	96
13C6-PFDA (surr.)	1	%	157	144	108	148
13C2-PFUnDA (surr.)	1	%	107	89	76	85
13C2-PFDoDA (surr.)	1	%	95	86	78	78
13C2-PFTeDA (surr.)	1	%	116	93	88	91
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) $^{\mathrm{N11}}$	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	131	120	104	111

Client Sample ID			QC205	QC206	QC207	QC208
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ja30174	S20-Ja30175	S20-Ja30176	S20-Ja30177
Date Sampled			Jan 20, 2020	Jan 20, 2020	Jan 20, 2020	Jan 21, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances	<u>'</u>	•				
D3-N-MeFOSA (surr.)	1	%	94	87	79	76
D5-N-EtFOSA (surr.)	1	%	94	85	81	72
D7-N-MeFOSE (surr.)	1	%	119	138	93	95
D9-N-EtFOSE (surr.)	1	%	82	63	65	59
D5-N-EtFOSAA (surr.)	1	%	93	71	59	75
D3-N-MeFOSAA (surr.)	1	%	92	69	57	69
Perfluoroalkyl sulfonic acids (PFSAs)	'	-				
Perfluorobutanesulfonic acid (PFBS)N11	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS)N15	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	^{N09} 14	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS)N11	5	ug/kg	< 5	N09130	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	109	102	88	100
18O2-PFHxS (surr.)	1	%	106	93	77	89
13C8-PFOS (surr.)	1	%	105	82	82	87
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	1	•				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)N11	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	181	146	71	188
13C2-6:2 FTSA (surr.)	1	%	143	117	55	126
13C2-8:2 FTSA (surr.)	1	%	98	100	65	83
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	144	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	130	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	144	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	144	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	144	< 50	< 50

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			QC209 Soil S20-Ja30178 Jan 21, 2020	QC211 Soil S20-Ja30180 Jan 22, 2020	QC212 Soil S20-Ja30181 Jan 22, 2020	QC213 Soil S20-Ja30182 Jan 22, 2020
Test/Reference	LOR	Unit	,	,	Í	,
% Moisture	1	%	84	8.9	12	8.4
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	6.0	< 5	5.3	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5

Client Sample ID			QC209	QC211	QC212	QC213
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Ja30178	S20-Ja30180	S20-Ja30181	S20-Ja30182
Date Sampled			Jan 21, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		_				
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	25	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	21	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	9.9	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	5.3	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	47	85	112	124
13C5-PFPeA (surr.)	1	%	55	91	110	113
13C5-PFHxA (surr.)	1	%	90	123	179	165
13C4-PFHpA (surr.)	1	%	96	120	172	170
13C8-PFOA (surr.)	1	%	87	109	162	166
13C5-PFNA (surr.)	1	%	66	75	111	115
13C6-PFDA (surr.)	1	%	81	101	165	156
13C2-PFUnDA (surr.)	1	%	59	74	95	104
13C2-PFDoDA (surr.)	1	%	60	74	96	100
13C2-PFTeDA (surr.)	1	%	51	75	111	115
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)N11	5	ug/kg	< 5	< 5	5.3	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)N11	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	5.7	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	9.2	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	89	105	127	146
D3-N-MeFOSA (surr.)	1	%	65	72	66	101
D5-N-EtFOSA (surr.)	1	%	88	78	81	95
D7-N-MeFOSE (surr.)	1	%	93	92	96	135
D9-N-EtFOSE (surr.)	1	%	94	45	42	68
D5-N-EtFOSAA (surr.)	1	%	56	75	91	96
D3-N-MeFOSAA (surr.)	1	%	61	73	84	96
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	N098.6	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	N0910	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	8.3	N0955	N09160	28
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	N0923	N0914	< 5
13C3-PFBS (surr.)	1	%	81	96	114	120
18O2-PFHxS (surr.)	1	%	79	82	104	109
13C8-PFOS (surr.)	1	%	74	75	81	103

Client Sample ID Sample Matrix			QC209 Soil	QC211 Soil	QC212 Soil	QC213 Soil
Eurofins Sample No.			S20-Ja30178	S20-Ja30180	S20-Ja30181	S20-Ja30182
Date Sampled			Jan 21, 2020	Jan 22, 2020	Jan 22, 2020	Jan 22, 2020
Test/Reference	LOR	Unit				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	12	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	115	144	INT	191
13C2-6:2 FTSA (surr.)	1	%	89	121	INT	144
13C2-8:2 FTSA (surr.)	1	%	57	62	118	96
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	8.3	55	170	28
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	8.3	55	185	28
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	8.3	55	195	28
Sum of WA DWER PFAS (n=10)*	10	ug/kg	14.3	55	212.3	28
Sum of PFASs (n=30)*	50	ug/kg	< 50	86.6	267.8	< 50

Client Sample ID			QC214	QC215	QC216
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Ja30183	S20-Ja30184	S20-Ja30185
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 23, 2020
Test/Reference	LOR	Unit			
% Moisture	1	%	7.2	4.1	14
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	109	117	132
13C5-PFPeA (surr.)	1	%	97	112	116
13C5-PFHxA (surr.)	1	%	141	164	179
13C4-PFHpA (surr.)	1	%	129	172	170
13C8-PFOA (surr.)	1	%	116	169	157
13C5-PFNA (surr.)	1	%	87	131	126
13C6-PFDA (surr.)	1	%	139	184	164
13C2-PFUnDA (surr.)	1	%	99	86	99
13C2-PFDoDA (surr.)	1	%	95	86	96
13C2-PFTeDA (surr.)	1	%	109	83	106

Client Sample ID			QC214	QC215	QC216
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Ja30183	S20-Ja30184	S20-Ja30185
Date Sampled			Jan 22, 2020	Jan 22, 2020	Jan 23, 2020
•	LOB	Linit	Jan 22, 2020	Jan 22, 2020	Jan 23, 2020
Test/Reference Perfluoroalkyl sulfonamido substances	LOR	Unit			
-		//			
Perfluorooctane sulfonamide (FOSA) ^{N11} N-methylperfluoro-1-octane sulfonamide (N-	5	ug/kg	< 5	< 5	< 5
MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	136	104	131
D3-N-MeFOSA (surr.)	1	%	104	41	77
D5-N-EtFOSA (surr.)	1	%	101	42	79
D7-N-MeFOSE (surr.)	1	%	111	116	175
D9-N-EtFOSE (surr.)	1	%	79	28	58
D5-N-EtFOSAA (surr.)	1	%	92	86	100
D3-N-MeFOSAA (surr.)	1	%	87	85	98
Perfluoroalkyl sulfonic acids (PFSAs)				_	
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15} Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5 5	ug/kg	< 5 < 5	< 5 < 5	< 5 < 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg ug/kg	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	N0918	N0937	N0931
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	113	107	112
18O2-PFHxS (surr.)	1	%	99	102	107
13C8-PFOS (surr.)	1	%	101	96	102
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		,,,			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	88	INT	INT
13C2-6:2 FTSA (surr.)	1	%	60	INT	INT
13C2-8:2 FTSA (surr.)	1	%	72	142	119
PFASs Summations					
Sum (PFHxS + PFOS)*	5	ug/kg	18	37	31
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	18	37	31
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	18	37	31
Sum of WA DWER PFAS (n=10)*	10	ug/kg	18	37	31
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Moisture	Brisbane	Jan 30, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 31, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 31, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 31, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 31, 2020	180 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PEAS)			

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

M Pe

Australia

Melbourne

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #: 699303 Phone: 02 9994 8016

03 9606 0074 Fax:

Sydney

Contact Name: Lucinda Trickey

Eurofins Analytical Services Manager: Ursula Long

5 Day

New Zealand

Jan 30, 2020 2:53 PM

Feb 6, 2020

		Sa	mple Detail			oisture Set	er- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			
Sydr	ney Laboratory	- NATA Site # 1	8217				
Bris	bane Laborator	y - NATA Site #	20794			Х	Х
Pert	h Laboratory - N	NATA Site # 237	36				
Exte	rnal Laboratory	'					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	QC204	Jan 18, 2020		Water	S20-Ja30173		Х
2	QC205	Jan 20, 2020		Soil	S20-Ja30174	Х	Х
3	QC206	Jan 20, 2020		Soil	S20-Ja30175	Х	Х
4	QC207	Jan 20, 2020		Soil	S20-Ja30176	Х	Х
5	QC208	Jan 21, 2020		Soil	S20-Ja30177	Х	Х
6	QC209	Jan 21, 2020		Soil	S20-Ja30178	Х	Х
7	QC210	Jan 21, 2020		Water	S20-Ja30179		Х
8	QC211	Jan 22, 2020		Soil	S20-Ja30180	Х	Х
9	QC212	Jan 22, 2020		Soil	S20-Ja30181	Х	Х
10	QC213	Jan 22, 2020		Soil	S20-Ja30182	Х	Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #: Phone:

699303 02 9994 8016

03 9606 0074 Fax:

Received: Jan 30, 2020 2:53 PM Due: Feb 6, 2020

Priority: 5 Day

Lucinda Trickey **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail						Per- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			
Sydr	ney Laboratory	- NATA Site # 18	8217				
Brisl	oane Laborator	y - NATA Site#	20794			Χ	Х
Perti	n Laboratory - N	IATA Site # 237	36				
11	QC214	Jan 22, 2020		Soil	S20-Ja30183	Х	Х
12	QC215	Jan 22, 2020		Soil	S20-Ja30184	Х	Х
13	QC216	Jan 23, 2020		Soil	S20-Ja30185	Х	Х
14	QC217	Jan 23, 2020		Water	S20-Ja30186		Х
Test	Counts					11	14

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	4	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	- 5- 5	,		-		
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg ug/kg	< 10		10	Pass	
Method Blank	ug/kg	<u> </u>		10	1 433	
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)		< 5		5	Pass	
` '	ug/kg			5 5		
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		ວ	Pass	
Method Blank		Г				
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					Dana	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10		10	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery		т т				
Perfluoroalkyl carboxylic acids (PFCAs)	0/			50.450	D	
Perfluorobutanoic acid (PFBA)	%	96		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	100		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	101		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	91		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	105		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	106		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	94		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	107		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	97		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	103		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	106		50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA)		%	95	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)			%	102	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamio	de (N-EtFOSA)		%	98	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	l-	%	80	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	tFOSE)	%	91	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC	DSAA)	%	104	50-150	Pass	
N-methyl-perfluorooctanesulfonamid	oacetic acid (N-Me	eFOSAA)	%	106	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonic acids (PFS/	As)						
Perfluorobutanesulfonic acid (PFBS))		%	88	50-150	Pass	
Perfluorononanesulfonic acid (PFNS	5)		%	97	50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	·S)		%	97	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	83	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	S)		%	89	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHp	oS)		%	93	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS))		%	89	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	89	50-150	Pass	
LCS - % Recovery							
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfon	ic acid (4:2 FTSA)		%	93	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni	ic acid (6:2 FTSA)		%	122	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon			%	91	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulf			%	98	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	M20-Ja32025	NCP	%	94	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ja32025	NCP	%	102	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ja32025	NCP	%	112	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ja32025	NCP	%	97	50-150	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja32025	NCP	%	101	50-150	Pass	
Perfluorononanoic acid (PFNA)	M20-Ja32025	NCP	%	103	50-150	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ja32025	NCP	%	95	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ja32025	NCP	%	107	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ja32025	NCP	%	101	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ja32025	NCP	%	98	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ja32025	NCP	%	108	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide							
(FOSA) N-methylperfluoro-1-octane	M20-Ja32025	NCP	%	87	50-150	Pass	
sulfonamide (N-MeFOSA) N-ethylperfluoro-1-octane	M20-Ja32025	NCP	%	96	50-150	Pass	
sulfonamide (N-EtFOSA)	M20-Ja32025	NCP	%	86	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ja32025	NCP	%	74	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ja32025	NCP	%	84	50-150	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ja32025	NCP	%	97			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja32025	NCP	%	105			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	M20-Ja32025	NCP	%	84			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ja32025	NCP	%	110			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ja32025	NCP	%	100			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M20-Ja32025	NCP	%	88			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M20-Ja32025	NCP	%	92			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M20-Ja32025	NCP	%	101			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	M20-Ja32025	NCP	%	84			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	M20-Ja32025	NCP	%	105			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ja32025	NCP	%	71			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ja32025	NCP	%	120			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ja32025	NCP	%	111			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja32025	NCP	%	89			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	-CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M20-Ja32024	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M20-Ja32024	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				1	1				
Perfluoroalkyl sulfonic acids (PFS	As)	1	Г	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (ı	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M20-Ja32024	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M20-Ja32024	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Ja30181	CP	%	12	12	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

N09 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Ursula Long Analytical Services Manager Sarah McCallion Senior Analyst-PFAS (QLD)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to me ended rededlines and lost production arising from this record in other personal rededlines. And the rededlines and lost production arising from this record in other personal rededlines. And the rededlines are for the rededlines and to be introduced to arrive the rededlines. The rededlines are for the rededlines and to be introduced to arrive the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines are for the rededlines and to the rededlines are for the rededlines and to the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the redeal rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the rededlines and the rededlines are for the red

Senversa Pty Ltd NSW Level 5, The Grafton Bond Building, 201 Kent Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Lucinda Trickey

Report 699303-W

Project ID S17776
Received Date Jan 30, 2020

Client Sample ID			QC204	QC210	QC217
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-Ja30173	S20-Ja30179	S20-Ja30186
Date Sampled			Jan 18, 2020	Jan 21, 2020	Jan 23, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.03
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.11
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	0.02
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	N090.03
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	106	129	111
13C5-PFPeA (surr.)	1	%	87	100	86
13C5-PFHxA (surr.)	1	%	91	101	86
13C4-PFHpA (surr.)	1	%	85	99	83
13C8-PFOA (surr.)	1	%	99	105	84
13C5-PFNA (surr.)	1	%	91	98	90
13C6-PFDA (surr.)	1	%	93	102	76
13C2-PFUnDA (surr.)	1	%	132	144	139
13C2-PFDoDA (surr.)	1	%	89	111	92
13C2-PFTeDA (surr.)	1	%	97	139	90
Perfluoroalkyl sulfonamido substances		!			
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	136	143	117
D3-N-MeFOSA (surr.)	1	%	86	101	73
D5-N-EtFOSA (surr.)	1	%	88	108	71

Client Sample ID			QC204	QC210	QC217
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-Ja30173	S20-Ja30179	S20-Ja30186
Date Sampled			Jan 18, 2020	Jan 21, 2020	Jan 23, 2020
Test/Reference	LOR	Unit			
Perfluoroalkyl sulfonamido substances	1				
D7-N-MeFOSE (surr.)	1	%	73	99	67
D9-N-EtFOSE (surr.)	1	%	68	85	66
D5-N-EtFOSAA (surr.)	1	%	INT	INT	INT
D3-N-MeFOSAA (surr.)	1	%	INT	INT	INT
Perfluoroalkyl sulfonic acids (PFSAs)	•	•			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	0.01	0.11
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	0.04
Perfluoropentanesulfonic acid (PFPeS)N15	0.01	ug/L	< 0.01	< 0.01	0.10
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	^{N09} 0.74
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	< 0.01	< 0.01	N090.05
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	N090.01	< 0.01	1.5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	101	105	95
18O2-PFHxS (surr.)	1	%	107	108	81
13C8-PFOS (surr.)	1	%	92	95	119
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	117	119	107
13C2-6:2 FTSA (surr.)	1	%	176	145	154
13C2-8:2 FTSA (surr.)	1	%	121	126	121
PFASs Summations					
Sum (PFHxS + PFOS)*	0.01	ug/L	0.01	< 0.01	2.24
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	0.01	< 0.01	1.53
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	0.01	< 0.01	2.27
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05	2.54
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1	2.73

Page 2 of 11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jan 31, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

M Pe

Australia

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Senversa Pty Ltd NSW

Address: Level 5, The Grafton Bond Building, 201 Kent Street

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #: 699303 Phone: 02 9994 8016

03 9606 0074 Fax:

Eurofins Analytical Services Manager: Ursula Long

5 Day

New Zealand

Jan 30, 2020 2:53 PM

Feb 6, 2020

Lucinda Trickey

		Sa	mple Detail			oisture Set	er- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271			
Sydr	ney Laboratory	- NATA Site # 1	8217				
Bris	bane Laborator	y - NATA Site #	20794			Х	Х
Pert	h Laboratory - I	NATA Site # 237	36				
Exte	rnal Laboratory	/					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	QC204	Jan 18, 2020		Water	S20-Ja30173		Х
2	QC205	Jan 20, 2020		Soil	S20-Ja30174	Х	Х
3	QC206	Jan 20, 2020		Soil	S20-Ja30175	Х	Х
4	QC207	Jan 20, 2020		Soil	S20-Ja30176	Х	Х
5	QC208	Jan 21, 2020		Soil	S20-Ja30177	Х	Х
6	QC209	Jan 21, 2020		Soil	S20-Ja30178	Х	Х
7	QC210	Jan 21, 2020		Water	S20-Ja30179		Х
8	QC211	Jan 22, 2020		Soil	S20-Ja30180	Х	Х
9	QC212	Jan 22, 2020		Soil	S20-Ja30181	Х	Х
10	QC213	Jan 22, 2020		Soil	S20-Ja30182	X	Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #: Phone:

699303 02 9994 8016

03 9606 0074 Fax:

Received: Jan 30, 2020 2:53 PM

Due: Feb 6, 2020 **Priority:** 5 Day

Lucinda Trickey **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		San	nple Detail			Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)
Melk	ourne Labora	tory - NATA Site#	1254 & 142	71			
Sydı	ney Laborator	y - NATA Site # 18	217				
Bris	bane Laborato	ory - NATA Site # 2	20794			Х	Х
Pert	h Laboratory -	NATA Site # 2373	36				
11	QC214	Jan 22, 2020		Soil	S20-Ja30183	Х	Х
12	QC215	Jan 22, 2020		Soil	S20-Ja30184	Х	Х
13	QC216	Jan 23, 2020		Soil	S20-Ja30185	Х	Х
14	QC217	Jan 23, 2020		Water	S20-Ja30186		Х
Test	Counts					11	14

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank					
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-		< 0.05	0.05		
MeFOSE)	ug/L		0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05		Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank		Т			-
Perfluoroalkyl sulfonic acids (PFSAs)	"	0.04	0.04	_	
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01	0.01	Pass	
Method Blank					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05	0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	88	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	107	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	110	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	107	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	97	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	122	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	104	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	114	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	127	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	94	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	131	50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA	۸)		%	91	50-150	Pass	
N-methylperfluoro-1-octane sulfonar	mide (N-MeFOSA)		%	113	50-150	Pass	
N-ethylperfluoro-1-octane sulfonami	de (N-EtFOSA)		%	101	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)			%	118	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)			%	109	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)			110	50-150	Pass	
N-methyl-perfluorooctanesulfonamic	loacetic acid (N-Me	eFOSAA)	%	110	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)						
Perfluorobutanesulfonic acid (PFBS))		%	85	50-150	Pass	
Perfluorononanesulfonic acid (PFNS	S)		%	68	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)			%	101	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	97	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx			%	90	50-150	Pass	
Perfluoroheptanesulfonic acid (PFH)			%	95	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	·			101	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)			%	62	50-150	Pass	
LCS - % Recovery	,						
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfor	%	94	50-150	Pass			
<u> </u>	1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)				50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfor			%	117 121	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul			%	96	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	-CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	B20-Ja31306	NCP	%	87	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Ja31306	NCP	%	110	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Ja31306	NCP	%	112	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Ja31306	NCP	%	107	50-150	Pass	
Perfluorooctanoic acid (PFOA)	B20-Ja31306	NCP	%	95	50-150	Pass	
Perfluorononanoic acid (PFNA)	B20-Ja31306	NCP	%	120	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B20-Ja31306	NCP	%	103	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Ja31306	NCP	%	115	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Ja31306	NCP	%	121	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B20-Ja31306	NCP	%	99	50-150	Pass	
Perfluorotetradecanoic acid							
(PFTeDA)	B20-Ja31306	NCP	%	130	50-150	Pass	
Spike - % Recovery				Doort 4			
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	B20-Ja31306	NCP	%	95	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B20-Ja31306	NCP	%	118	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Ja31306	NCP	%	105	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Ja31306	NCP	%	116	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Ja31306	NCP	%	123	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Ja31306	NCP	%	122			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B20-Ja31306	NCP	%	93			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	B20-Ja31306	NCP	%	92			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B20-Ja31306	NCP	%	83			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B20-Ja31306	NCP	%	108			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B20-Ja31306	NCP	%	103			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Ja31306	NCP	%	100			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B20-Ja31306	NCP	%	96			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Ja31306	NCP	%	101			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B20-Ja31306	NCP	%	76			50-150	Pass	
Spike - % Recovery				T	1				
n:2 Fluorotelomer sulfonic acids (I	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Ja31306	NCP	%	93			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Ja31306	NCP	%	116			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Ja31306	NCP	%	123			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B20-Ja31306	NCP	%	102			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (PI	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	S20-Ja29797	NCP	ug/L	0.15	0.15	1.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	S20-Ja29797	NCP	ug/L	0.27	0.28	2.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	S20-Ja29797	NCP	ug/L	1.2	1.1	2.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	S20-Ja29797	NCP	ug/L	0.25	0.26	1.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	S20-Ja29797	NCP	ug/L	0.57	0.58	1.0	30%	Pass	
Perfluorononanoic acid (PFNA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	S20-Ja29797	NCP	ug/L	1.1	1.1	1.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	S20-Ja29797	NCP	ug/L	0.10	0.10	2.0	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	S20-Ja29797	NCP	ug/L	0.50	0.52	5.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	S20-Ja29797	NCP	ug/L	1.2	1.2	4.0	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Ja31291	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	S20-Ja29797	NCP	ug/L	0.62	0.64	3.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Ja31291	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				1	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)	1		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S20-Ja29797	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	S20-Ja29797	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

N09 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Ursula Long Analytical Services Manager Sarah McCallion Senior Analyst-PFAS (QLD)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to me ended rededlines and lost production arising from this record in other personal rededlines. And the rededlines and lost production arising from this record in other personal rededlines. And the rededlines are for the rededlines and to be introduced to arrive the rededlines. The rededlines are for the rededlines and to be introduced to arrive the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines and to the rededlines are for the rededlines and to the rededlines are for the rededlines and to the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the redeal rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the rededlines are for the rededlines and the rededlines are for the rededlines and the rededlines are for the rededlines are for the rededlines and the rededlines are for the red

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2005692 Work Order

: SENVERSA PTY LTD Client Laboratory : Environmental Division Sydney

Contact : LUCINDA TRICKEY Contact : Brenda Hong

Address : Level 5, Grafton Bond Building 201 Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Kent Street SYDNEY NSW 2000

E-mail : lucinda.trickey@senversa.com.au : Brenda.Hong@ALSGlobal.com

: +61 03 9606 0070 Telephone : +61 2 8784 8555 Telephone Facsimile **Facsimile** : +61 03 9606 0074 : +61-2-8784 8500

Project : S17776 PSI Page · 1 of 3

Order number Quote number : ES2019SENVER0020 (SY/665/19) C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Site Sampler : LT/CW

Dates

E-mail

Date Samples Received : 29-Jan-2020 16:45 Issue Date : 19-Feb-2020 Scheduled Reporting Date : 25-Feb-2020 Client Requested Due 25-Feb-2020

Date

Delivery Details

Mode of Delivery Security Seal : Samples On Hand : Not Available

No. of coolers/boxes **Temperature** : 4.1 : 28 / 28 Receipt Detail No. of samples received / analysed

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- This is a rebatch of ES2002806, ES2002803, ES2002810, ES2002812, ES2002810, ES2002829 &
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 19-Feb-2020

Page

2 of 3 ES2005692 Amendment 0 Work Order Client : SENVERSA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

(28 analytes)

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Watrix. SOIL			- EN60	EP23
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - EN60 Deionised M	SOIL - I PFAS -
ES2005692-001	21-Jan-2020 00:00	A_SS02	✓	✓
ES2005692-002	21-Jan-2020 00:00	A_SS06	✓	✓
ES2005692-003	22-Jan-2020 00:00	A_SS11	✓	✓
ES2005692-004	22-Jan-2020 00:00	A_SS13	✓	✓
ES2005692-005	22-Jan-2020 00:00	A_SS19	✓	✓
ES2005692-006	22-Jan-2020 00:00	A_SS20	✓	✓
ES2005692-007	22-Jan-2020 00:00	A_SS22	✓	✓
ES2005692-008	22-Jan-2020 00:00	A_SS23	✓	1
ES2005692-009	22-Jan-2020 00:00	A_SS24	✓	1
ES2005692-010	22-Jan-2020 00:00	A_SS28	✓	1
ES2005692-011	22-Jan-2020 00:00	A_SS30	✓	1
ES2005692-012	22-Jan-2020 00:00	A_SS34	✓	1
ES2005692-013	22-Jan-2020 00:00	A_SS38	✓	1
ES2005692-014	22-Jan-2020 00:00	A_SS45	✓	1
ES2005692-015	22-Jan-2020 00:00	A_SS54	✓	1
ES2005692-016	23-Jan-2020 00:00	A_SS58	✓	1
ES2005692-017	23-Jan-2020 00:00	A_SS62	✓	1
ES2005692-018	22-Jan-2020 00:00	A_SD01	✓	1
ES2005692-019	22-Jan-2020 00:00	QC112	✓	1
ES2005692-020	20-Jan-2020 00:00	QC106	✓	1
ES2005692-021	20-Jan-2020 00:00	CHAP_SS02	✓	1
ES2005692-022	20-Jan-2020 00:00	AD_SD09	✓	1
ES2005692-023	20-Jan-2020 00:00	AD_SD10	✓	1
ES2005692-024	20-Jan-2020 00:00	MC_SD03	✓	✓
ES2005692-025	20-Jan-2020 00:00	MC_SD04	✓	✓
ES2005692-026	20-Jan-2020 00:00	MC_SD08	✓	✓
ES2005692-027	21-Jan-2020 00:00	ID011_SD02	✓	1
ES2005692-028	21-Jan-2020 00:00	ID012_SD01	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 19-Feb-2020

Page

3 of 3 ES2005692 Amendment 0 Work Order Client : SENVERSA PTY LTD

Requested Deliverables

LUCINDA TRICKEY

- *AU Certificate of Analysis - NATA (COA)	Email	lucinda.trickey@senversa.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucinda.trickey@senversa.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucinda.trickey@senversa.com.au
- A4 - AU Tax Invoice (INV)	Email	lucinda.trickey@senversa.com.au
- Chain of Custody (CoC) (COC)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucinda.trickey@senversa.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucinda.trickey@senversa.com.au

Tyler Cachia

17901

From:

Christopher Sandiford < Christopher. Sandiford @ Senversa.com.au > Wednesday, 19 February 2020 9:45 AM

Sent: To:

Tyler Cachia; Lucinda Trickey

Subject:

RE: [EXTERNAL] - Leachability analysis - 17776

Hi Tyler - Standard ASLP leach at neutral pH please. C

Christopher Sandiford

Principal Environmental Scientist / BSc(Hons), BGeomE, MEnv(EnvSc) Certified Environmental Practitioner - Site Contamination Specialist (CEnvP SC40061)

Senversa Pty Ltd Level 6, 15 William Street, Melbourne VIC 3000

m: +61 421 394 984 | e: christopher.sandiford@senversa.com.au

t: +61 3 9606 0070 | w: www.senyersa.com,au | www.linkedin.com/company/senversa

Note: This email and any attachments are for the intended recipient(s) only and may be confidential and/or privileged. Any opinions are those of the sender and not necessarily Senversa. If this email has been received in error, please delete all copies and contact the sender. Senversa accepts no liability for any consequences arising from the recipient's use of this email and/or the information contained in and/or attached.

Senversa management systems are certified to ISO 9001 (Quality) and OHSAS 18001 & ASNZS 4801 (Health and Safety) standards. Please consider the environment before printing this email. Senversa is a carbon neutral company and certified B Corp.

From: Tyler Cachia <tyler.cachia@ALSGlobal.com> Sent: Wednesday, 19 February 2020 9:42 AM

To: Lucinda Trickey < Lucinda. Trickey@senversa.com.au>

Cc: Christopher Sandiford < Christopher. Sandiford @ Senversa.com.au>

Subject: RE: [EXTERNAL] - Leachability analysis - 17776

Hi Lucinda,

Can you please confirm if this was a TCLP or ASLP leach?

Kind Regards,

Tyler Cachia

Client Services Coordinator, Environmental Sydney

<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 **D** +61 2 8784 8501

tyler.cachia@alsglobal.com 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail™ 00 - All EnviroMails™ in one convenient library.

Recent releases (click to access directly):

EnviroMail™ 127 – Bacterial Diversity Profiling in NGS

EnviroMail™ 128 - Revised PFAS Bottle Requirements

See how ALS is making sampling easier! Register your interest here.

Right Solutions · Right Partner www.alsglobal.com

From: Lucinda Trickey [mailto:Lucinda.Trickey@senversa.com.au]

Sent: Wednesday, 19 February 2020 9:36 AM
To: Tyler Cachia <tyler.cachia@ALSGlobal.com>

Cc: Christopher Sandiford < Christopher. Sandiford @ Senversa.com.au >

Subject: [EXTERNAL] - Leachability analysis - 17776

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Tyler,

Lucinda Trickey

Senior Environmental Engineer

Can we please get the following samples analysed for PFAS leachability (28 compounds) on 48 hour TAT

```
Batch ES2002806
<sup>1</sup>A_SS02, <sup>7</sup>A_SS06, A_SS11, A_SS13, A_SS19, A_SS20, A_SS22, A_SS23, A_SS24, A_SS28, A_SS30, A_SS34, A_SS38,
  A_SS45, A_SS54, A_SS58, A_SS62, A_SD01
                                                                   #2,6,11,13,19,20,22,23,24,28,30,34,38
 Batch ES2002803 -> 5685 - 686
                                                                    45, 51, 58, 62,64
19 QC112, QC106
                         #3,10
  Batch ES2002810 -> 5691.692
 CHAP_SS02
                       #12
                           5692
  Batch ES2002812 -
 AD SD09, AD SD10,
           23
  Batch ES2002810 -> 569-692
 MC_SD03, MC_SD04, MC_SD08
                                 *3,4,8
            25
  Batch ES2002829
                       > 5695
 ID011 SD02,
                         3695
  Batch ES2002830 -
 ID012 SD01,
 28
 Thank you
```

sonversa

Senversa Pty Ltd Level 6, 15 William Street, Melbourne VIC 3000

m: +61 424 172 065 | e: <u>lucinda.trickey@senversa.com.au</u> t: +61 3 9606 0070 | f: +61 3 9606 0074 | <u>www.senversa.com.au</u>

Note: This email and any attachments are for the intended recipient(s) only and may be confidential and/or privileged. Any opinions are those of the sender and not necessarily Senversa. If this email has been received in error, please delete all copies and contact the sender. Senversa accepts no liability for any consequences arising from the recipient's use of this email and/or the information contained in and/or attached.

Senversa management systems are certified to ISO 9001 (Quality) and OHSAS 18001 & ASNZS 4801 (Health and Safety) standards. Please consider the environment before printing this email. Senversa is a carbon neutral company and certified B Corp.

Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering. http://www.mailguard.com.au/mg

Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering. http://www.mailguard.com.au/mg

Report this message as spam

Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering. http://www.mailguard.com.au/mg

CERTIFICATE OF ANALYSIS

Work Order : ES2005692

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070
Project : \$17776 PSI

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : LT/CW

 Site
 : ---

Quote number : SY/665/19

No. of samples received : 28
No. of samples analysed : 28

Page : 1 of 21

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020 16:45

Date Analysis Commenced : 19-Feb-2020

Issue Date : 25-Feb-2020 17:18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

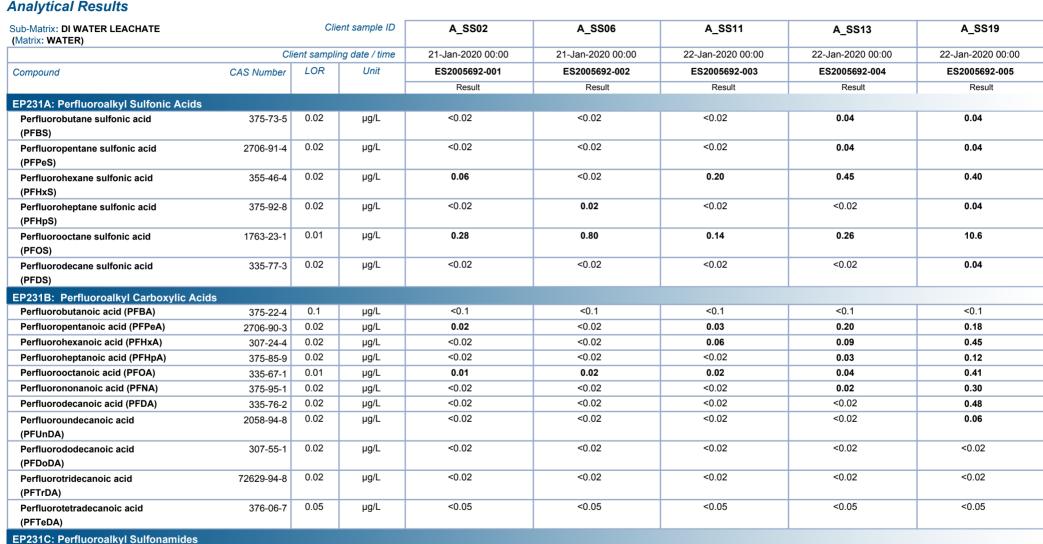
Page : 3 of 21 Work Order ES2005692

Client SENVERSA PTY LTD

S17776 PSI Project

Perfluorooctane sulfonamide

N-Methyl perfluorooctane


sulfonamide (MeFOSA)

N-Ethyl perfluorooctane

sulfonamide (EtFOSA)

(FOSA)

Analytical Results

< 0.02

<0.05

< 0.05

< 0.02

< 0.05

< 0.05

<0.02

<0.05

<0.05

0.07

< 0.05

< 0.05

< 0.02

< 0.05

< 0.05

0.02

0.05

0.05

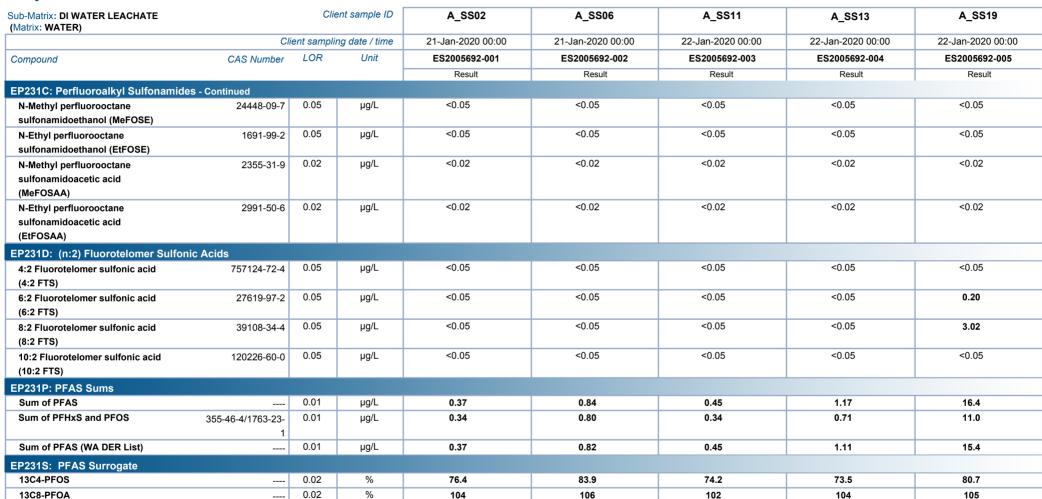
μg/L

μg/L

μg/L

754-91-6

31506-32-8


4151-50-2

Page : 4 of 21 Work Order : ES2005692

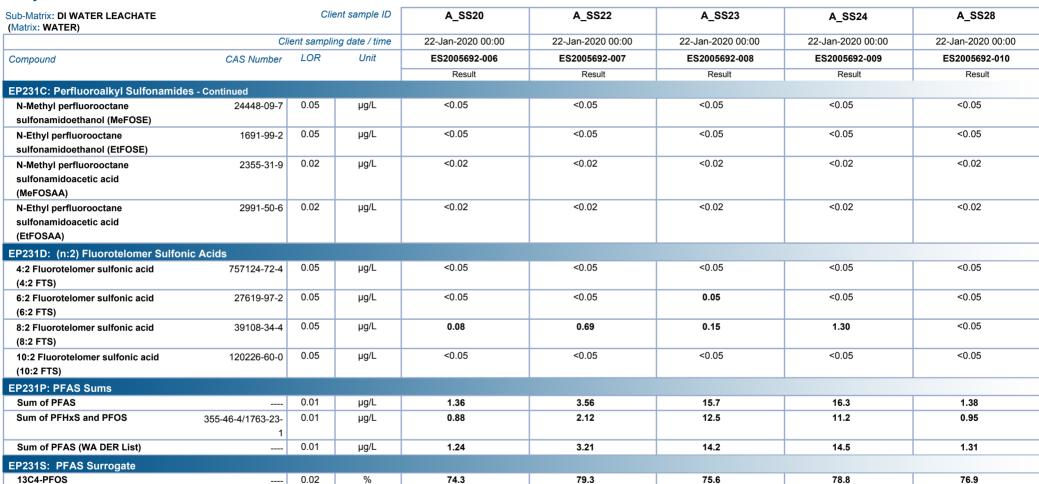
Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 5 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI


Page : 6 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

13C8-PFOA

105

104

105

103

%

104

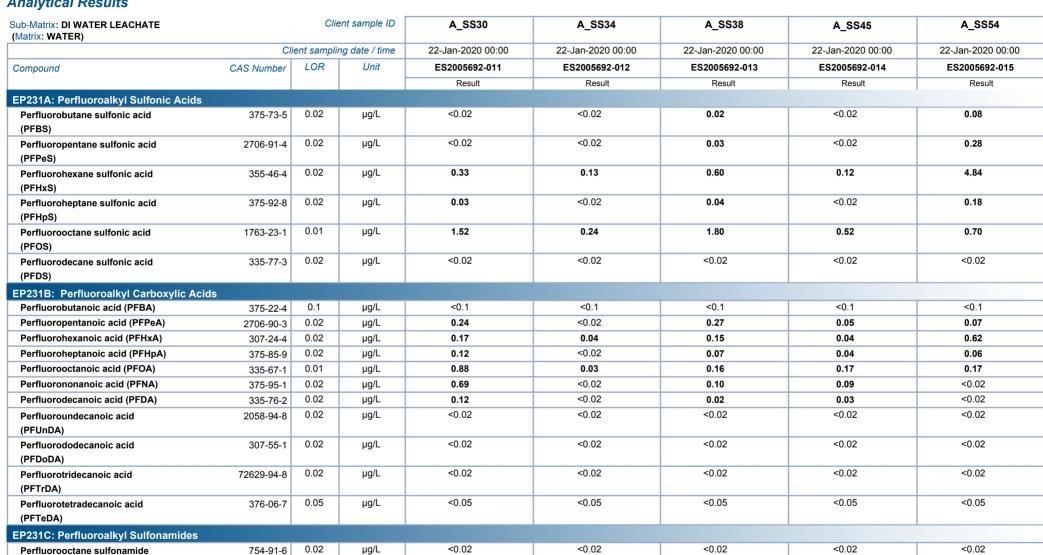
0.02

Page : 7 of 21 Work Order ES2005692

Client SENVERSA PTY LTD

S17776 PSI Project

Analytical Results


(FOSA)

N-Methyl perfluorooctane

sulfonamide (MeFOSA)

N-Ethyl perfluorooctane

sulfonamide (EtFOSA)

<0.05

< 0.05

< 0.05

< 0.05

<0.05

<0.05

< 0.05

< 0.05

< 0.05

< 0.05

0.05

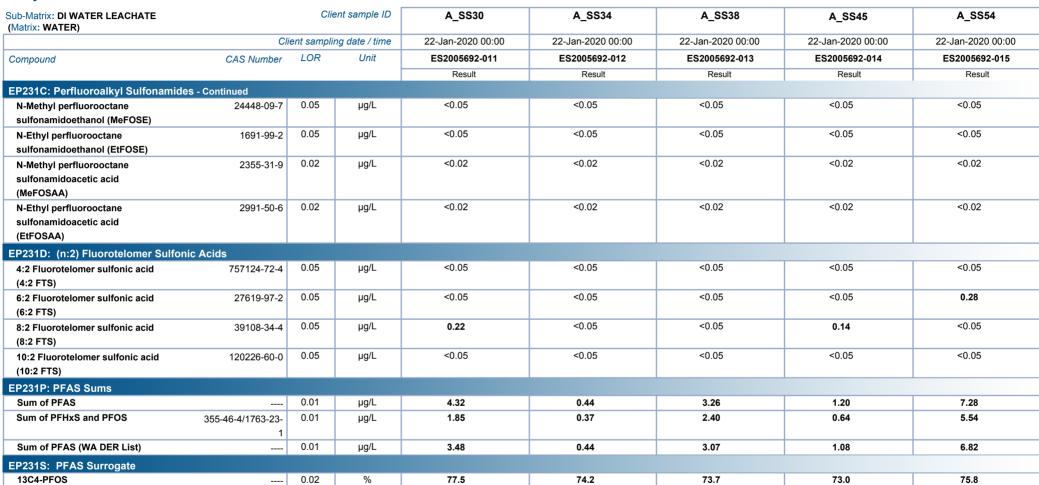
0.05

31506-32-8

4151-50-2

μg/L

μg/L


Page : 8 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

13C8-PFOA

104

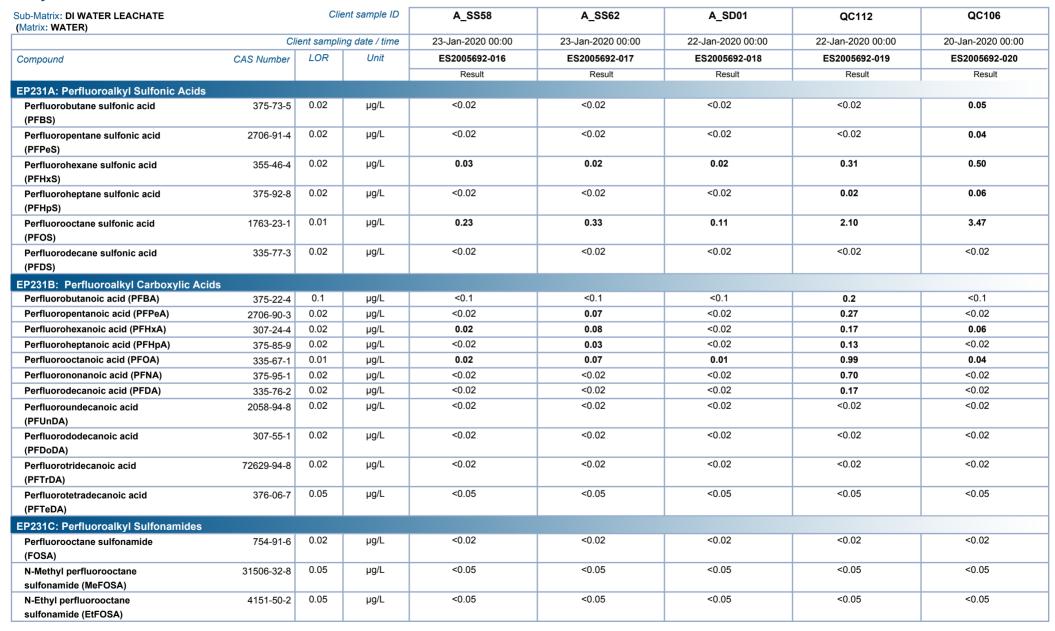
106

108

106

%

103


0.02

Page : 9 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 10 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI



Page : 11 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 12 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results

Sum of PFHxS and PFOS

Sum of PFAS (WA DER List)

EP231S: PFAS Surrogate

13C4-PFOS

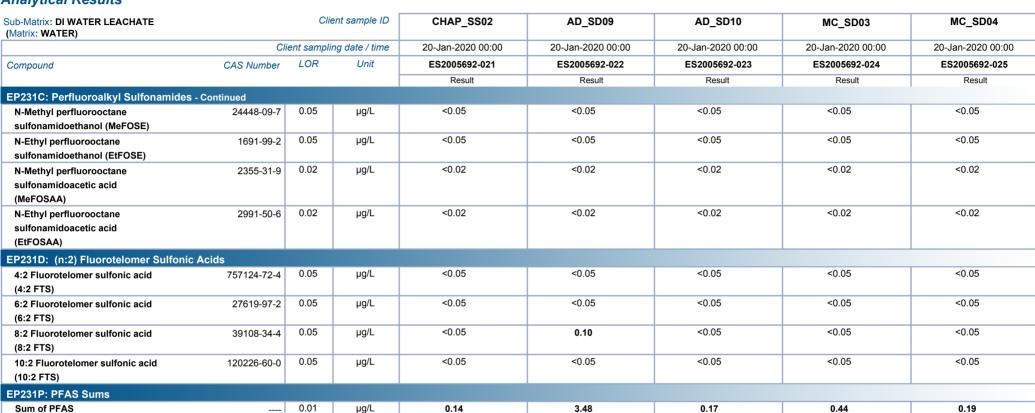
13C8-PFOA

355-46-4/1763-23-

0.01

0.01

0.02


0.02

μg/L

μg/L

%

%

2.58

3.16

96.9

96.0

0.17

0.17

97.2

94.8

0.37

0.42

94.1

96.5

0.19

0.19

96.5

95.0

0.14

0.14

101

94.9

Page : 13 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

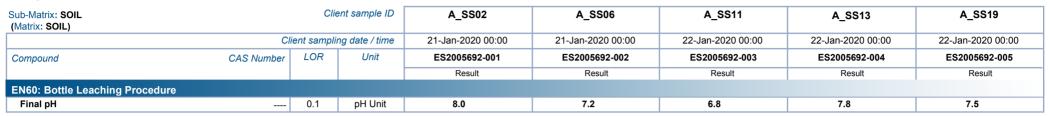
Project : S17776 PSI

Sub-Matrix: DI WATER LEACHATE [Matrix: WATER]		Clie	ent sample ID	MC_SD08	ID011_SD02	ID012_SD01	
·	CI	ient samplir	ng date / time	20-Jan-2020 00:00	21-Jan-2020 00:00	21-Jan-2020 00:00	
Compound	CAS Number	CAS Number LOR Unit		ES2005692-026	ES2005692-027	ES2005692-028	
•			-	Result	Result	Result	
P231A: Perfluoroalkyl Sulfonic Acids	;						
Perfluorobutane sulfonic acid	375-73-5	0.02	μg/L	0.06	<0.02	<0.02	
(PFBS)							
Perfluoropentane sulfonic acid	2706-91-4	0.02	μg/L	0.04	<0.02	<0.02	
(PFPeS)							
Perfluorohexane sulfonic acid	355-46-4	0.02	μg/L	0.54	<0.02	<0.02	
(PFHxS)							
Perfluoroheptane sulfonic acid	375-92-8	0.02	μg/L	0.06	<0.02	<0.02	
(PFHpS)							
Perfluorooctane sulfonic acid	1763-23-1	0.01	μg/L	3.73	0.22	<0.01	
(PFOS)							
Perfluorodecane sulfonic acid	335-77-3	0.02	μg/L	<0.02	<0.02	<0.02	
(PFDS)							
P231B: Perfluoroalkyl Carboxylic Ac	cids						
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	<0.1	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	<0.02	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	0.06	<0.02	<0.02	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	<0.02	
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.04	<0.01	<0.01	
Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	<0.02	
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	<0.02	
Perfluoroundecanoic acid	2058-94-8	0.02	μg/L	<0.02	<0.02	<0.02	
(PFUnDA)							
Perfluorododecanoic acid	307-55-1	0.02	μg/L	<0.02	<0.02	<0.02	
(PFDoDA)							
Perfluorotridecanoic acid	72629-94-8	0.02	μg/L	<0.02	<0.02	<0.02	
(PFTrDA)							
Perfluorotetradecanoic acid	376-06-7	0.05	μg/L	<0.05	<0.05	<0.05	
(PFTeDA)							
P231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide	754-91-6	0.02	μg/L	<0.02	<0.02	<0.02	
(FOSA)							
N-Methyl perfluorooctane	31506-32-8	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamide (MeFOSA)							
N-Ethyl perfluorooctane	4151-50-2	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamide (EtFOSA)							

Page : 14 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI



Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)	Client sample ID Client sampling date / time			MC_SD08	ID011_SD02	ID012_SD01	
				20-Jan-2020 00:00	21-Jan-2020 00:00	21-Jan-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2005692-026	ES2005692-027	ES2005692-028	
				Result	Result	Result	
EP231C: Perfluoroalkyl Sulfonamide	s - Continued						
N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoethanol (MeFOSE)							
N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	<0.05	
sulfonamidoethanol (EtFOSE)							
N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	<0.02	<0.02	<0.02	
sulfonamidoacetic acid							
(MeFOSAA)							
N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	<0.02	
sulfonamidoacetic acid							
(EtFOSAA)							
EP231D: (n:2) Fluorotelomer Sulfoni	c Acids						
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	μg/L	<0.05	<0.05	<0.05	
(4:2 FTS)							
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	μg/L	<0.05	<0.05	<0.05	
(6:2 FTS)							
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	μg/L	<0.05	<0.05	<0.05	
(8:2 FTS)							
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	μg/L	<0.05	<0.05	<0.05	
(10:2 FTS)							
EP231P: PFAS Sums							
Sum of PFAS		0.01	μg/L	4.53	0.22	<0.01	
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	μg/L	4.27	0.22	<0.01	
Sum of PFAS (WA DER List)		0.01	μg/L	4.43	0.22	<0.01	
EP231S: PFAS Surrogate							
13C4-PFOS		0.02	%	93.2	97.9	92.6	
13C8-PFOA		0.02	%	92.1	91.4	86.3	

Page : 15 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 16 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 17 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 18 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Page : 19 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

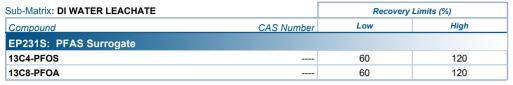
Analytical Results

Page : 20 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Analytical Results



Page : 21 of 21 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Surrogate Control Limits

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2005692** Page : 1 of 7

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +61 2 8784 8555

 Project
 : S17776 PSI
 Date Samples Received
 : 29-Jan-2020

 Site
 : --- Issue Date
 : 25-Feb-2020

Sampler : LT/CW No. of samples received : 28
Order number : ---- No. of samples analysed : 28

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7

Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES2005692005	A_SS19	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.
EP231D: (n:2) Fluorotelomer Sulfonic Acids	ES2005692005	A_SS19	8:2 Fluorotelomer	39108-34-4	Not		MS recovery not determined,
			sulfonic acid (8:2		Determined		background level greater than or
			FTS)				equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Sample Date	Ex	Extraction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EN60: Bottle Leaching Procedure								
Non-Volatile Leach: 180 day HT (e.g. P	PFAS, metals ex.Hg) (EN60-Dla)							
QC106,	CHAP_SS02,	20-Jan-2020	19-Feb-2020	18-Jul-2020	✓			
AD_SD09,	AD_SD10,							
MC_SD03,	MC_SD04,							
MC_SD08								
Non-Volatile Leach: 180 day HT (e.g. P	PFAS, metals ex.Hg) (EN60-DIa)							
A_SS02,	A_SS06,	21-Jan-2020	19-Feb-2020	19-Jul-2020	✓			
ID011_SD02,	ID012_SD01							
Non-Volatile Leach: 180 day HT (e.g. P	PFAS, metals ex.Hg) (EN60-Dla)							
A_SS11,	A_SS13,	22-Jan-2020	19-Feb-2020	20-Jul-2020	✓			
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SD01,							
QC112								
Non-Volatile Leach: 180 day HT (e.g. P	PFAS, metals ex.Hg) (EN60-DIa)							
A_SS58,	A_SS62	23-Jan-2020	19-Feb-2020	21-Jul-2020	✓			

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Page : 3 of 7
Work Order : ES2005692

Client : SENVERSA PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X)								
A_SS02,	A_SS06,	19-Feb-2020	21-Feb-2020	17-Aug-2020	✓	24-Feb-2020	17-Aug-2020	✓
A_SS11,	A_SS13,							
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SS58,							
A_SS62,	A_SD01							
HDPE (no PTFE) (EP231X)								
QC112,	QC106,	19-Feb-2020	25-Feb-2020	17-Aug-2020	✓	25-Feb-2020	17-Aug-2020	✓
CHAP_SS02,	AD_SD09,							
AD_SD10,	MC_SD03,							
MC_SD04,	MC_SD08,							
ID011_SD02,	ID012_SD01							
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X)								
A_SS02,	A_SS06,	19-Feb-2020	21-Feb-2020	17-Aug-2020	✓	24-Feb-2020	17-Aug-2020	✓
A_SS11,	A_SS13,							
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SS58,							
A SS62,	A_SD01							
HDPE (no PTFE) (EP231X)	-							
QC112,	QC106,	19-Feb-2020	25-Feb-2020	17-Aug-2020	✓	25-Feb-2020	17-Aug-2020	✓
CHAP_SS02,	AD_SD09,							
AD_SD10,	MC_SD03,							
MC_SD04,	MC_SD08,							
ID011 SD02,	ID012_SD01							

Page : 4 of 7
Work Order : ES2005692

Client : SENVERSA PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	e breach ; ✓ = With	in holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X)								
A_SS02,	A_SS06,	19-Feb-2020	21-Feb-2020	17-Aug-2020	✓	24-Feb-2020	17-Aug-2020	✓
A_SS11,	A_SS13,							
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SS58,							
A_SS62,	A_SD01							
HDPE (no PTFE) (EP231X)								
QC112,	QC106,	19-Feb-2020	25-Feb-2020	17-Aug-2020	✓	25-Feb-2020	17-Aug-2020	✓
CHAP_SS02,	AD_SD09,							
AD_SD10,	MC_SD03,							
MC_SD04,	MC_SD08,							
ID011_SD02,	ID012_SD01							
EP231D: (n:2) Fluorotelomer Sulfonic Acid	ds							
HDPE (no PTFE) (EP231X)								
A_SS02,	A_SS06,	19-Feb-2020	21-Feb-2020	17-Aug-2020	✓	24-Feb-2020	17-Aug-2020	✓
A_SS11,	A_SS13,							
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SS58,							
A SS62,	A SD01							
HDPE (no PTFE) (EP231X)								
QC112,	QC106,	19-Feb-2020	25-Feb-2020	17-Aug-2020	✓	25-Feb-2020	17-Aug-2020	✓
CHAP_SS02,	AD_SD09,							
AD_SD10,	MC_SD03,							
MC_SD04,	MC_SD08,							
ID011 SD02,	ID012 SD01							

Page : 5 of 7
Work Order : ES2005692

Client : SENVERSA PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	breach; ✓ = Withi	n holding tim
Method		Sample Date	E.	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X)								
A_SS02,	A_SS06,	19-Feb-2020	21-Feb-2020	17-Aug-2020	✓	24-Feb-2020	17-Aug-2020	✓
A_SS11,	A_SS13,							
A_SS19,	A_SS20,							
A_SS22,	A_SS23,							
A_SS24,	A_SS28,							
A_SS30,	A_SS34,							
A_SS38,	A_SS45,							
A_SS54,	A_SS58,							
A_SS62,	A_SD01							
HDPE (no PTFE) (EP231X)								
QC112,	QC106,	19-Feb-2020	25-Feb-2020	17-Aug-2020	✓	25-Feb-2020	17-Aug-2020	✓
CHAP_SS02,	AD_SD09,							
AD_SD10,	MC_SD03,							
MC_SD04,	MC_SD08,							
ID011 SD02,	ID012 SD01							

Page : 6 of 7 Work Order ES2005692

Client SENVERSA PTY LTD

S17776 PSI Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	entrol frequency	not within specification ; ✓ = Quality Control frequency within specificatio
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 7
Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Deionised Water Leach	EN60-Dla	SOIL	In house QWI-EN/60 referenced to AS4439.3 Preparation of Leachates
Solid Phase Extraction (SPE) for PFAS in water	ORG72	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Work Order : ES2005692

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 5, Grafton Bond Building 201 Kent Street

SYDNEY NSW 2000

Telephone : +61 03 9606 0070

Project : S17776 PSI

Order number : ---C-O-C number : ----

Sampler : LT/CW

Site : ----

Quote number : SY/665/19

No. of samples received : 28
No. of samples analysed : 28

Page : 1 of 11

Laboratory : Environmental Division Sydney

Contact : Brenda Hong

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 29-Jan-2020
Date Analysis Commenced : 19-Feb-2020

Issue Date : 25-Feb-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	alkyl Sulfonic Acids (Q0	C Lot: 2872240)							
ES2005692-004	A_SS13	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.26	0.31	17.2	0% - 20%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	0.04	0.04	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	0.04	0.04	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	0.45	0.46	2.19	0% - 20%
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
ES2005692-011	A_SS30	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	1.52	1.55	2.35	0% - 20%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	0.33	0.37	11.4	0% - 50%
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	0.03	0.04	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231A: Perfluoroa	alkyl Sulfonic Acids (Q0	C Lot: 2872245)							
EP2001631-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.05	0.05	0.00	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
ES2005692-024	MC_SD03	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	0.18	0.20	6.01	0% - 50%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	0.04	0.04	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	0.02	0.03	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	0.19	0.20	5.49	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit

Page : 3 of 11
Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2872240)							
ES2005692-004	A_SS13	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.04	0.04	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	0.20	0.21	0.00	0% - 50%
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	0.09	0.10	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	0.03	0.03	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	0.02	0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	0.1	0.00	No Limit
ES2005692-011	A_SS30	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.88	0.98	10.6	0% - 20%
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	0.24	0.26	10.3	0% - 50%
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	0.17	0.19	12.2	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	0.12	0.13	9.41	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	0.69	0.77	10.7	0% - 20%
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	0.12	0.14	12.6	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00 N 0.00 O 0.00 N 0.00 N 0.00 N 0.00 N 0.00 N 0.00 N 0.00 N 0.00 N 10.6 O 10.3 O 12.2 N 9.41 N 10.7 O 12.6 N 0.00 N	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 2872245)							
EP2001631-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
ES2005692-024	MC_SD03	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	0.01	<0.01	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit

Page : 4 of 11
Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory I	atory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)				
EP231B: Perfluoroa	lkyl Carboxylic Acids(QC Lot: 2872245) - continued											
ES2005692-024	MC_SD03	EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit				
EP231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2872240)											
ES2005692-004	A_SS13	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
ES2005692-011	A_SS30	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit				
EP231C: Perfluoroa	Ikyl Sulfonamides (QC	Lot: 2872245)											
EP2001631-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit				
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit				

Page : 5 of 11
Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroa	Ikyl Sulfonamides (QC	Lot: 2872245) - continued							
EP2001631-001	Anonymous	EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
ES2005692-024	MC_SD03	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
EP231D: (n:2) Fluor	rotelomer Sulfonic Acid	ls (QC Lot: 2872240)							
ES2005692-004	A_SS13	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit
ES2005692-011	A_SS30	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.14	96.1	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	0.22	0.23	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit
EP231D: (n:2) Fluor	rotelomer Sulfonic Acid	ls (QC Lot: 2872245)							
EP2001631-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit

Page : 6 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP231D: (n:2) Fluo	rotelomer Sulfonic Acid	ds (QC Lot: 2872245) - continued									
EP2001631-001	Anonymous	EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.00	No Limit		
ES2005692-024	MC_SD03	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit		
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	<0.05	0.00	No Limit		
EP231P: PFAS Sum	s (QC Lot: 2872240)										
ES2005692-004	A_SS13	EP231X: Sum of PFAS		0.01	μg/L	1.17	1.35	14.3	0% - 20%		
ES2005692-011	A_SS30	EP231X: Sum of PFAS		0.01	μg/L	4.32	4.82	10.9	0% - 20%		
EP231P: PFAS Sum	s (QC Lot: 2872245)										
EP2001631-001	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	0.05	0.05	0.00	No Limit		
ES2005692-024	MC_SD03	EP231X: Sum of PFAS		0.01	μg/L	0.44	0.47	6.59	0% - 20%		

Page : 7 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 287	2240)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	75.4	72.0	130	
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	73.8	71.0	127	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	80.0	68.0	131	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	87.4	69.0	134	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	69.0	65.0	140	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	95.2	53.0	142	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 287	(2245)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	0.25 μg/L	92.8	72.0	130	
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	0.25 μg/L	83.4	71.0	127	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	0.25 μg/L	78.8	68.0	131	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	0.25 μg/L	85.2	69.0	134	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 μg/L	80.6	65.0	140	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	0.25 μg/L	116	53.0	142	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot:	2872240)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	93.5	73.0	129	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	92.4	72.0	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	89.8	72.0	129	
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	86.8	72.0	130	
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	107	71.0	133	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	93.8	69.0	130	
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	76.4	71.0	129	
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	86.8	69.0	133	
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	92.0	72.0	134	
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	79.4	65.0	144	
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	128	71.0	132	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot:	2872245)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	1.25 μg/L	103	73.0	129	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	108	72.0	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	0.25 μg/L	95.4	72.0	129	
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	0.25 μg/L	108	72.0	130	
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 μg/L	116	71.0	133	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 μg/L	93.8	69.0	130	
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 μg/L	111	71.0	129	
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 μg/L	92.4	69.0	133	

Page : 8 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2872)	245) - continued								
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	0.25 μg/L	103	72.0	134	
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	0.25 μg/L	79.4	65.0	144	
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	0.625 μg/L	104	71.0	132	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2872240)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	94.0	67.0	137	
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	100	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	115	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	90.9	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	94.9	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	98.0	65.0	136	
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	94.8	61.0	135	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2872245)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	0.25 μg/L	103	67.0	137	
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	μg/L	<0.05	0.625 μg/L	103	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	μg/L	<0.05	0.625 μg/L	104	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	μg/L	<0.05	0.625 μg/L	91.6	70.0	130	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	μg/L	<0.05	0.625 μg/L	71.3	70.0	130	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	μg/L	<0.02	0.25 μg/L	111	65.0	136	
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	μg/L	<0.02	0.25 μg/L	96.0	61.0	135	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 28	372240)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	91.4	63.0	143	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	92.6	67.0	140	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	98.4	67.0	138	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	99.2	70.0	130	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 28	372245)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.25 μg/L	102	63.0	143	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.25 μg/L	105	67.0	140	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.25 μg/L	111	67.0	138	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	μg/L	<0.05	0.25 μg/L	116	70.0	130	

Page : 9 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Project : S17776 PSI

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				M	atrix Spike (MS) Report		
	A: Perfluoroalkyl Sulfonic Acids (QCLot: 2872240) A: Perfluoroalkyl Sulfonic Acids (QCLot: 2872245) A: Perfluoroalkyl Sulfonic Acids (QCLot: 2872245) A: Perfluoroalkyl Carboxylic Acids (QCLot: 2872245) B: Perfluoroalkyl Carboxylic Acids (QCLot: 2872240) B: Perfluoroalkyl Carboxylic Acids (QCLot: 2872240)			Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2872240)						
S2005692-005	A_SS19	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 μg/L	82.4	50.0	130
	_	EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.25 μg/L	80.8	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	73.0	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	89.4	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	# Not	50.0	130
					Determined		
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	95.8	50.0	130
P231A: Perfluoro	palkyl Sulfonic Acids (QCLot: 2872245)						
P2001631-002		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 μg/L	92.8	50.0	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.25 μg/L	88.0	50.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 μg/L	81.2	50.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.25 μg/L	86.0	50.0	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 μg/L	69.0	50.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.25 μg/L	107	50.0	130
P231B: Perfluor	palkyl Carboxylic Acids (QCLot: 2872240)						
	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 μg/L	108	50.0	130	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	94.2	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	93.2	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	97.8	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	111	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	109	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	84.0	50.0	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.25 μg/L	89.4	50.0	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.25 μg/L	93.4	50.0	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.25 μg/L	79.6	50.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.625 μg/L	125	50.0	150
P231B: Perfluor	palkyl Carboxylic Acids (QCLot: 2872245)						
P2001631-002	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	107	50.0	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 μg/L	113	50.0	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 μg/L	97.2	50.0	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 μg/L	114	50.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 μg/L	113	50.0	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.25 μg/L	89.0	50.0	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.25 μg/L	116	50.0	130

Page : 10 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

EP231B: Perfluoroalky EP2001631-002 And EP231C: Perfluoroalky	client sample ID cyl Carboxylic Acids (QCLot: 2872245) - continued consymous yl Sulfonamides (QCLot: 2872240) _SS19	EP231X: Perfluoroundecanoic acid (PFUnDA) EP231X: Perfluorodecanoic acid (PFDoDA) EP231X: Perfluorotridecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide (MeFOSA)	2058-94-8 307-55-1 72629-94-8 376-06-7 754-91-6 31506-32-8	Spike Concentration 0.25 μg/L 0.25 μg/L 0.25 μg/L 0.625 μg/L 0.625 μg/L	MS 101 110 88.6 102	50.0 50.0 50.0 50.0 50.0	130 130 130 130
P231B: Perfluoroalky	cyl Carboxylic Acids (QCLot: 2872245) - continued nonymous yl Sulfonamides (QCLot: 2872240)	EP231X: Perfluoroundecanoic acid (PFUnDA) EP231X: Perfluorododecanoic acid (PFDoDA) EP231X: Perfluorotridecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide	2058-94-8 307-55-1 72629-94-8 376-06-7 754-91-6	0.25 µg/L 0.25 µg/L 0.25 µg/L 0.625 µg/L	101 110 88.6	50.0 50.0 50.0	130 130 130
P231C: Perfluoroalky	yl Sulfonamides (QCLot: 2872240)	EP231X: Perfluorododecanoic acid (PFDoDA) EP231X: Perfluorotridecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide	307-55-1 72629-94-8 376-06-7 754-91-6	0.25 μg/L 0.25 μg/L 0.625 μg/L	110 88.6	50.0 50.0	130 130
P231C: Perfluoroalky	yl Sulfonamides (QCLot: 2872240)	EP231X: Perfluorododecanoic acid (PFDoDA) EP231X: Perfluorotridecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide	307-55-1 72629-94-8 376-06-7 754-91-6	0.25 μg/L 0.25 μg/L 0.625 μg/L	110 88.6	50.0 50.0	130 130
		EP231X: Perfluorotridecanoic acid (PFTrDA) EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide	72629-94-8 376-06-7 754-91-6	0.25 μg/L 0.625 μg/L	88.6	50.0	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA) EP231X: Perfluoroctane sulfonamide (FOSA) EP231X: N-Methyl perfluoroctane sulfonamide	376-06-7 754-91-6	0.625 μg/L			
		EP231X: Perfluorooctane sulfonamide (FOSA) EP231X: N-Methyl perfluorooctane sulfonamide	754-91-6	10	102	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamide		0.25 ug/L			
		EP231X: N-Methyl perfluorooctane sulfonamide		0.25 µg/L			
		EP231X: N-Methyl perfluorooctane sulfonamide			82.2	50.0	130
			3 13Ub-32-8	0.625 μg/L	104	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	122	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	111	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	110	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	99.2	50.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	103	50.0	130
P231C: Perfluoroalky	yl Sulfonamides (QCLot: 2872245)						
	nonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.25 μg/L	103	50.0	130
	•	EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.625 μg/L	107	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.625 μg/L	108	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.625 μg/L	92.0	50.0	150
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.625 μg/L	71.1	50.0	150
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.25 μg/L	108	50.0	130
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.25 μg/L	96.4	50.0	130
P231D: (n:2) Fluorot	telomer Sulfonic Acids (QCLot: 2872240)						
	SS19	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	103	50.0	130
, _ , _ , _ , _ , _ , _ , _ , _ , _ , _	= · · ·	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 μg/L	91.4	50.0	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 μg/L	# Not Determined	50.0	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 μg/L	96.0	50.0	130
P231D: (n:2) Fluorot	telomer Sulfonic Acids (QCLot: 2872245)						
• • • • • • • • • • • • • • • • • • • •	nonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 μg/L	109	50.0	130

Page : 11 of 11 Work Order : ES2005692

Client : SENVERSA PTY LTD

Sub-Matrix: WATER			Matrix Spike (MS) Report				
			Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound CAS Nu	umber Concentr	ntion MS	Low	High	
EP231D: (n:2) Fluc	protelomer Sulfonic Acids (QCLot: 2872245) - continue						
EP2001631-002	Anonymous	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 27619-	-97-2 0.25 μς	/L 109	50.0	130	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 39108-	-34-4 0.25 μ <u>ς</u>	/L 115	50.0	130	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) 120226	6-60-0 0.25 µç	/L 123	50.0	130	

#AU03_EnviroSampleBris

From:

#AU CAU001 EnviroSampleVic

Sent:

Wednesday, 19 February 2020 9:19 AM

To:

#AU03_EnviroSampleBris

Cc:

Harry Bacalis

Subject:

FW: Leachability analysis - 699303

Hi Brisbane,

Can you please log in the below samples IDs for ASLP PFASFULL? 20181 30175 Ja31075 and Ja30181, BSFE004, 016.

Please note - 2 DAY TAT

Thanks, Canh

Sample Receipt

Eurofins Environment Testing 6 Monterey Rd Dandenong South 3175

AUSTRALIA

Phone: +61 3 8564 5000

Email: EnviroSampleVic@eurofins.com Website: http://environment.eurofins.com.au

From: Harry Bacalis

Sent: Wednesday, 19 February 2020 10:14 AM

To: Lucinda Trickey

Cc: Christopher Sandiford; #AU_CAU001_EnviroSampleVic

Subject: RE: Leachability analysis - 699303

No worries Lucy

Canh – 2 DAY TAT – you will need to liaise with Brisbane with regards to this.

Kind regards,

Harry Bacalis

Phone: +61 3 8564 5064 Mobile: +61 438 858 924

Email: HarryBacalis@eurofins.com

Senversa Pty Ltd NSW Level 5, The Grafton Bond Building, 201 Kent Street SYDNEY NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Lucinda Trickey

 Report
 702872-L

 Project name
 PSI

 Project ID
 \$17776

 Received Date
 Feb 19, 2020

Client Sample ID			QC206	QC212
Sample Matrix			AUS Leachate	AUS Leachate
Eurofins Sample No.			B20-Fe24643	B20-Fe24644
Date Sampled			Jan 20, 2020	Jan 22, 2020
Test/Reference	LOR	Unit	,	
AUS Leaching Procedure	-	-		
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	5.0	5.0
pH (Leachate fluid)	0.1	pH Units	5.0	5.0
pH (off)	0.1	pH Units	5.0	5.0
Perfluoroalkyl carboxylic acids (PFCAs)				
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	0.21
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	0.24
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	0.05	0.17
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	0.02	0.13
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	0.03	0.65
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	0.35
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	0.06
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	112	97
13C5-PFPeA (surr.)	1	%	96	78
13C5-PFHxA (surr.)	1	%	101	91
13C4-PFHpA (surr.)	1	%	122	108
13C8-PFOA (surr.)	1	%	118	88
13C5-PFNA (surr.)	1	%	124	98
13C6-PFDA (surr.)	1	%	106	108
13C2-PFUnDA (surr.)	1	%	113	91
13C2-PFDoDA (surr.)	1	%	88	75
13C2-PFTeDA (surr.)	1	%	41	47
Perfluoroalkyl sulfonamido substances				
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05

Client Sample ID			QC206	QC212
Sample Matrix			AUS Leachate	AUS Leachate
Eurofins Sample No.			B20-Fe24643	B20-Fe24644
Date Sampled			Jan 20, 2020	Jan 22, 2020
Test/Reference	LOR	Unit		
Perfluoroalkyl sulfonamido substances	-			
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	99	88
D3-N-MeFOSA (surr.)	1	%	60	77
D5-N-EtFOSA (surr.)	1	%	55	77
D7-N-MeFOSE (surr.)	1	%	89	78
D9-N-EtFOSE (surr.)	1	%	82	83
D5-N-EtFOSAA (surr.)	1	%	101	85
D3-N-MeFOSAA (surr.)	1	%	101	68
Perfluoroalkyl sulfonic acids (PFSAs)				
Perfluorobutanesulfonic acid (PFBS)N11	0.01	ug/L	0.04	0.02
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS)N15	0.01	ug/L	0.02	< 0.01
Perfluoropentanesulfonic acid (PFPeS)N15	0.01	ug/L	^{N09} 0.04	N090.02
Perfluorohexanesulfonic acid (PFHxS)N11	0.01	ug/L	^{N09} 0.46	^{N09} 0.26
Perfluoroheptanesulfonic acid (PFHpS)N15	0.01	ug/L	^{N09} 0.04	^{N09} 0.01
Perfluorooctanesulfonic acid (PFOS)N11	0.01	ug/L	N092.3	^{N09} 0.81
Perfluorodecanesulfonic acid (PFDS)N15	0.01	ug/L	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	144	127
18O2-PFHxS (surr.)	1	%	124	118
13C8-PFOS (surr.)	1	%	92	89
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	0.12
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	66	73
13C2-6:2 FTSA (surr.)	1	%	96	93
13C2-8:2 FTSA (surr.)	1	%	89	72
PFASs Summations		1		
Sum (PFHxS + PFOS)*	0.01	ug/L	2.76	1.07
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	2.33	1.46
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	2.79	1.72
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	2.9	2.61
Sum of PFASs (n=30)*	0.1	ug/L	3	3.05

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
AUS Leaching Procedure	Brisbane	Feb 19, 2020	7 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Feb 19, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Feb 19, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Feb 19, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Feb 19, 2020	14 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PEAS)			

Report Number: 702872-L

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

Site # 1254 & 14271

| > | 111 |

Australia

NATA # 1261

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

702872

Brisbane

Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Senversa Pty Ltd NSW

Level 5, The Grafton Bond Building, 201 Kent Street

SYDNEY

NSW 2000

Project Name: Project ID:

PSI S17776 Order No.:

Report #:

Phone: 02 9994 8016

Sydney

03 9606 0074 Fax:

Received: Feb 19, 2020 9:19 AM Due: Feb 21, 2020

Priority: 2 Day

Contact Name: Lucinda Trickey

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			AUS Leaching Procedure	Per- and Polyfluoroalkyl Substances (PFASs)	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71				
Sydn	ey Laboratory	- NATA Site # 1	8217					
Brisk	oane Laboratory	y - NATA Site #	20794			Χ	Х	
Perth	n Laboratory - N	IATA Site # 237	36					
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	QC206	Jan 20, 2020		AUS Leachate	B20-Fe24643	Х	Χ	
2	QC212	Jan 22, 2020		AUS Leachate	B20-Fe24644	Χ	Χ	
Test	Counts					2	2	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05	0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01	0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01	0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01	0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01	0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01	0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01	0.01	Pass	
Method Blank					
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05	0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05	0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05	0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/L	< 0.05	0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/L	< 0.05	0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05	0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05	0.05	Pass	
Method Blank	ug/L	< 0.05	0.03	1 433	
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01	0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01	0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01	0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01	0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01	0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01	0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)		< 0.01	0.01	Pass	
` '	ug/L				
Perfluorodecanesulfonic acid (PFDS) Method Blank	ug/L	< 0.01	0.01	Pass	
		T T			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	//	.0.04	0.04	Dana	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.05	0.05	Pass	
'	ug/L	< 0.01	0.01	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01	0.01	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)	0/	05	50.450	D	
Perfluorobutanoic acid (PFBA)	%	95	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	92	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	102	50-150	Pass	-
Perfluoroheptanoic acid (PFHpA)	%	101	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	95	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	105	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	93	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	80	50-150	Pass	-
Perfluorododecanoic acid (PFDoDA)	%	85	50-150	Pass	-
Perfluorotridecanoic acid (PFTrDA)	%	78	50-150	Pass	-
Perfluorotetradecanoic acid (PFTeDA)	%	75	50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA	.)		%	87	50-150	Pass	
N-methylperfluoro-1-octane sulfonar	nide (N-MeFOSA)		%	77	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamie	de (N-EtFOSA)		%	75	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol (N	l-	%	76	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mido)-ethanol (N-E	EtFOSE)	%	79	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	acetic acid (N-EtFC	OSAA)	%	81	50-150	Pass	
N-methyl-perfluorooctanesulfonamid	loacetic acid (N-Me	eFOSAA)	%	88	50-150	Pass	
LCS - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)						
Perfluorobutanesulfonic acid (PFBS))		%	83	50-150	Pass	
Perfluorononanesulfonic acid (PFNS	5)		%	77	50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	·S)		%	83	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	eS)		%	89	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx			%	92	50-150	Pass	
Perfluoroheptanesulfonic acid (PFH)	•		%	90	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)			%	93	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	61	50-150	Pass	
LCS - % Recovery	<i>,</i>						
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfon	nic acid (4:2 FTSA)		%	60	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	94	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon	•		%	104	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesul			%	83	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	B20-Fe16065	NCP	%	86	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Fe16065	NCP	%	86	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Fe16065	NCP	%	93	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Fe16065	NCP	%	89	50-150	Pass	
Perfluorooctanoic acid (PFOA)	B20-Fe16065	NCP	%	94	50-150	Pass	
Perfluorononanoic acid (PFNA)	B20-Fe16065	NCP	%	93	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B20-Fe16065	NCP	%	87	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Fe16065	NCP	%	79	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Fe16065	NCP	%	78	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B20-Fe16065	NCP	%	77	50-150	Pass	
Perfluorotetradecanoic acid							
(PFTeDA)	B20-Fe16065	NCP	%	63	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	B20-Fe16065	NCP	%	77	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B20-Fe16065	NCP	%	68	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Fe16065	NCP	%	69	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Fe16065	NCP	%	64	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Fe16065	NCP	%	67	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Fe16065	NCP	%	74			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B20-Fe16065	NCP	%	81			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	B20-Fe16065	NCP	%	75			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B20-Fe16065	NCP	%	70			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B20-Fe16065	NCP	%	85			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B20-Fe16065	NCP	%	82			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Fe16065	NCP	%	87			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B20-Fe16065	NCP	%	72			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe16065	NCP	%	85			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B20-Fe16065	NCP	%	53			50-150	Pass	
Spike - % Recovery							I		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	1		Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Fe16065	NCP	%	83			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Fe16065	NCP	%	91			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Fe16065	NCP	%	100			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B20-Fe16065	NCP	%	71			50-150	Pass	
(10.2 F13A)		QA	/0				Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Perfluoroalkyl carboxylic acids (Pl	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B20-Fe23916	NCP	ug/L	0.09	0.09	2.0	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B20-Fe23916	NCP	ug/L	0.15	0.14	8.0	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B20-Fe23916	NCP	ug/L	0.87	0.86	1.0	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B20-Fe23916	NCP	ug/L	0.10	0.11	4.0	30%	Pass	
Perfluorooctanoic acid (PFOA)	B20-Fe23916	NCP	ug/L	0.24	0.24	2.0	30%	Pass	
Perfluorononanoic acid (PFNA)	B20-Fe23916	NCP	ug/L	0.52	0.50	2.0	30%	Pass	
Perfluorodecanoic acid (PFDA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B20-Fe23916	NCP	ug/L	0.06	0.06	3.0	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substances				Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B20-Fe23916	NCP	ug/L	0.26	0.24	8.0	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B20-Fe23916	NCP	ug/L	0.09	0.09	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B20-Fe23916	NCP	ug/L	0.10	0.11	2.0	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B20-Fe23916	NCP	ug/L	0.38	0.37	3.0	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B20-Fe16064	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B20-Fe23916	NCP	ug/L	0.34	0.33	2.0	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B20-Fe23916	NCP	ug/L	31	30	4.0	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B20-Fe23916	NCP	ug/L	0.02	0.02	11	30%	Pass	
Duplicate				i	1				
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)	1		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B20-Fe23916	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B20-Fe23916	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

N09 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Ursula Long Analytical Services Manager Sarah McCallion Senior Analyst-PFAS (QLD)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix L: Data Validation

Appendix L: Quality Assurance / Quality Control

The data quality assurance and control (QA/QC) procedures adopted by Senversa provide a consistent approach to evaluation of whether the data quality objectives (DQO's) required by the project have been achieved. The process focuses on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated. The approach is generally based on guidance from the following sources:

- Australian Standard (AS) 4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds.
- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B2: Guideline on Site Characterisation.
- NEPC National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B3: Guideline on Laboratory Analysis of Potentially Contaminated Soils.
- United States Environmental Protection Agency (USEPA) Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4).
- USEPA Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8).

Quality Assurance Procedure

The following data quality objectives, measures and acceptance criteria were adopted to verify compliance with the planned QA procedures:

Quality Assurance Process	Data Quality Element	Objectives and Measure	Acceptance Criteria		
Standard Procedures	Comparability, Reproducibility, Representativeness	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used		
Equipment Calibration	Accuracy	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications		
Testing Method Accreditation	Accuracy and Comparability	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined		
Quality Control	Precision and	Field QC sampling frequency	Field Duplicates – ≥ 1 in 20 primary samples		
Sampling Frequency	Repeatability	in accordance with AS4482.1-2005	Secondary Duplicates – ≥ 1 in 20 primary samples		
			Rinsate Blanks – ≥ 1 per day, per matrix per equipment		
			Trip Blanks – ≥ 1 per esky containing samples for volatile analyses		

Quality Assurance Process	Data Quality Element	Objectives and Measure	Acceptance Criteria
	Accuracy, Precision and Comparability	Laboratory QC analysis frequency in accordance with NEPC (2013), Schedule B3	Laboratory Duplicates – at least 1 in 10 analyses or one per process batch Method Blanks – at least 1 per process batch
			Surrogate Recoveries – all samples spiked where appropriate (e.g. chromatographic analysis of organics)
			Laboratory Control Samples – at least 1 per process batch
			Matrix Spikes – at least 1 per matrix type per process batch
Sample Preservation, Handling and Holding Times	Accuracy	Samples appropriately preserved upon collection , stored and transported, and analysed within holding times	Sample containers, holding times and preservation in accordance laboratory specific method requirements.
Data Management	Accuracy	No errors in data transcription	Entry of field data verified by peer.
Data Useability	Completeness	Limits of reporting less than adopted beneficial use investigation levels. Sample volumes and analytical methods selected to enable required limits of reporting to be achieved	Limits of reporting less than investigation levels.

Quality Control Sampling and Analysis

The following data quality objectives, measures and acceptance criteria were adopted to evaluate the validity of the analytical data produced.

Quality Control Process	Data Quality Element	Objectives and Measure	Acceptance Criteria
Field Duplicate Sampling and Analysis	Precision and Field Repeatability	Field duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess level of precision.	Analysed for same chemicals as primary sample RPD1 <30% of mean concentration where both concentrations >20 x limit of reporting RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting RPD - No limit where both concentrations < 10 x limit of reporting
Secondary Duplicate Sampling and Analysis	Accuracy	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory	Analysed for same chemicals as primary sample RPD <30% of mean concentration where both concentrations >20 x limit of reporting RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting RPD - No limit where both concentrations < 10 x limit of reporting

¹ Relative Percent Difference (%): Calculated as: (Result No.1 – Result No. 2/Mean Result)*100

Quality Control Process	Data Quality Element	Objectives and Measure	Acceptance Criteria		
Field Rinsate Blank Preparation and Analysis	Accuracy and Representativeness	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment. Rinsate blank samples prepared for each sampling procedure. Where possible the rinsate blanks are prepared immediately after sampling locations known to contain concentrations of the chemicals of concern above the limit of quantification and / or before sampling locations where the chemicals being targeted in the laboratory analysis are to be compared to investigation levels near the limit of quantification of the chemical.	Analyte concentrations below limits of reporting		
Trip Blank Sampling and Analysis	Accuracy and Representativeness	Cross contamination between samples does not occur in transit or as an artefact of the sample handling procedure. Trip blank samples prepared by the laboratory which accompany the empty sampling containers from the laboratory to the sampling site, and return with the samples to the laboratory to assess whether cross contamination occurs between samples or as an artefact of the sampling procedure.	Analyte concentrations below limits of reporting		
Laboratory QC Analysis	Laboratory Precision and	Laboratory duplicates	As specified by the laboratory.		
Allalysis	Accuracy	Laboratory control spike	Dynamic recovery limits as specified by the laboratory.		
		Certified reference material	As specified by the laboratory (generally dynamic recovery limits).		
		Surrogate recovery	Dynamic recovery limits as specified by the laboratory.		
		Matrix spike recovery	Recovery 70% – 130% or dynamic recovery limits specified by laboratory. However note that recovery of phenols is generally significantly lower and a recovery in the range 20% to 130% is considered acceptable by most laboratories.		
		Matrix spike recovery duplicate	RPD < 30%, or as specified by the laboratory.		

Data Verification and Validation

The data validation process involved the checking of analytical procedure compliance with acceptance criteria and an assessment of the accuracy and precision of analytical data from the range of quality control indicators generated from both the sampling and analytical programmes.

The checks undertaken are summarised in the attached data validation checklist tables (one table per sample batch/delivery group). Field replicate and field blank analytical results relevant to the project are summarised in **Table L-1**, **Table L-2** and **Table L-3**.

Instances where the data quality acceptance criteria were not achieved are discussed below:

Quality Control Duplicate Frequency and Results

The laboratory reports were issued in 29 batches to assist with individual private property results delivery; however, the quality control samples were collected for the project as an entirety rather than a per batch basis. The table below demonstrates that the frequency of duplicate samples collected is consistent with the 1 in 10 proposed.

Sample Type	Number of Samples Analysed	Number of duplicate pairs collected*		Number of blank samples collected			
		Number	Rate (1 in 10)	Number of rinsate blanks	Number of field blanks	Number of trip blanks	
Soil	73	11	1 pair of duplicate samples per 9.81	3 Rinsate collected	3	N/A	
Sediment Samples	35	_	primary samples	off trowel on days when used.	2 blanks collected off		
Water	56	8	1 pair of duplicate samples per 7 primary samples	0 No equipment used during sampling	−clean glove. 1 collected off clean bailer.		

RPDs for soil (**Table L-1**) and for water (**Table L-2**) were within the defined acceptable limits except for the following:

- Moisture between primary sample AD_SD04 and both the intra and interlaboratory duplicates
 QC107 and QC207 and between primary sample A_SS03 and interlaboratory duplicate QC108
 with RPD values of 48, 43 and 71 respectively.
- PFHxS between primary samples and both inter and interlaboratory duplicates for five quality control pairs (A_SS03 and QC208, ID012_SD01 and QC209, A_SS20 and QC111 and QC211, A SS50 and QC114) ranging from an RPD value of 31 to 74.
- PFOS between primary samples and both inter and interlaboratory duplicates for five quality control pairs (MC_SD08 and QC206, SD012_SD01 and QC109, A_SS20 and QC211, A_SS30 and QC112, A_SS52 and QC215) ranging from an RPD value of 38 to 64.
- PFPeS between primary sample ID012_SD01 and interlaboratory duplicate QC109 with an RPD value of 169.
- High RPD values ranging from 32 to 47 exist for several PFAS compounds for primary water sample PWS_AIRPORT_BORE and both inter and interlaboratory duplicates.

Majority of the high RPD non-conformances exist for soil and sediment samples which are likely due to the heterogeneity of the sample. The high RPD values for the airport bore sample are all below 50 and are not considered to affect the overall validity of the analytical data.

Rinsate Blanks

As per **Table L-3**, all results were below detection limits indicating cross contamination between samples is unlikely.

Trip Blanks

Trip blanks were not collected as part of this investigation to the low volatile nature of PFAS and the low likelihood of cross contamination.

Holding Time Exceedances

Holding time outliers for major cations was identified in 11 laboratory reports. Major cations were collected to provide an indicative assessment of aquifer properties across the island and are not a COPC, therefor this exceedances is not considered to have impacted the outcome of the investigation.

Temperature Exceedances

Due to the remote location of the site and the custom protocols getting the samples into Sydney, all laboratory reports indicate temperature exceedance (<6 °C). The laboratory noted that attempts to cool the samples were present. This is not considered to have affected the laboratory results as the primary contaminants of concern, PFAS, are non-volatile and no volatile contaminants were detected in the primary samples during this round of sampling.

Laboratory Control Frequency

Laboratory duplicates and matrix spike frequency were not met in 20 of the laboratory reports. This is not anticipated to impact the conclusions drawn as the duplicate and triplicate results were relatively closely correlated with few exceedances of adopted criteria as discussed above.

Laboratory Quality Control Process

Laboratory quality control process non-conformances identified in quality assurance procedures and quality control samples for each environmental media sampled are summarised below.

- Surrogate recoveries were outside the laboratory recovery limits in one laboratory report.
- Matrix spike recovery was not determined for selected analytes in eight laboratory reports.

While some of the quality control results were reported to be outside adopted acceptance objectives, the majority of the quality control results indicated that the precision and accuracy of the data was within acceptable limits. The results were therefore considered to be representative of chemical concentrations in the environmental media sampled at the time of sampling, and to be suitable to be used for their intended purpose in providing an understanding of the contamination status of the environmental media assessed.

Data Suitability

While a small number of QC results were outside specified acceptance criteria, these were not considered to significantly impact on the quality or representativeness of the data, and majority of results indicated that the precision and accuracy of the data was within acceptable limits. The results are therefore considered to be representative of chemical concentrations in the environmental media sampled at the time of sampling, and to be suitable to be used for their intended purpose in forming conclusions relating to the contamination status of soil, sediment, groundwater and surface water at and surrounding the site.

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002609	SAMPLE DELIVERY GROUP (SDG):	ES2002612	SAMPLE DELIVERY GROUP (SDG):	ES2002614	SAMPLE DELIVERY GROUP (SDG):	ES2002615
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	16 Januaru 2020	Sample Dates:	16 Januaru 2020	Sample Dates:	16 Januaru 2020	Sample Dates:	16 Januaru 2020
Sample Media:	Water	Sample Media:	Water	Sample Media:	Water	Sample Media:	Water

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance						
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.		No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		No		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, ,	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
		Method Blanks - at least 1 per process batch.	, ,	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002616	SAMPLE DELIVERY GROUP (SDG):	ES2002617	SAMPLE DELIVERY GROUP (SDG):	ES2002618	SAMPLE DELIVERY GROUP (SDG):	ES2002619
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	16-Jan-20	Sample Dates:	15-Jan-20	Sample Dates:	17-Jan-20	Sample Dates:	16-Jan-20
Sample Media:	Water	Sample Media:	Water	Sample Media:	Water	Sample Media:	Water

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance						
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.		No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		No		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, ,	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
		Method Blanks - at least 1 per process batch.	, ,	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Data Validation Checklist

	1 /
s⊘n	vorsa

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002620
Laboratory:	ALS Environmental
Sample Dates:	16-Jan-20
Sample Media:	Water

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	Yes	QC300
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes	

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002622	SAMPLE DELIVERY GROUP (SDG):	ES2002626	SAMPLE DELIVERY GROUP (SDG):	ES2002803	SAMPLE DELIVERY GROUP (SDG):	ES2002806
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	15-Jan-20	Sample Dates:	14 - 17 January 2020	Sample Dates:	18 - 23 January 2020	Sample Dates:	21 - 23 January 2020
Sample Media:	Water	Sample Media:	Water	Sample Media:	Soil and Water	Sample Media:	Soil

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	g Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	Yes		No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		Yes		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	Yes	QC301	Yes	QC302 - QC305	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, .	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	Yes	
		Method Blanks - at least 1 per process batch.	, ,	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.
Data Management	No errors in data transcription		10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002808	SAMPLE DELIVERY GROUP (SDG):	ES2002810	SAMPLE DELIVERY GROUP (SDG):	ES2002812	SAMPLE DELIVERY GROUP (SDG):	ES2002813
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	18 - 21 Jan 2020	Sample Dates:	20-Jan-20	Sample Dates:	20-Jan-20	Sample Dates:	23-Jan-20
Sample Media:	Soil and Water	Sample Media:	Soil	Sample Media:	Soil	Sample Media:	Water

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?		Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	· · · · · · · · · · · · · · · · · · ·	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	g Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.		No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		No		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	' '	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	Yes		No	Expected laboratory frequency was not met.
		Method Blanks - at least 1 per process batch.	, ,	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.		No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	Yes		No	Expected laboratory frequency was not met.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.
Data Management	No errors in data transcription		10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		1777
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002814	SAMPLE DELIVERY GROUP (SDG):	ES2002817	SAMPLE DELIVERY GROUP (SDG):	ES2002819	SAMPLE DELIVERY GROUP (SDG):	ES2002821
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	23-Jan-20	Sample Dates:	20-Jan-20	Sample Dates:	21-Jan-20	Sample Dates:	17-Jan-20
Sample Media:	Water	Sample Media:	Water	Sample Media:	Water	Sample Media:	Water

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance						
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.		No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	Yes	
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		No		No		Yes	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	Yes	
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, ,	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
		Method Blanks - at least 1 per process batch.	, .	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.	No	Expected laboratory frequency was not met.
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		1777
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002822	SAMPLE DELIVERY GROUP (SDG):	ES2002824	SAMPLE DELIVERY GROUP (SDG):	ES2002826	SAMPLE DELIVERY GROUP (SDG):	ES2002827
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	18-Jan-20	Sample Dates:	20-Jan-20	Sample Dates:	20-Jan-20	Sample Dates:	20-Jan-20
Sample Media:	Water	Sample Media:	Soil	Sample Media:	Water	Sample Media:	Soil

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	g Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	Yes		No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)				No		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	Yes		No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	' '	No	Expected laboratory frequency was not met.	Yes		Yes		Yes	
		Method Blanks - at least 1 per process batch.		Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	No	Expected laboratory frequency was not met.	Yes		Yes		Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.
Data Management	No errors in data transcription		10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		1777
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002829	SAMPLE DELIVERY GROUP (SDG):	ES2002830	SAMPLE DELIVERY GROUP (SDG):	ES2002831	SAMPLE DELIVERY GROUP (SDG):	ES2002833
Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Sample Dates:	21-Jan-20	Sample Dates:	21-Jan-20	Sample Dates:	22-Jan-20	Sample Dates:	24-Jan-20
Sample Media:	Soil	Sample Media:	Soil	Sample Media:	Water	Sample Media:	Ansulite

Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.		No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	No		No		No		No	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.	No	No QC samples included in this laboratory batch. QC samples are included in report ES2002626.
		samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	. No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, ,	Yes		Yes		Yes		Yes	
		Method Blanks - at least 1 per process batch.	' '	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.		Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.	No	Samples received at temperatures exceeding 6 °C. Holding time outlier exists for Major Cations.
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:	177
Report Title:	Preliminary Site Investigation
Client:	DITCRD
Commission D	Lucinda Trickey
Completed By:	Edonida Trioncy
	Edolina Trioloy
Date: Verified By:	Edulida Hokey

SAMPLE DELIVERY GROUP (SDG):	699263	SAMPLE DELIVERY GROUP (SDG):	699266	SAMPLE DELIVERY GROUP (SDG):	699303	SAMPLE DELIVERY GROUP (SDG):	EM2002483
Laboratory:	Eurofins	Laboratory:	Eurofins	Laboratory:	Eurofins	Laboratory:	ALS Environmental
Sample Dates:	16-Jan-20	Sample Dates:	14-Jan-20	Sample Dates:	18 - 23 Jan 2020	Sample Dates:	13-Feb-20
Sample Media:	Water	Sample Media:	Water	Sample Media:	Soil and Water	Sample Media:	Water

					Secondary Laboratory		Secondary Laboratory		Secondary Laboratory		
Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance						
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book	N/A		N/A		N/A		Yes	
		Secondary (inter-laboratory) duplicates ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)				Yes		Yes		Yes	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	Field blanks analysed in primary laboratory	No	Field blanks analysed in primary laboratory	No	Field blanks analysed in primary laboratory	No	Field blanks analysed in primary laboratory
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	. No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.		Yes		Yes		Yes		Yes	
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	Laboratory Reports	Yes		Yes		Yes		Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	No	Samples received at temperatures exceeding 6 °C.	Yes	
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes		Yes	

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	10242. **	SAMPLE DELIVERY GROUP (SDG):	ES2005692	SAMPLE DELIVERY GROUP (SDG):	
Laboratory:	Eurofins	Laboratory:	ALS Environmental	Laboratory:	Eurofins
Sample Dates:	13-Feb-20	Sample Dates:	19 - 23 January 2020	Sample Dates:	20 - 22 January 020
Sample Media:	Water	Sample Media:	Soil	Sample Media:	Soil

							Primary Leach Analysis		Secondary Leach Analysis
Quality Assurance Process	Objectives & Measure	Acceptance Criteria	Source of Information	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance	Acceptance Criteria Met?	Notes/Details of Nonconformance
Standard Procedures	Standard field sampling procedures and forms used	No deviation from standard procedure and forms used.	Borelogs, field sheets, COCs, data tables	Yes		Yes		Yes	
Equipment Calibration	All equipment calibrated in accordance with manufacturers specifications	All equipment calibrated in accordance with manufacturers specifications.	Calibration Certificates / Records	Yes		Yes		Yes	
Testing Method Accreditation	NATA accredited methods used for all analyses determined	Primary and secondary laboratories to use NATA accredited methods for all analytes determined.	Laboratory Report	Yes		Yes		Yes	
Quality Control Sampling Frequency	Field QC sampling frequency in accordance with AS4482.1-2005	Field (Intra-laboratory) Duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)	QA/QC register (within field book)	Yes		Yes		Yes	
		Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)				Yes		Yes	
		Rinsate Blanks - ≥ 1 per day, per matrix per equipment.	QA/QC register (within field book)	No	Field blanks analysed in primary laboratory	No	Field blanks analysed in primary laboratory	No	Field blanks analysed in primary laboratory
		Trip Blanks - ≥ 1 per esky containing samples for volatiles.	QA/QC register (within field book)	No	No trip blanks were collected during this investigation.	No	No trip blanks were collected during this investigation.	. No	No trip blanks were collected during this investigation.
	Laboratory QC analysis frequency in accordance with NEPC 2013	Laboratory Duplicates - at least 1 in 10 analyses or 1 per process batch.	, ,	Yes		Yes		Yes	
		Method Blanks - at least 1 per process batch.	Laboratory Reports	Yes		Yes		Yes	
		Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).	Laboratory Reports	Yes		Yes		Yes	
		Laboratory Control Samples - at least 1 per process batch.	,	Yes		Yes		Yes	
		Matrix Spikes - at least 1 per matrix type per process batch.	, ,	Yes		Yes		Yes	
Sample Preservation, Handling and Holding Times	Samples appropriately preserved upon collection, stored and transported, and analysed within holding times	In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.	Laboratory Reports	Yes		Yes		Yes	
Data Management	No errors in data transcription	Entry of field data verified by peer.	10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).	Yes		Yes		Yes	
Data Useability	Limits of reporting less than investigation levels	Limits of reporting less than relevant investigation levels.	Results Tables	Yes		Yes		Yes	

		1									
Job Number:	17776										
Report Title:	Preliminary Site Investigation										
Client:	DITCRD			SAMPLE DELIVERY	ES2002609	SAMPLE DELIVERY	ES2002612	SAMPLE DELIVERY	ES2002614	SAMPLE DELIVERY	ES2002615
Completed By: Date:	Lucinda Trickey			GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental
		-			16 Januaru 2020	Sample Dates:	16 Januaru 2020	Sample Dates:	16 Januaru 2020	Sample Dates:	16 Januaru 2020
Verified By:		4			Water		Water		Water		Water
Date:				Sample Media.	vvalei	Sample Media:	water	Sample Media:	water	Sample Media:	water
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
	in analyte concentration between samples collected	sample.	relative percent difference (RPD)							1.07	
Analysis	from the sample location and the reproducibility of	RPD <30% of mean conc. where both	results for field duplicate samples.								
,	the laboratory analysis. Where required,	conc. >20 x LOR									
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both	1								
	chemicals within their holding times may be	conc. 10-20 x LOR									
	undertaken to further assess precision level of	RPD No limit where both conc. < 10 x	1								
	precision.	LOR									
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary	ESDAT generated summary of	N/A		N/A		N/A		N/A	
laborator) Duplicate	Secondary duplicate samples sent to a secondary	sample.	relative percent difference (RPD)								
Sampling and Analysis	laboratory to assess the accuracy of the analyte	RPD <30% of mean conc. where both	results for field duplicate samples.								
' -	concentrations reported by the primary laboratory.	conc. >20 x LOR.									
		RPD <50% of mean conc. where both	1								
		conc. 10-20 x LOR. RPD no limit where both conc. < 10 x	†								
		LOR.									
Field Rinsate Blank Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Trip Plank Compling and	Cross contamination between samples does not	Analyte concentrations below LORs.	ESDAT generated summary of	N/A		N/A		N/A		N/A	
Analysis	occur in transit or as an artefact of the sampling handling procedure.	Analyte concentrations below LONs.	field blank analytical results.	IVA		IV/A				IN/A	
Laboratory Duplicates	Laboratory duplicates are used to test the precision of the laboratory measurements.	As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Control Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	Dynamic recovery limits as specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	Yes		Yes		Yes		Yes	
Surrogate Recovery	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.		Laboratory reports	Yes		Yes		Yes		Yes	
	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.		Laboratory reports	Yes		Yes		Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources								

ob Number:	17776	1									
ort Title:	Preliminary Site Investigation	1									
nt:	DITCRD			OAMBI E	T	DAMBI F	T	DAMBI E	I	IOAMBI E	1
				SAMPLE DELIVERY	ES2002616	SAMPLE DELIVERY	ES2002617	SAMPLE DELIVERY	ES2002618	SAMPLE DELIVERY	ES2002619
npleted By:	Lucinda Trickey			GROUP (SDG):		GROUP (SDG)		GROUP (SDG)	:	GROUP (SDG):	
e: ified By:		-		Laboratory: Sample Dates:	ALS Environmental 16-Jan-20	Laboratory: Sample Dates:	ALS Environmental 15-Jan-20	Laboratory: Sample Dates:	ALS Environmental 17-Jan-20	Laboratory: Sample Dates:	ALS Environmental 16-Jan-20
e:		1		Sample Media:	Water	Sample Media:	Water	Sample Media:	Water	Sample Media:	Water
						·		·		·	
ality Control	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
d (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary	1 1	N/A		N/A		N/A		N/A	
	in analyte concentration between samples collected	sample.	relative percent difference (RPD)								
	from the sample location and the reproducibility of the laboratory analysis. Where required,	RPD <30% of mean conc. where both conc. >20 x LOR	results for field duplicate samples								
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both									
	chemicals within their holding times may be undertaken to further assess precision level of	conc. 10-20 x LOR RPD No limit where both conc. < 10 x									
	precision.	LOR									
ondary Inter-	Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary	Analysed for same chemicals as primary	ESDAT generated summary of relative percent difference (RPD)			N/A		N/A		N/A	
orator) Duplicate npling and Analysis	laboratory to assess the accuracy of the analyte	sample. RPD <30% of mean conc. where both	results for field duplicate samples								
	concentrations reported by the primary laboratory.	conc. >20 x LOR.									
		RPD <50% of mean conc. where both conc. 10-20 x LOR.									
		RPD no limit where both conc. < 10 x	1								
eld Rinsate Blank eparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
eparation & Analysis	sampling equipment.		neid blank analytical results.								
p Blank Sampling and	Cross contamination between samples does not	Analyte concentrations below LORs.	ESDAT generated summary of	N/A		N/A		N/A		N/A	
alysis	occur in transit or as an artefact of the sampling handling procedure.		field blank analytical results.								
boratory Duplicates	Laboratory duplicates are used to test the precision	As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
	of the laboratory measurements.										
boratory Control imples		Dynamic recovery limits as specified by	Laboratory reports	Yes		Yes		Yes		Yes	
amples	assess overall method performance. In general these samples are similar in composition to environmental	laboratory.									
	samples, and contain known amounts of the analytes										
ertified Reference	of interest. CRM samples are used to monitor the accuracy of	As specified by laboratory (generally	Laboratory reports	Yes		Yes		Yes		Yes	
aterial	analyses performed by the laboratory.	dynamic recovery limits). Usually not	Laboratory roporto			1.55		1.55		1.00	
		performed and assessed based on LCS results.									
rogate Recovery	Surrogates are organic compounds that are similar in		Laboratory reports	Yes		Yes		Yes		Yes	
	chemical composition to analytes of interest and are	laboratory.									
	spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are										
	used to evaluate matrix interference on a sample-										
	specific basis.										
trix Spike Recovery	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking	Recovery 70 - 130% or dynamic limits if specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
	occurs prior to sample preparation and analysis, and	Specifical by laboratory.									
	the results are used to assess the bias of a method in a given sample matrix.										
oratory Method	Method blanks are prepared to represent the sample	Analyte concentrations below LORs.	Laboratory reports	Yes		Yes		Yes		Yes	
nks	matrix as closely as possible and										
	prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the										
	laboratory to assess contamination introduced during										
	sample preparation activities.										
ntially Anomalous	No discrepancies between field, laboratory and/or	Analytical results are internally	Multiple sources								
entially Anomalous a	expected results are identified	Analytical results are internally consistent, consistent with field	Multiple sources								
		measurements, and consistent with									
		expected and/or historical results based on CSM		1							
		OH COM		I				1		1	

Data Validation Checklist

s⊘n	versa

Job Number:		17776
Report Title:	Preliminary Site Investigation	
Client:	DITCRD	
Completed By:	Lucinda Trickey	
Date:		
Verified By:		
Date:		

SAMPLE DELIVERY GROUP (SDG):	ES2002620
Laboratory:	ALS Environmental
Sample Dates:	16-Jan-20
Sample Media:	Water

		1			144
Date:				Sample Media:	Water
Quality Control	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output,		
Process			review lab reports, review data		
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary	ESDAT generated summary of	No	High RPDs exist. Refer to attached table.
	in analyte concentration between samples collected	sample.	relative percent difference (RPD)		
Analysis	from the sample location and the reproducibility of	RPD <30% of mean conc. where both	results for field duplicate samples.		
	the laboratory analysis. Where required,	conc. >20 x LOR			
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both	i		
	chemicals within their holding times may be	conc. 10-20 x LOR			
	undertaken to further assess precision level of	RPD No limit where both conc. < 10 x	1		
	precision.	LOR			
	precision.	LOK			
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary	FSDAT generated summary of	N/A	
laborator) Duplicate	Secondary duplicate samples sent to a secondary	sample.	relative percent difference (RPD)	14/74	
Sampling and Analysis	laboratory to assess the accuracy of the analyte	•	results for field duplicate samples.		
Sampling and Analysis	concentrations reported by the primary laboratory.	RPD <30% of mean conc. where both	lesuits for field duplicate samples.		
	concentrations reported by the primary laboratory.	conc. >20 x LOR.			
		RPD <50% of mean conc. where both			
		conc. 10-20 x LOR.			
		RPD no limit where both conc. < 10 x			
		LOR.	500.47		
Field Rinsate Blank	Cross contamination of samples does not occur	Analyte concentrations below LORs.	ESDAT generated summary of	Yes	
Preparation & Analysis	between sampling locations due to carry-over from		field blank analytical results.		
	sampling equipment.				
Trip Blank Sampling and	Cross contamination between samples does not	Analyte concentrations below LORs.	ESDAT generated summary of	N/A	
Analysis	occur in transit or as an artefact of the sampling		field blank analytical results.		
	handling procedure.				
Laboratory Duplicates	Laboratory duplicates are used to test the precision	As specified by laboratory.	Laboratory reports	Yes	
• •	of the laboratory measurements.				
Laboratory Control	Laboratory control samples (LCS) are used to	Dynamic recovery limits as specified by	Laboratory reports	Yes	
Samples	assess overall method performance. In general these		Laboratory reports	165	
Samples	samples are similar in composition to environmental	laboratory.			
	samples, and contain known amounts of the analytes of interest.				
Certified Reference	CRM samples are used to monitor the accuracy of	As specified by laboratory (generally	Laboratory reports	Yes	
Material		dynamic recovery limits). Usually not	Laboratory reports	162	
iviateriai	analyses performed by the laboratory.	performed and assessed based on LCS			
		results.			
Surrogate Recovery	Surrogates are organic compounds that are similar in	Dynamic recovery limits as specified by	Laboratory reports	Yes	
Surrogate recovery	chemical composition to analytes of interest and are	laboratory.	Laboratory reports	163	
	spiked into environmental samples prior to sample	laboratory.			
	preparation and analysis. Surrogate recoveries are				
	used to evaluate matrix interference on a sample-				
	specific basis.				
Matrix Spike Recovery	A matrix spike is an aliquot of a sample spiked with a	Recovery 70 - 130% or dynamic limits if	Laboratory reports	Yes	
. ,	known concentration of target analyte(s). Spiking	specified by laboratory.	l ' '		
	occurs prior to sample preparation and analysis, and				
	the results are used to assess the bias of a method				
	in a given sample matrix.				
Laboratory Method	Method blanks are prepared to represent the sample	Analyte concentrations below LORs.	Laboratory reports	Yes	
Blanks	matrix as closely as possible and	Analyte concentrations below Lorks.	Laboratory reports	163	
Diariks	prepared/extracted/digested and analysed exactly				
	like field samples. These blanks are used by the				
	laboratory to assess contamination introduced during				
	sample preparation activities.				
Potentially Anomalous	No discrepancies between field, laboratory and/or	Analytical results are internally	Multiple sources		
Data	expected results are identified	consistent, consistent with field			
	·	measurements, and consistent with			
			I	I	i
		expected and/or historical results based		l	l e
		expected and/or historical results based on CSM			

Job Number:	17776	5									
Report Title:	Preliminary Site Investigation	<u>-</u>									
Client:	DITCRD	1									
				SAMPLE DELIVERY	ES2002622	SAMPLE DELIVERY	ES2002626	SAMPLE DELIVERY	ES2002803	SAMPLE DELIVERY	ES2002806
Completed By:	Lucinda Trickey	4		GROUP (SDG):		GROUP (SDG):	luas :	GROUP (SDG):	1,05	GROUP (SDG):	
Date:		4		Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental	Laboratory:	ALS Environmental
Verified By:		-		Sample Dates: Sample Media:	15-Jan-20 Water	Sample Dates: Sample Media:	14 - 17 January 2020 Water	Sample Dates: Sample Media:	18 - 23 January 2020 Soil and Water	Sample Dates: Sample Media:	21 - 23 January 2020 Soil
Date:				Sample Wedia.	water	Sample Wedia.	Water	Sample Weula.	Soil and Water	Sample Media.	301
0. 17. 0. 1.1	love of the first	I a secondario de la compansión de la co	lu. o.c. copar.								
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		No	High RPDs exist. Refer to attached table.	No	High RPDs exist. Refer to attached table.	N/A	
	in analyte concentration between samples collected	sample.	relative percent difference (RPD)	14// (140	Thigh the bookist. Note: to attached table.	110	riigi Tii 25 cxist. Teler is allashed lasic.	14//	
Analysis	from the sample location and the reproducibility of	RPD <30% of mean conc. where both	results for field duplicate samples.								
	the laboratory analysis. Where required,	conc. >20 x LOR									
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both conc. 10-20 x LOR									
	chemicals within their holding times may be undertaken to further assess precision level of	RPD No limit where both conc. < 10 x	-								
	precision.	LOR									
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
laborator) Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte	sample.	relative percent difference (RPD) results for field duplicate samples.								
Sampling and Analysis	concentrations reported by the primary laboratory.	RPD <30% of mean conc. where both	results for field duplicate samples.								
	and primary resortions.	conc. >20 x LOR. RPD <50% of mean conc. where both	1								
		conc. 10-20 x LOR.									
		RPD no limit where both conc. < 10 x	1								
Field Discrete Discrip	C	LOR.	FODAT	NI/A		V		V		NI/A	
Field Rinsate Blank Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		Yes		Yes		N/A	
i reparation & Analysis	sampling equipment.		lieu blank analytical results.								
Trip Blank Sampling and	Cross contamination between samples does not	Analyte concentrations below LORs.	ESDAT generated summary of	N/A		N/A		N/A		N/A	
Analysis	occur in transit or as an artefact of the sampling		field blank analytical results.								
	handling procedure.										
Laboratory Duplicates	Laboratory duplicates are used to test the precision	As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
	of the laboratory measurements.										
Laboratory Control	Laboratory control samples (LCS) are used to	Dynamic recovery limits as specified by	Laboratory reports	Yes		Yes		Yes		Yes	
Samples	assess overall method performance. In general these samples are similar in composition to environmental	aboratory.									
	samples, and contain known amounts of the analytes										
	of interest.										
Certified Reference	CRM samples are used to monitor the accuracy of	As specified by laboratory (generally	Laboratory reports	Yes		Yes		Yes		Yes	
Material	analyses performed by the laboratory.	dynamic recovery limits). Usually not performed and assessed based on LCS									
		results.									
Surrogate Recovery	Surrogates are organic compounds that are similar in	Dynamic recovery limits as specified by	Laboratory reports	Yes		Yes		Yes		No	Recovery was less than the lower data quality
	chemical composition to analytes of interest and are	laboratory.									objective.
	spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are										
	used to evaluate matrix interference on a sample-										
	specific basis.										
Matrix Spike Recovery	A matrix spike is an aliquot of a sample spiked with a	Recovery 70 - 130% or dynamic limits if	Laboratory reports	No	Matrix Spike Recovery less than lower data quality	Yes		Yes		No	Matrix spike recovery was not determined as the
	known concentration of target analyte(s). Spiking	specified by laboratory.	' '		objective for sulfate.						background level was greater than or equal to 4x the
	occurs prior to sample preparation and analysis, and										spike level.
	the results are used to assess the bias of a method in a given sample matrix.										
Laboratory Method	Method blanks are prepared to represent the sample	Analyte concentrations below LORs.	Laboratory reports	Yes		Yes		Yes		Yes	
Blanks	matrix as closely as possible and	'	1 ' ' ' ' ' '								
	prepared/extracted/digested and analysed exactly										
	like field samples. These blanks are used by the laboratory to assess contamination introduced during	1	1								
	sample preparation activities.	1	1								
	, , , , , , , , , , , , , , , , , , , ,		1								
Potentially Anamalas:	No discrepancies between field leberatory stall-	Analytical results are internally	Multiple sources								
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field	Multiple sources	1							
		measurements, and consistent with	1	1							
		expected and/or historical results based	1								
		on CSM									
		<u> </u>	1	<u> </u>	1	1		1	L	I	1

b Number:	17776										
	Preliminary Site Investigation										
nt:	DITCRD										
				SAMPLE DELIVERY	ES2002808	SAMPLE DELIVERY	ES2002810	SAMPLE DELIVERY	ES2002812	SAMPLE DELIVERY	ES2002813
mpleted By: te:	Lucinda Trickey			GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG):	ALS Environmental
rified By:				Sample Dates:	18 - 21 Jan 2020	Sample Dates:	20-Jan-20	Sample Dates:	20-Jan-20	Sample Dates:	23-Jan-20
te:				Sample Media:	Soil and Water	Sample Media:	Soil	Sample Media:	Soil	Sample Media:	Water
							•			<u>.</u>	
iality Control	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output,								
ocess			review lab reports, review data								
eld (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary	/ ESDAT generated summary of	N/A		N/A		N/A		N/A	
	in analyte concentration between samples collected	sample.	relative percent difference (RPD)								
nalysis	from the sample location and the reproducibility of	RPD <30% of mean conc. where both conc. >20 x LOR	results for field duplicate samples.								
	the laboratory analysis. Where required, resubmission of previously analysed samples for	RPD <50% of mean conc. where both	_								
	chemicals within their holding times may be	conc. 10-20 x LOR									
	undertaken to further assess precision level of	RPD No limit where both conc. < 10 x	1								
	precision.	LOR									
econdary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
borator) Duplicate ampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte	sample. RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
umping and relaryors	concentrations reported by the primary laboratory.	conc. >20 x LOR.	results for field duplicate sumples.								
		RPD <50% of mean conc. where both	1								
		conc. 10-20 x LOR.									
		RPD no limit where both conc. < 10 x									
eld Rinsate Blank	Cross contamination of samples does not occur	LOR. Analyte concentrations below LORs.	ESDAT generated summary of	NI/A		N/A		N/A		N/A	
	between sampling locations due to carry-over from	Analyte concentrations below LORs.	field blank analytical results.	IN/A		IN/A		IN/A		IN/A	
	sampling equipment.										
	Cross contamination between samples does not	Analyte concentrations below LORs.		N/A		N/A		N/A		N/A	
Analysis	occur in transit or as an artefact of the sampling handling procedure.		field blank analytical results.								
aharatan, Dunliaataa		As appointed by laboratory	Laboratory raparta	Vaa		Voc		Vaa		Vac	
aboratory Duplicates	Laboratory duplicates are used to test the precision of the laboratory measurements.	As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
-ht	•	D	1	V		V		V		V	
aboratory Control	Laboratory control samples (LCS) are used to assess overall method performance. In general these	Dynamic recovery limits as specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Jampioo	samples are similar in composition to environmental	iazoratory.									
	samples, and contain known amounts of the analytes										
Daniel Dafanana	of interest.	A	1	V		V		V		V	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not	Laboratory reports	Yes		Yes		Yes		Yes	
naterial	analyses performed by the laboratory.	performed and assessed based on LCS									
		results.									
Surrogate Recovery	Surrogates are organic compounds that are similar in		Laboratory reports	Yes		Yes		Yes		Yes	
	chemical composition to analytes of interest and are	laboratory.									
	spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are										
	used to evaluate matrix interference on a sample-										
	specific basis.										
Matrix Spike Recovery	A matrix spike is an aliquot of a sample spiked with a	Recovery 70 - 130% or dynamic limits if	Laboratory reports	No	Matrix spike recovery was not determined as the	No	Matrix spike recovery was not determined as the	Yes		Yes	
	known concentration of target analyte(s). Spiking	specified by laboratory.			background level was greater than or equal to 4x the		background level was greater than or equal to 4x the				
	occurs prior to sample preparation and analysis, and				spike level.		spike level.				
	the results are used to assess the bias of a method in a given sample matrix.										
aboratory Method	Method blanks are prepared to represent the sample	Analyte concentrations below LORs.	Laboratory reports	Yes		Yes		Yes		Yes	
lanks	matrix as closely as possible and	,]								
	prepared/extracted/digested and analysed exactly										
	like field samples. These blanks are used by the										
	laboratory to assess contamination introduced during sample preparation activities.										
	Sample propuration doublings.										
-44:-U A '	No diagramatica between 5 11 11 1	Analytical according to 11 to 11	M 16 1								
otentially Anomalous	No discrepancies between field, laboratory and/or	Analytical results are internally	Multiple sources								
ata	expected results are identified	consistent, consistent with field measurements, and consistent with									
		expected and/or historical results based									
		on CSM									
			1	ı	1	1	1		1	1	1

	,	1									
Job Number:	17776										
Report Title:	Preliminary Site Investigation										
Client:	DITCRD			SAMPLE DELIVERY	ES2002814	SAMPLE DELIVERY		SAMPLE DELIVERY	ES2002819	SAMPLE DELIVERY	ES2002821
Completed By: Date:	Lucinda Trickey			GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental
Verified By:					23-Jan-20	Sample Dates:		Sample Dates:	21-Jan-20	Sample Dates:	17-Jan-20
Date:				Sample Media:	Water						
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
Duplicate Sampling and Analysis	in analyte concentration between samples collected from the sample location and the reproducibility of	sample. RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
7 tiaryoio	the laboratory analysis. Where required,	conc. >20 x LOR	results for field duplicate sumples.								
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both	1								
	chemicals within their holding times may be	conc. 10-20 x LOR RPD No limit where both conc. < 10 x	4								
	undertaken to further assess precision level of precision.	LOR									
	<u> </u>										
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
laborator) Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary	sample.	relative percent difference (RPD) results for field duplicate samples.								
Sampling and Analysis	laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	RPD <30% of mean conc. where both conc. >20 x LOR.	results for field duplicate samples.								
	someone autorio roportou by the primary tuberatory.	RPD <50% of mean conc. where both	†								
		conc. 10-20 x LOR.	1								
		RPD no limit where both conc. < 10 x									
Field Rinsate Blank	Cross contamination of samples does not occur	Analyte concentrations below LORs.	ESDAT generated summary of	N/A		N/A		N/A		N/A	
Preparation & Analysis	between sampling locations due to carry-over from sampling equipment.	,	field blank analytical results.								
Trip Blank Sampling and Analysis	Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Laboratory Duplicates		As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Control Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	Dynamic recovery limits as specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	Yes		Yes		Yes		Yes	
Surrogate Recovery	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.		Laboratory reports	Yes		Yes		Yes		Yes	
, ,	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	specified by laboratory.		Yes		Yes		Yes		Yes	
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.		Laboratory reports	Yes		Yes		Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources								

		-									
Job Number:	17776	<u> </u>									
Report Title:	Preliminary Site Investigation										
Client:	DITCRD			SAMPLE DELIVERY	ES2002822	SAMPLE DELIVERY	ES2002824	SAMPLE DELIVERY	ES2002826	SAMPLE DELIVERY	ES2002827
Completed By:	Lucinda Trickey	_		GROUP (SDG):	ALC Fraincescatal	GROUP (SDG): Laboratory:	ALC For incorporated	GROUP (SDG):	ALS Environmental	GROUP (SDG): Laboratory:	ALC Facility and the
Date: Verified By:		-		Laboratory: Sample Dates:	ALS Environmental 18-Jan-20	Sample Dates:	ALS Environmental 20-Jan-20	Laboratory: Sample Dates:	20-Jan-20	Sample Dates:	ALS Environmental 20-Jan-20
Date:		-			Water		Soil	Sample Media:	Water	Sample Media:	Soil
				The second secon			•	,	'		
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
Duplicate Sampling and Analysis	in analyte concentration between samples collected from the sample location and the reproducibility of	RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
Analysis	the laboratory analysis. Where required,	conc. >20 x LOR	results for field duplicate samples.	-							
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both	1								
	chemicals within their holding times may be	conc. 10-20 x LOR RPD No limit where both conc. < 10 x	4								
	undertaken to further assess precision level of precision.	LOR									
	F										
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
laborator) Duplicate	Secondary duplicate samples sent to a secondary	sample.	relative percent difference (RPD)								
Sampling and Analysis	laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	RPD <30% of mean conc. where both conc. >20 x LOR.	results for field duplicate samples.								
		RPD <50% of mean conc. where both									
		conc. 10-20 x LOR.	_								
		RPD no limit where both conc. < 10 x									
Field Rinsate Blank	Cross contamination of samples does not occur	Analyte concentrations below LORs.	ESDAT generated summary of	N/A		N/A		N/A		N/A	
Preparation & Analysis	between sampling locations due to carry-over from sampling equipment.		field blank analytical results.								
Trip Blank Sampling and Analysis	Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Laboratory Duplicates	Laboratory duplicates are used to test the precision of the laboratory measurements.	As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Control Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.		Laboratory reports	Yes		Yes		Yes		Yes	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	Yes		Yes		Yes		Yes	
Surrogate Recovery	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample- specific basis.		Laboratory reports	Yes		Yes		Yes		Yes	
	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	specified by laboratory.	Laboratory reports	Yes		Yes		No	Matrix spike recovery was not determined as the background level was greater than or equal to 4x the spike level.	No	Matrix spike recovery was not determined as the background level was greater than or equal to 4x the spike level.
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.		Laboratory reports	Yes		Yes		Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources								

		1									
Job Number:	17776										
Report Title:	Preliminary Site Investigation										
Client:	DITCRD			SAMPLE DELIVERY	ES2002829	SAMPLE DELIVERY		SAMPLE DELIVERY	ES2002831	SAMPLE DELIVERY	ES2002833
Completed By:	Lucinda Trickey			GROUP (SDG):	ALC Facility and a second second	GROUP (SDG): Laboratory:		GROUP (SDG):	ALS Environmental	GROUP (SDG): Laboratory:	ALS Environmental
Date: Verified By:					ALS Environmental 21-Jan-20	Sample Dates:	ALS Environmental 21-Jan-20	Laboratory: Sample Dates:	22-Jan-20	Sample Dates:	24-Jan-20
Date:		1			Soil			Sample Media:	Water	Sample Media:	Ansulite
				·		·		·	'	·	
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
Duplicate Sampling and Analysis	in analyte concentration between samples collected from the sample location and the reproducibility of	RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
7 tialyolo	the laboratory analysis. Where required,	conc. >20 x LOR	results for held duplicate sumples.								
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both									
	chemicals within their holding times may be undertaken to further assess precision level of	conc. 10-20 x LOR RPD No limit where both conc. < 10 x	-								
	precision.	LOR									
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		N/A		N/A		N/A		N/A	
laborator) Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte	sample. RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
	concentrations reported by the primary laboratory.	conc. >20 x LOR.	and the second s								
		RPD <50% of mean conc. where both									
		conc. 10-20 x LOR. RPD no limit where both conc. < 10 x	1								
		LOR.									
Field Rinsate Blank Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Trip Blank Sampling and Analysis	Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Laboratory Duplicates		As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Control Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.	Dynamic recovery limits as specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	Yes		Yes		Yes		Yes	
Surrogate Recovery	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.		Laboratory reports	Yes		Yes		Yes		Yes	
	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	specified by laboratory.	Laboratory reports	Yes		No	Matrix spike recovery was not determined as the background level was greater than or equal to 4x the spike level.	No	Matrix spike recovery was not determined as the background level was greater than or equal to 4x the spike level.	Yes	
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.		Laboratory reports	Yes		Yes		Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources								

		5									
Job Number:	17776										
Report Title:	Preliminary Site Investigation										
Client:	DITCRD			SAMPLE DELIVERY	699263	SAMPLE DELIVERY	699266	SAMPLE DELIVERY	699303	SAMPLE DELIVERY	EM2002483
Completed By:	Lucinda Trickey			GROUP (SDG):		GROUP (SDG):	5 6	GROUP (SDG):		GROUP (SDG):	ALS Environmental
Date: Verified By:		1		Laboratory: Sample Dates:	Eurofins 16-Jan-20	Laboratory: Sample Dates:	Eurofins 14-Jan-20	Laboratory: Sample Dates:	Eurofins 18 - 23 Jan 2020	Laboratory: Sample Dates:	13-Feb-20
Date:		1			Water		Water	Sample Media:	Soil and Water	Sample Media:	Water
									•		
Quality Control Process	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output, review lab reports, review data								
Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary		N/A		N/A		N/A		Yes	
Duplicate Sampling and Analysis	in analyte concentration between samples collected from the sample location and the reproducibility of	sample. RPD <30% of mean conc. where both	relative percent difference (RPD) results for field duplicate samples.								
7 tiaryoio	the laboratory analysis. Where required,	conc. >20 x LOR	results for field duplicate sumples.								
	resubmission of previously analysed samples for	RPD <50% of mean conc. where both	1								
	chemicals within their holding times may be undertaken to further assess precision level of	conc. 10-20 x LOR RPD No limit where both conc. < 10 x	-								
	precision.	LOR									
	[· · · · · · · · · · · · · · · · · · ·										
Secondary Inter-	Results are accurate and free from laboratory error.	Analysed for same chemicals as primary		No	High RPDs exist. Refer to attached table.	No	High RPDs exist. Refer to attached table.	No	High RPDs exist. Refer to attached table.	N/A	
laborator) Duplicate Sampling and Analysis	Secondary duplicate samples sent to a secondary	sample.	relative percent difference (RPD) results for field duplicate samples.								
Sampling and Analysis	laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.	RPD <30% of mean conc. where both conc. >20 x LOR.	results for field duplicate samples.								
		RPD <50% of mean conc. where both	=								
		conc. 10-20 x LOR. RPD no limit where both conc. < 10 x	1								
		LOR.									
Field Rinsate Blank Preparation & Analysis	Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Trip Blank Sampling and Analysis	Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.	Analyte concentrations below LORs.	ESDAT generated summary of field blank analytical results.	N/A		N/A		N/A		N/A	
Laboratory Duplicates		As specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Control Samples	Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.		Laboratory reports	Yes		Yes		Yes		Yes	
Certified Reference Material	CRM samples are used to monitor the accuracy of analyses performed by the laboratory.	As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.	Laboratory reports	Yes		Yes		Yes		Yes	
Surrogate Recovery	Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.		Laboratory reports	Yes		Yes		Yes		Yes	
	A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.	specified by laboratory.	Laboratory reports	Yes		Yes		Yes		Yes	
Laboratory Method Blanks	Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities.	,	Laboratory reports	Yes		Yes		Yes		Yes	
Potentially Anomalous Data	No discrepancies between field, laboratory and/or expected results are identified	Analytical results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based on CSM	Multiple sources								

sonvorsa

Company Comp	Job Number:	17776	5							
Comparison by Comparison b			1							
Part			1							
Segretary Segr			1		SAMPLE		SAMPLE		SAMPLE	
Marie Marie					DELIVERY	702421 - W	DELIVERY	ES2005692	DELIVERY	
Section Control Cont	Completed By:	Lucinda Trickey			GROUP (SDG):		GROUP (SDG):		GROUP (SDG):	
Part Control		,	1			Eurofins	. ,	ALS Environmental		Eurofins
County Control College Control College College Control College College Control College College Control College Control College Control College Control College Control College Control College Control College Control College Control College Control College Control College Control College Control College Control Colleg			1							
Process Proc			1							Soil
Services of the control of the contr										
Process Proc	Quality Control	Objectives & Measure	Acceptance Criteria	How? (i.e. ESDAT output,						
Duck lines in private year or my common the home of exposure years of the common to the common of th		, , , , , , , , , , , , , , , , , , , ,								
The state of the control of the reproduction o	Field (Intra-laboratory)	Field Duplicate samples used assess the variability	Analysed for same chemicals as primary	ESDAT generated summary of	N/A		Yes		N/A	
The state of the s	Duplicate Sampling and									
Includation of a displace and program analysis and program and program of a program of a program of a program of a program of a program of a program of a program of a program of a program of program of a program o	Analysis			results for field duplicate samples.						
demonstration for the body to there. Secondary labor. Secondary labor. Secondary labor. Secondary secondary secondary protection and the format of the secondary of the seco				1						
Understands to them-beases process not control to the control to t										
Secretary internations and refer from biblecance was a primary (account primary and plants as expected part and primary deplants are primary deplants as expected part and primary deplants are primary deplants as expected part and primary deplants are primary depla				1						
Secretary and Analysis Surpling and Analysis Surpling and Analysis Surpling and Analysis Surpling and Analysis Surpling and Analysis Surpling and Analysis Surpling and Surpli										
Supplied and Analysis concerns serviced by the primary information of the properties and transport of the analysis of the anal										
Sampling and finallysis and finallys					Yes		N/A		Yes	
Service Stands Stands Control of the control of the			-							
Fired Rimate Blank Cross contamination of serrotes done core. 10.00 / Collect of mean core. where soon core. 10.00 / Collect of mean core. where soon core. 10.00 / Collect of mean core. where soon core. 10.00 / Collect of mean core. where soon core. 10.00 / Collect of mean core. Collect of mean core. Where soon core is resided to examine the core. Soon core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Where soon core. Collect of mean core. Collect o	Sampling and Analysis			results for field duplicate samples.						
Control Strake Christophysion Chri		some simulations reported by the primary labelatory.		1						
Filed Rectable Blook Preparation of Arralytics Preparation of Arralytics Preparation of Arralytics Statistics Preparation of Arralytics Statistics Preparation of Arralytics Statistics Preparation of Arralytics Statistics Preparation of Arralytics Statistics Preparation of Arralytics Statistics Preparation of Arralytics Statistic										
First Enroll Blank Disposation A Analysis Disposation A family correct contemporary or Manyle connectional blank Disposation A family content and the second procession or anything to proceed the second procession or anything to proceed the second procession or anything procession. Liboratory Disposation A second procession. Liboratory Control Control Control of Disposation and the correct the second procession. Liboratory Control Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct these second procession. Liboratory Control Control of Disposation and the correct the second procession. Liboratory Control Control of Disposation and the correct the second procession. It procession to environmental second procession. Liboratory Control Control of Disposation and the correct the second procession. It procession the correct the second procession and the correct the second procession. It procession and the correct the second procession and the correct the second procession. It procession and the correct the second procession and the correct the second procession. It procession and the correct the second procession and the correct the second procession. It procession and the correct the second procession and the correct the second procession and the correct the second procession. It procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second procession and the second p				1						
Properties of A Analysis Solices enamyling procedure, on the Company of the Compa										
sampling equipment. The Blank Sampling and Close confamination between samples does not Analysis concentrations below LORs. Analysis concentration of the samples of the sa			Analyte concentrations below LORs.		N/A		N/A		N/A	
The Billins Sampling and Choose contamination between samples does not available of the sampling handing procedure. Laboratory Opticities Laboratory India Laboratory India Laboratory India Laboratory India NA As specified by isboratory. Yes Ves Ves Ves Ves Ves Ves Ves	Preparation & Analysis			field blank analytical results.						
Analysis of the transford as an artifact of the sampling facility processors. Laboratory Duplicates are used to test the precision of the biotratory measurements. Laboratory cried colleges and contain known amounts of the analyses of the precision of the biotratory measurements. Laboratory cried colleges, and contain known amounts of the analyses of interest. Certifical Reference Number of the substance of	T. D O			500.17						
Indicatoratory Duplications Laboratory Completed Services are used to beet the precision of the laboratory measurements. Laboratory Committed Services and Servi			Analyte concentrations below LORs.		N/A		N/A		N/A	
Taboratory Diplications Taboratory Diplications The Industry Centred The Industry Interview in Season was remained in Control Samples (CS) are used to some season was remained in corposition to environmental states in the Control Samples are similar in Corposition to environmental designation of the Industry Control Samples (CS) are used to season was remained in corposition to environmental states in the Industry of the Industry of the Industry of environmental designation of the Industry of Industry of Environmental Samples of Industry of Environmental Samples of Industry of Environmental Samples of Industry of Environmental Samples and Industry of Environmental Samples of Industry of Environmental Samp	Allalysis			lieu biarik ariaryticar results.						
Claboratory Control Samples Laboratory control Samples Laboratory control Samples Alexandra control samples (CS) give used to sasses overal method performance, in general these liaboratory, samples are situating in composition to environmental samples, and contain known amounts of the analyses Certified Reference Material CRM samples are used to morniture has backed by an application of the analyses CRM samples are used to morniture has caused or analyses CRM samples are used to morniture has backed by distanciary (generally dynamic recovery limits). Usually not analyses performed by the laboratory. Surrogate Recovery Corrigate Recovery Corrigate are organic compounts that are similar to expect the sample personal and analysis. Composition is analyses for increased and analysis. Composition is analyses for increased analysis. Composition is analysed in convictor analysis and analysis. Composition is analysed in convictor analysis. Composition is analysed in convictor analysis and analysis. Composition is analysed in a convictor analysis and analysis. Composition is analysed in a convictor analysis and analysis. Composition is analysed in a convictor analysis and analysis. Composition is analysed in a convictor analysis and analysis and analysis. Composition is analysed analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis analysis and analysis and analysis and analysis analysis and analysis analysis analysis and analysis analy	Laboratory Duplicates	3.	As specified by laboratory	Laboratory reports	Yes		Yes		Yes	
Laboratory Cottod Samples assesses overall method performance, ingeneral these samples are similar in composition to environmental samples, and contain known amounts of the analyses samples are similar in composition to environmental samples, and contain known amounts of the analyses samples are similar in composition to environmental samples, and contain known amounts of the analyses samples are similar in composition to the event of the sample reports Ortifice Reference Ortifice Reference Ortifice Reference Ortifice Reference Ortifice Reference Ortifice Reference Ortifice Recovery ortification ortifice and ortifice and ortifice and ortifice and ortifice and ortifice and ortifice and ortifice and ortifice Recovers ortifice Recovery ortification ortifice and ortifice Recovers ortification ortifice Recovers ortification ortifice Recovers ortification ortifice Recovers ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification ortification	Laboratory Dupinoutoo		no openinea by laboratory.	Laboratory reports			1.55		1.55	
Samples as mainter nomposition to environmental stargules, and contain travers amounts of the analytes contain travers amounts of the analytes analytes are similar nomposition to environmental stargules, and contain travers amounts of the analytes analytes performed by the laboratory (generally dynamic recovery) immiss, Usually not performed and assessed based on LCS contains the start of the accuracy of analyses performed and assessed based on LCS contains the start of the accuracy of performed and assessed based on LCS contains the start of the accuracy of performed and assessed based on LCS contains the start interference on a sample preparation analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed analyses, source performed and analyses and analyses and analyses and analyses and analyses and analyses and analyses and analyses and analyses and analyses and analyses and analyses analyses and analyses and analyses and analyses and analyses and analyses analyses and analyses analyses and analyses analyses analyses analyses and analyses analyses analyses analyses and analyses analyses analyses analyse	Laboratory Control	Laboratory control samples (LCS) are used to	Dynamic recovery limits as specified by	Laboratory reports	Ves		Yes		Yes	
samples are similar in composition to environmental samples, and contain known amounts of the analytes of trateseat. Certifical Recovery of interest and composition of the analytes performed by the laboratory (generally dynamic monovery limits), blusually not depression of the sample and analyses performed by the laboratory. Surrogate Recovery of the sample samp				Laboratory reports	100		100		1.03	
Certified Reference CRM samples are used to monitor the accuracy of Material CRM samples are used to monitor the accuracy of analyses performed by the laboratory. Surrogate Recovery Surrogate Recovery Surrogate Recovery Amatrix spike are organic compounds that are similar in chemical composition to analyse of interest and an analysis. Surrogate recoversiance are used to evaluate matrix interference on a sample-specific basels. Metrix Spike Recovery Amatrix spike is an aliquot of a sample spiked with a surrogate recoversiance and analysis. Surrogate recoversiance analysis of surrogate analyses of surrogate analyses. Surrogate recoversiance analyses are identified. Metrix Spike Recovery Amatrix acceptation and analysis. Surrogate recoversiance analyses and analyses analyses and analyses and analyses and analyses analyses and analyses analyses and analyses analyses analyses and analyses analyses and analyses analyses and analyses										
Certified Reference CRM samples are used to monitor the accuracy of analyses performed by the laboratory of analyses performed by the laboratory of the										
Material analyses performed by the laboratory, obynamic recovery limits, Usually not performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and assessed based on LCS performed and performed per	Cartifical Defenses		As an affind by laboratory (near soully	1	V		V		V	
Surrogate Recovery Surrogates are organic compounds that are similar in Dynamic recovery limits as specified by chemical composition to analytes of interest and a laboratory reports specified and proper and the spike of the evidual enabling and analyses, spike of the evidual enabling and analyses. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to essess the bias of a method in a given sample matrix as closely as possible and preparate/detracted/dispetand and analyses and preparate/detracted/dispetand and analyses detracted during sample reparation activities. Potentially Anomalous Data Potentially Anomalous No discrepancies between feld, laboratory and/or expected results are internally consistent with field measurements, and consistent with the spike of the consistent with the spike of the consistent with the spike of the consistent with the spike of the consistent				Laboratory reports	res		res		res	
Surrogates Recovery Surrogates are organic compounds that are similar in Opmanic recovery limits as specified by chemical composition to analytes of interest and are spiked into environmental samples price to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a recovery final spike is an aliquot of a sample spiked with a recovery growing to sample preparation and analysis, and the results are used to seesse the blas of a method in a given sample preparation and analysis, and the results are used to seesse the blas of a method in a given sample matrix. Laboratory Method Blanks Method blanks are reprepared to represent the sample preparation and analysed exactly like field samples. These blanks are used by seed and analysed exactly like field samples. These blanks are used by the laboratory to assess containmation introduced during sample preparation and christics. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are identified Multiple sources Oxidate the samples of the sample and t	Waterial	analyses performed by the laboratory.								
chemical composition to analyties of interest and are spiked into evironmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery. A matrix spike is an aliquot of a sample spiked with a known concentration of target analyties). Spiking occurs prior to sample preparation and analysis, and the results are used to saesses the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample approximation activities. Analyte concentrations below LORs. Laboratory veports Yes No Matrix spike was not determined due to the background level being greater than or equal to 4x the spike level in sample A_SS19. Analyte concentrations below LORs. Laboratory reports Yes Yes Potentially Anomalous No discrepancies between field, laboratory and/or expected results are internally consistent, consistent, consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field measurements, and consistent with field diseasurements, and consistent with field diseasurements, and consistent with field diseasurements, and consistent with field diseasurements.										
spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to saeses the bias cases the bias cases the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample in a matrix as closely as possible and prepared elevat actediglested and analysed exactly like field samples. These blanks are used by the alboratory to assesse contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are identified measurements, and consistent with field measurements, and consistent with expected and/or historical results based	Surrogate Recovery			Laboratory reports	Yes		Yes		Yes	
preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an altiquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and preparare/fextracted/digested and analysed exactly like field samples. These blanks are used by the laboratory of sample preparation activities. Potentially Anomalous Data Potentially Anomalous Data Recovery 70 - 130% or dynamic limits if Laboratory reports Yes No Matrix spike was not determined due to the background level being greater than or equal to 4x the spike level in sample A_SS19. Yes No Matrix spike was not determined due to the background level being greater than or equal to 4x the spike level in sample A_SS19. Yes Potentially Anomalous Data No discrepancies between field, laboratory and/or expected and/or instructional results are internally consistent, consistent with field measurements, and consistent with expected and/or instructional results based			laboratory.							
used to evaluate matrix interference on a sample-specific basis. Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory devided and prepared/extracted/digested and analysed concentrations below LORs. Potentially Anomalous Data Potentially Anomalous Data Modiscrepancies between field, laboratory and/or expected and/or historical results based Modiscrepancies between field, laboratory and/or consistent with field measurements, and consistent with expected and/or historical results based										
Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a Recovery 70 - 130% or dynamic limits if known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and preparad/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected are sidentified Analytical results are identified measurements, and consistent with field measurements, and consistent with geneted and or historical results based										
Matrix Spike Recovery A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared for represent the sample matrix as closely as possible and prepared/cutracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified we expected results are identified No discrepancies between field, laboratory and/or consistent with field measurements, and consistent with field measurements, and consistent with expected and/or historical results based										
known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field measurements, and consistent with expected and/or historical results based		ļ ·								
known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified neasurements, and consistent with field measurements, and consistent with expected and/or historical results based	Matrix Caiks Deserve	A matrix anika is an aliquet of a second scale 1 20	Page 1907 1209/ 1 1 1 15	Laboratory roport-	Voc		No	Matrix anilya upo not determined due to the	Vac	
cocurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Blanks Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Multiple sources Multiple sources Multiple sources Consistent, consistent with field measurements, and consistent with expected and/or historical results based	IVIATRIX SPIKE Recovery			Laboratory reports	res		INO		res	
the results are used to assess the bias of a method in a given sample matrix. Laboratory Method Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent, consistent with field measurements, and consistent with general consistent with gene										
in a given sample matrix. Laboratory Method Blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field measurements, and consistent with expected and/or historical results based										
Blanks matrix as closely as possible and prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified expected and/or historical results based Multiple sources Multiple sources Consistent with field mexpected and/or historical results based		in a given sample matrix.								
prepared/extracted/digested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field measurements, and consistent with expected and/or historical results based			Analyte concentrations below LORs.	Laboratory reports	Yes		Yes		Yes	
like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field mexpected and/or historical results based	Blanks									
laboratory to assess contamination introduced during sample preparation activities. Potentially Anomalous Data Potentially Anomalous expected results are identified No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected results are identified No discrepancies between field, laboratory and/or expected results are internally consistent, consistent with field measurements, and consistent with expected and/or historical results based										
Sample preparation activities. Potentially Anomalous Data No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field mexpected and/or historical results based										
Potentially Anomalous Data Potentially Anomalous Consistent with field mexpected results are identified No discrepancies between field, laboratory and/or expected results are identified Analytical results are internally consistent with field mexpected and/or historical results based			1							
Data expected results are identified consistent, consistent with field measurements, and consistent with expected and/or historical results based										
Data expected results are identified consistent, consistent with field measurements, and consistent with expected and/or historical results based	Potentially Anamalay-	No discrepancies between field laboratory stall-	Applytical results are internally	Multiple seurose						
measurements, and consistent with expected and/or historical results based				iviulupie sources						
expected and/or historical results based	Salu	Supposed results are identified					1		1	
on CSM			expected and/or historical results based							
			on CSM				1		1	
			1	l	l .				1	

			AD_SD04 20/01/2020 Normal	AD_SD04 QC107 20/01/2020 Field_D ES2002803	RPD	AD_SD04 AD_SD04 20/01/2020 Normal ES2002812	AD_SD04 QC207 20/01/2020 Interlab_D 699303	RPD	CHAP_SS01 20/01/2020 Normal	CHAP_SS01 QC105 20/01/2020 Field_D ES2002803	RPD	CHAP_SS01 CHAP_SS01 20/01/2020 Normal ES2002810	CHAP_SS01 QC205 20/01/2020 Interlab_D 699303	RPD	MC_SD08 MC_SD08 20/01/2020 Normal ES2002810	MC_SD08 QC106 20/01/2020 Field_D ES2002803	RPD	MC_SD08 MC_SD08 20/01/2020 Normal ES2002810	MC_SD08 QC206 20/01/2020 Interlab_D 699303	RPD	MC_SD08 MC_SD08 20/01/2020 Normal ES2002810	MC_SD08 QC206 20/01/2020 Interlab_D 702872 RPD
	Unit	EQL		•		•	•		•		•	•	•	•	•	•				•	•	
Physical Parameters				1		1		1				1		T			1					
Leachate Fluid Moisture Content	- 0/	0.1	- 6.1	10.0	-	6.1	9.4	- 43	- 11.4	- 12.0	- 5	- 11.4	- 11	- 4	- 18.7	18.7	- 0	- 18.7	- 19	-	- 18.7	1.0 -
pH (Initial)	pH Units	0.1	-	- 10.0	48	-	9.4	-	-	-	-	- 11.4	-	-	-	-	-	-	-	2	-	5.0 -
pH of Leaching Fluid	pH Units	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 -
pH (Final) (n:2) Fluorotelomer Sulfonic Acids	pH Units	0.1		-	-	-	-	-	-	-	-	-	-	+-	-	-	 -	-	-	-	-	5.0 -
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 -
CO Flooreteless of October to (CO FtO)	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L mg/kg	0.05 0.0005	<0.0005	<0.0005	- 0	<0.0005	<0.01	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.01	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.01	0	<0.0005	<0.05 -
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 -
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	mg/kg μg/L	0.0005 0.01	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005	<0.0005	-	<0.0005	<0.005	0 -	<0.0005	<0.0005	-	<0.0005	<0.005	0	<0.0005	<0.01
, , ,	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	
Perfluoroalkane Carboxylic Acids Perfluorohexanoic acid (PFHxA)	μg/L	0.01		+	-	<u> </u>		-	_	_	<u> </u>		-	+ -		-	-	_		 	_	0.05 -
	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0002	0.0002	0	0.0002	<0.005	0	0.0018	0.0016	12	0.0018	<0.005	0	0.0018	
Perfluorododecanoic acid (PFDoDA)	μg/L mg/kg	0.01 0.0002	-0.0002	-0.0002	-	-0.0002	-0.005	-	-0.0000	-0.0000	-	-0.0000	-0.005	-	-n nnnn	-0.0000	-	-0.0000	-0.005	-	-0.0002	<0.01 -
Perfluorononanoic acid (PFNA)	mg/kg µg/L	0.0002	<0.0002 -	<0.0002	-	<0.0002	<0.005	-	<0.0002 -	<0.0002 -	-	<0.0002	<0.005 -	-	<0.0002	<0.0002 -	-	<0.0002	<0.005	-	<0.0002	<0.01
	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0005	0.0003	50	0.0005	<0.005	0	0.0005	
Perfluoropentanoic acid (PFPeA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0004	0.0004	- 0	0.0004	<0.005	- 0	0.0004	<0.01 -
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01 -
Perfluoroheptanoic acid (PFHpA)	mg/kg μg/L	0.0005 0.01	<0.0005	<0.0005	0	<0.0005	<0.005	-	<0.0005	<0.0005	0	<0.0005	<0.005	0 -	<0.0005	<0.0005	-	<0.0005	<0.005	0	<0.0005	0.02 -
- Chidoloneptanolo acid (1111pA)	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0004	0.0004	0	0.0004	<0.005	0	0.0004	
Perfluorobutanoic acid (PFBA)	μg/L	0.05	-0.004	-	-	-0.004	-0.005	-	- 0.004		-	- 0.004	-0.005	-	- 0.004	-0.004	-	- 0.004	-0.005	-	- 0.004	<0.05 -
Perfluorodecanoic acid (PFDA)	mg/kg μg/L	0.001 0.01	<0.001	<0.001	-	<0.001	<0.005	-	0.001	<0.001 -	-	0.001	<0.005	0 -	0.001	<0.001	-	0.001	<0.005	0	0.001	<0.01
	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0003	0.0002	40	0.0003	<0.005	0	0.0003	
Perfluorotridecanoic acid (PFTrDA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.01 -
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	-0.0002	-	-	-0.0002	-	-	-0.0002	-0.0002	-	-0.0002	-0.000	-	-0.0002	-0.0002	-	-0.0002	-	-	-0.0002	<0.01 -
Perfluorooctanoic acid (PFOA)	mg/kg μg/L	0.0002 0.01	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0 -	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	0.03
Periludiooctandic acid (PFOA)	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0011	0.0009	20	0.0011	<0.005	0	0.0011	
Perfluoroalkane Sulfonic Acids		2.24																				.0.01
Perfluorononanesulfonic acid (PFNS)	μg/L mg/kg	0.01 0.005	-	-	-	-	<0.005	-	-	-	-	-	<0.005	+ -	-	-	-	-	<0.005	-	-	<0.01 -
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.3 -
Perfluoropentane sulfonic acid (PFPeS)	mg/kg μg/L	0.0002 0.01	0.0010	0.0008	22	0.0010	<0.005	-	0.0021	0.0020	5	0.0021	<0.005	0	0.172	0.174	1 -	0.172	0.13	28	0.172	0.04 -
, ,	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0015	0.0011	31	0.0015	<0.005	0	0.0015	
Perfluorohexane sulfonic acid (PFHxS)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0003	0.0003	- 0	0.0003	<0.005	- 0	0.0219	0.0202	- 8	0.0219	0.014	- 44	0.0219	0.46 -
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.002	-0.0002	-0.0002	-	-0.0002	-	-	-	-	-	-	-	-	- 0.0219	- 0.0202	-	-	- 0.014	-	-	0.04 -
Double and a consolitories acid (DEDC)	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0024	0.0016	40	0.0024	<0.005	0	0.0024	
Perfluorodecanesulfonic acid (PFDS)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0009	0.0007	25	0.0009	<0.005	- 0	0.0009	<0.01 -
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	0.04 -
Perfluoropropanesulfonic acid (PFPrS)	mg/kg μg/L	0.0002 0.01	<0.0002 -	<0.0002	-	<0.0002	<0.005	-	<0.0002 -	<0.0002	-	<0.0002	<0.005	0 -	0.0016	0.0013	21	0.0016	<0.005	-	0.0016	0.02
	mg/kg	0.005	-	-	-	-	< 0.005	-	-	-	-	-	<0.005	-	-	-	-	-	<0.005	-	-	
Sum of PFHxS and PFOS	μg/L mg/kg	0.01 0.0002	0.0010	0.0008	- 22	0.0010	<0.005	- 0	0.0024	0.0023	4	0.0024	<0.005	- 0	0.194	0.194	- 0	0.194	0.144	30	0.194	2.76 -
Perfluoroalkyl Sulfonamides			0.0010	0.0000	- 22	0.0010	40.000		0.0024	0.0020		0.0024	40.000		0.134	0.104		0.134	0.144	30	0.134	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L mg/kg	0.05 0.0005	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.05 -
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.005	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005 -	<0.0005 -	-	<0.0005	<0.005	-	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005	<0.05
	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.01	0	<0.0002	<0.0002	0	<0.0002	<0.01	0	<0.0002	<0.0002	0	<0.0002	<0.01	0	<0.0002	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L mg/kg	0.02 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.01	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.01	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.01	- 0	<0.0002	<0.05 -
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05 -
N-Methyl perfluorooctane sulfonamide (MeFOSA)	mg/kg μg/L	0.0005 0.05	<0.0005	<0.0005 -	-	<0.0005	<0.005	-	<0.0005 -	<0.0005	-	<0.0005 -	<0.005	0 -	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005	<0.05
	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	< 0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L mg/kg	0.05 0.0005	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.05 -
Perfluorooctane sulfonamide (FOSA)	μg/L	0.005	-0.0003	-	-	-0.0003	-	-	-0.0003	-	-	-0.0003	-0.003	-	-0.0003		-	-	-0.005	-		<0.05
DEAS	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0002	<0.0002	0	0.0002	<0.005	0	0.0002	
PFAS Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	+ -	-	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-	-	-	2.79 -
	mg/kg	0.005	-	-	-	-	< 0.005	-	-	-	-	-	<0.005	-	-	-	-	-	0.144	-	-	
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L mg/kg	0.01 0.005	-	-	-	-	<0.005	-	-	-	-	-	<0.005	-	-	-	-	-	0.13	-	-	2.33 -
Sum of PFAS	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3 -
	mg/kg	0.0002	0.0010	0.0008	22	0.0010	< 0.05	0	0.0036	0.0025	36	0.0036	<0.05	0	0.206	0.203	1	0.206	0.144	35	0.206	

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

			ID MC_SD08	MC_SD08 QC106		A_SS03 A_SS03	A_SS03 QC108		A_SS03 A_SS03	A_SS03 QC208		ID012_SD01 ID012_SD01	ID012_SD01 QC109		ID012_SD01 ID012_SD01	ID012_SD01 QC209	_	A_SS20 A_SS20	A_SS20 QC111		A_SS20 A_SS20	A_SS20 QC211	\exists
		Da Sample Typ Lab Report N		20/01/2020 Field_D ES2005692	RPD	21/01/2020 Normal ES2002806	20/01/2020 Field_D ES2002803	RPD	21/01/2020 Normal ES2002806	21/01/2020 Interlab_D 699303	RPD	21/01/2020 Normal ES2002830	21/01/2020 Field_D ES2002803	RPD	21/01/2020 Normal ES2002830	21/01/2020 Interlab_D 699303		22/01/2020 Normal ES2002806	22/01/2020 Field_D ES2002803	RPD	22/01/2020 Normal ES2002806	22/01/2020 Interlab_D 699303	RF
	Unit	EQL																					
sical Parameters																							I
eachate Fluid Moisture Content	- 0/.	0.1	-	-	-	-	-	- 74	- 1.0	- 0.7	- 40	- 04.4	- 04.0	1	- 04.4	- 04	-	- 10.4	-	- 10	- 10.4	- 0.0	4
oH (Initial)	pH Units	0.1	-	-	+ -	1.8	3.8	71	1.8	2.7	40	84.1	84.9	-	84.1	84	0 -	10.4	8.6	19	10.4	8.9	+
pH of Leaching Fluid	pH Units	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7
oH (Final)	pH Units	0.1	6.6	7.6	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I
) Fluorotelomer Sulfonic Acids :2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	<0.05	<0.05	0		<u> </u>	-	-		+-		-	<u> </u>		+			<u> </u>	-	 		\dashv
4.2 Fluoroteromer surionic acid (4.2 F13)	mg/kg	0.0005	-0.03	-0.03	-	<0.0005	<0.0005	0	<0.0005	< 0.005	0	<0.0005	<0.0005	0	<0.0005	< 0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	-
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	< 0.05	< 0.05	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
20.51	mg/kg	0.0005	-	-	-	<0.0005	<0.0005	0	< 0.0005	< 0.01	0	< 0.0005	<0.0005	0	< 0.0005	<0.01	0	<0.0005	<0.0005	0	<0.0005	<0.01	_
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L mg/kg	0.01 0.0005	<0.05	<0.05	0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	0.0016	0.0017	- 6	0.0016	<0.005	-
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.00	< 0.05	< 0.05	0	-	-	-	-	-0.000	-	-		-	-0.0003	-	-	-	-	-	-	-0.003	-
	mg/kg	0.0005	-	-	-	< 0.0005	< 0.0005	0	< 0.0005	< 0.005	0	< 0.0005	< 0.0005	0	< 0.0005	< 0.005	0	< 0.0005	<0.0005	0	<0.0005	< 0.005	
fluoroalkane Carboxylic Acids	ug/l	0.01	0.06	0.06				<u> </u>	-					<u> </u>									_
Perfluorohexanoic acid (PFHxA)	μg/L mg/kg	0.0002	0.06	0.06	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0	0.0028	0.0032	13	0.0028	<0.005	-
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01	<0.02	<0.02	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0.0	mg/kg	0.0002	-	-	-	<0.0002	<0.0002	0	<0.0002	< 0.005	0	<0.0002	<0.0002	0	<0.0002	< 0.005	0	0.0024	0.0023	4	0.0024	<0.005	_
Perfluorononanoic acid (PFNA)	μg/L mg/kg	0.01 0.0002	<0.02	<0.02	0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0016	0.0015	- 6	0.0016	<0.005	_
Perfluoropentanoic acid (PFPeA)	μg/L	0.002	<0.02	<0.02	0	-	-	-	-	-0.000	-	-	-0.0002	-	-0.0002	-	-	-	-	-	-	-	=
. ,	mg/kg	0.0002	-	-	-	< 0.0002	<0.0002	0	< 0.0002	< 0.005	0	< 0.0002	0.0003	40	<0.0002	0.0060	187	0.0033	0.0021	44	0.0033	< 0.005	
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	< 0.05	<0.05	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Perfluoroheptanoic acid (PFHpA)	mg/kg μg/L	0.0005 0.01	<0.02	<0.02	- 0	<0.0005	<0.0005	0	<0.0005	<0.005 -	0	<0.0006	<0.0006	0	<0.0006	<0.005	-	0.0015	<0.0005	100	0.0015	<0.005	4
r chiuoroneptanole acid (1 1 11pA)	mg/kg	0.0002	-0.02	-0.02	-	<0.0002	<0.0002	0	<0.0002	< 0.005	0	<0.0002	0.0003	40	<0.0002	< 0.005	0	0.0013	0.0010	26	0.0013	<0.005	-
Perfluorobutanoic acid (PFBA)	μg/L	0.05	<0.1	<0.1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dowlly avaidage as a sid (DEDA)	mg/kg	0.001	-0.00	-0.00	-	<0.001	<0.001	0	<0.001	<0.005	0	<0.001	0.002	67	<0.001	< 0.005	0	0.004	0.002	67	0.004	<0.005	_
Perfluorodecanoic acid (PFDA)	μg/L mg/kg	0.01 0.0002	<0.02	<0.02	-	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0026	0.0023	12	0.0026	<0.005	+
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	< 0.02	< 0.02	0	-	-	-	-	-	 -	-	-	 -	-	-	-	-	-	-	-	-	T
	mg/kg	0.0002	-	-	-	<0.0002	<0.0002	0	<0.0002	< 0.005	0	< 0.0002	<0.0002	0	<0.0002	< 0.005	0	0.0003	0.0004	29	0.0003	< 0.005	
Perfluoroundecanoic acid (PFUnDA)	μg/L mg/kg	0.01 0.0002	<0.02	<0.02	0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0067	0.0032	71	0.0067	<0.005	\dashv
Perfluorooctanoic acid (PFOA)	μg/L	0.002	0.04	0.04	0	-0.0002	-0.0002	-	-0.0002	-0.003	-	-0.0002	-0.0002	-	-0.0002	-0.003	-	-	-	 ''	- 0.0007	-0.003	\pm
	mg/kg	0.0002	-	-	-	<0.0002	< 0.0002	0	< 0.0002	< 0.005	0	< 0.0002	<0.0002	0	< 0.0002	<0.005	0	0.0029	0.0029	0	0.0029	< 0.005	I
rfluoroalkane Sulfonic Acids	ug/l	0.01		1					-		_		-			+			1	-	1		_
Perfluorononanesulfonic acid (PFNS)	μg/L mg/kg	0.005	-	-	+-	-	-	-	 -	< 0.005	+ -	-	-	-	-	<0.005	-	-	-	+ -	-	0.0086	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	3.73	3.47	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	mg/kg	0.0002	-	-	-	0.0068	0.0068	0	0.0068	< 0.005	31	0.0167	0.0195	15	0.0167	0.0083	67	0.0338	0.0548	47	0.0338	0.055	
Perfluoropentane sulfonic acid (PFPeS)	μg/L mg/kg	0.01 0.0002	0.04	0.04	0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	0.0024	169	<0.0002	<0.005	- 0	0.0008	0.0006	29	0.0008	<0.005	4
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.002	0.54	0.50	8	-0.0002	-0.0002	-	<0.0002 -	-0.003	-	-0.0002	0.0024	- 103	-0.0002	-0.003	-	-	-	-	- 0.0008	-0.003	\forall
, ,	mg/kg	0.0002	-	-	-	0.0004	0.0003	29	0.0004	< 0.005	0	0.0041	0.0060	38	0.0041	<0.005	0	0.0097	0.0091	6	0.0097	< 0.005	I
Perfluoroheptane sulfonic acid (PFHpS)	µg/L	0.01 0.0002	0.06	0.06	0	0.0003	0.0002	- 40	0.0003	<0.005	-	-0.0000	0.0016	156	-0.0000	-0.00F	-	0.0006	0.0005	- 10	0.0006	-0.00F	4
Perfluorodecanesulfonic acid (PFDS)	mg/kg μg/L	0.0002	<0.02	<0.02	- 0	0.0003	0.0002	- 40	0.0003	<0.005	0	<0.0002	0.0016	130	<0.0002	<0.005	-	0.0006	0.0005	18	0.0006	<0.005	\dashv
	mg/kg	0.0002	-	-	-	< 0.0002	<0.0002	0	< 0.0002	< 0.005	0	< 0.0002	< 0.0002	0	<0.0002	< 0.005	0	0.0277	0.0210	28	0.0277	0.023	T
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	0.06	0.05	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Perfluoropropanesulfonic acid (PFPrS)	mg/kg μg/L	0.0002	-	-	-	<0.0002	<0.0002	-	<0.0002	<0.005	- 0	<0.0002	0.0003	40	<0.0002	<0.005	-	0.0006	0.0007	15	0.0006	<0.005	4
r chiaoropropanesanome acia (11110)	mg/kg	0.005	-	-	+ -	-	-	 -	-	< 0.005	+ -	-	-	 -	-	< 0.005	-	-	-	-	-	<0.005	-
Sum of PFHxS and PFOS	μg/L	0.01	4.27	3.97	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
efica ya allo d Culfa ya waida a	mg/kg	0.0002	-	-	-	0.0072	0.0071	1	0.0072	< 0.005	36	0.0208	0.0255	20	0.0208	0.0083	86	0.0435	0.0639	38	0.0435	0.055	_
rfluoroalkyl Sulfonamides N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	<0.05	< 0.05	0	_	_	 -	 	-	+-	_	 	 -	-	-	+ -	_	 -	+	-	-	_
	mg/kg	0.0005	-	-	-	< 0.0005	< 0.0005	0	< 0.0005	< 0.005	0	< 0.0006	< 0.0006	0	<0.0006	0.0092	176	< 0.0005	<0.0005	0	<0.0005	< 0.005	
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02	<0.02	< 0.02	0	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	mg/kg μg/L	0.0002	<0.02	<0.02	- 0	<0.0002	<0.0002	0	<0.0002	<0.01	0 -	<0.0002	<0.0002	0	<0.0002	<0.01	0	<0.0002	<0.0002	0	<0.0002	<0.01	_
v-city-periluoroocianesunonamidoacette acid (NEtt OOAA)	mg/kg	0.0002	-0.02	-0.02	-	<0.0002	<0.0002	0	<0.0002	<0.01	0	< 0.0002	<0.0002	0	<0.0002	< 0.01	0	<0.0002	<0.0002	0	<0.0002	<0.01	-
-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	<0.05	< 0.05	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Mathed a reflection of the COOA	mg/kg	0.0005			-	<0.0005	<0.0005	0	<0.0005	< 0.005	0	<0.0006	<0.0006	0	<0.0006	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	_
-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L mg/kg	0.05 0.0005	<0.05 -	<0.05	-	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0006	<0.0006	- 0	<0.0006	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	-
-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05	<0.05	<0.05	0	-0.0003	-0.0000	-	-	-0.003	-	-	-0.0000	-	-	-	-	-0.0003	-	-	-	-0.000	
	mg/kg	0.0005	-	-	-	<0.0005	<0.0005	0	<0.0005	< 0.005	0	1	<0.0006	0	<0.0006	0.0057	162	<0.0005	<0.0005	0	<0.0005	<0.005	
Perfluorooctane sulfonamide (FOSA)	μg/L mg/kg	0.02 0.0002	<0.02	<0.02	0	<0.0002	<0.0002	-	<0.0002	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0025	0.0021	17	0.0025	<0.005	_
S	mg/kg	0.0002	-	-	+	~U.UUUZ	~0.0002	U	\U.UUUZ	\U.UU0	T	~U.UUUZ	~U.UUUZ	U	~U.UUUZ	\U.UU3	U	0.0023	0.0021	17	0.0020	<u>~0.005</u>	-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
A STANKE OF THE	mg/kg	0.005	-	-	-	-	-	-	-	< 0.005	-	-	-	-	-	0.0083	-	-	-	-	-	0.055	_
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L mg/kg	0.01 0.005		-	-	-	-	-	-	<0.005	+ -	-	-	-	-	0.0083	-	-	-	+ -	-	0.055	_
Sum of PFAS	μg/L	0.003	4.53	4.22	7	-	-	 -	-	-0.003	+ -	-	-	 -	-	-	-	-	-	+ -	-		-
	mg/kg	0.0002	-	-	-	0.0075	0.0073	3	0.0075	< 0.05	0	0.0208	0.0324	44	0.0208	< 0.05	0	0.107	0.111	4	0.107	0.0866	

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

			A_SS30 e 22/01/2020	A_SS30 QC112 22/01/2020 Field D		A_SS30 A_SS30 22/01/2020 Normal	A_SS30 QC212 22/01/2020 Interlab D		A_SS30 A_SS30 22/01/2020 Normal	A_SS30 QC212 22/01/2020 Interlab D		A_SS30 A_SS30 22/01/2020 Normal	A_SS30 QC112 22/01/2020 Field D		A_SS40 A_SS40 22/01/2020 Normal	A_SS40 QC113 22/01/2020 Field D	-	A_SS40 A_SS40 22/01/2020 Normal	A_SS40 QC213 22/01/2020 Interlab D		A_SS50 A_SS50 22/01/2020 Normal	A_SS50 QC114 22/01/2020 Field D	
		Lab Report No		ES2002803	RPD	ES2002806	699303	RPD	ES2002806	702872	RPD	ES2005692	ES2005692	RPD	ES2002806	ES2002803	RPD	ES2002806	699303	RPD	ES2002806	ES2002803	RPD
Physical Parameters	Unit	EQL		1		1	1			_		1	1	1		1	1		1	1	ı		1
Leachate Fluid	-		-	-	-	-	-	-	-	1.0	-	-	-	-	-	-	-	-	-	-	-	 -	-
Moisture Content	%	0.1	10.8	13.1	19	10.8	12	11	10.8	-	-	-	-	-	8.2	8.3	1	8.2	8.4	2	9.1	9.5	4
pH (Initial) pH of Leaching Fluid	pH Units pH Units	0.1 0.1	-	-	 -	-	 -	-	-	5.0 5.0	+ -	-	 -	+ -	-	-	-	-	-	+ :	-	-	-
pH (Final)	pH Units	0.1	-	-	-	-	-	-	-	5.0	-	7.2	7.5	4	-	-	-	-	-	-	-	-	-
(n:2) Fluorotelomer Sulfonic Acids	//	0.04			-					-0.04		-0.05	-0.05										
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L mg/kg	0.01 0.0005	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.01	+ -	<0.05	<0.05	0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	-	-	<u>-</u>	-	-	-	-	< 0.05	-	< 0.05	< 0.05	0	-	-	-	-	-	-	-	-	-
0.051	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	<0.01	0	<0.0005	-	-	-	-	-	<0.0005	<0.0005	0	<0.0005	<0.01	0	<0.0005	<0.0005	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L mg/kg	0.01 0.0005	0.0117	0.0130	11	0.0117	0.012	3	0.0117	0.12	-	0.22	0.22	0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	-	-	-	-	-	-	-	< 0.01	-	< 0.05	< 0.05	0	-	-	-	-	-	-	-	-	-
	mg/kg	0.0005	0.0006	0.0009	40	0.0006	<0.005	0	0.0006	-	-	-	-	-	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0
Perfluoroalkane Carboxylic Acids Perfluorohexanoic acid (PFHxA)	μg/L	0.01	 -	-	+ -	-	 -	-	-	0.17	+ -	0.17	0.17	0	_	+ -	 	_	 -	+ -	_	 -	-
	mg/kg	0.0002	0.0048	0.0049	2	0.0048	< 0.005	0	0.0048	-	-	-	-	-	0.0008	0.0006	29	0.0008	<0.005	0	0.0004	0.0004	0
Perfluorododecanoic acid (PFDoDA)	μg/L mg/kg	0.01	- 0.0050	- 0.0054	-	- 0.0050	-0.005	-	- 0.0050	<0.01	-	<0.02	<0.02	0	<0.0000	-0.0000	-	<0.0000	-0.005	-	-0.0000	×0.0000	-
Perfluorononanoic acid (PFNA)	mg/kg μg/L	0.0002 0.01	0.0056	0.0051	9 -	0.0056	<0.005	- 11	0.0056	0.35	-	0.69	0.70	1	<0.0002	<0.0002 -	-	<0.0002	<0.005	- 0	<0.0002	<0.0002	0 -
	mg/kg	0.0002	0.0153	0.0179	16	0.0153	0.021	31	0.0153	-	-	-	-	-	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0
Perfluoropentanoic acid (PFPeA)	μg/L	0.01	- 0.0000	- 0.0050	-	- 0.0000	-	-	-	0.24	-	0.24	0.27	12	- 0.0040	-	-	- 0.0040	-0.005	-	-0.0000	-	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg μg/L	0.0002 0.01	0.0088	0.0058	41	0.0088	0.0053	50	0.0088	<0.01	-	<0.05	<0.05	- 0	0.0010	0.0006	50	0.0010	<0.005	-	<0.0002	<0.0002	-
	mg/kg	0.0005	0.0007	0.0006	15	0.0007	< 0.005	0	0.0007	-	-	-	-	-	<0.0005	< 0.0005	0	< 0.0005	< 0.005	0	<0.0005	< 0.0005	0
Perfluoroheptanoic acid (PFHpA)	µg/L	0.01	- 0.0000	-	-	- 0.0000		-	-	0.13	-	0.12	0.13	8	-0.0000		-	-0.0000	-0.005	-	-0.0000	-	-
Perfluorobutanoic acid (PFBA)	mg/kg μg/L	0.0002 0.05	0.0029	0.0030	3	0.0029	<0.005	0	0.0029	0.21	+ -	<0.1	0.2	67	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	-
Total of Sularion and (TT BT)	mg/kg	0.001	0.010	0.006	50	0.010	< 0.005	67	0.010	-	-	-	-	-	0.001	0.001	0	0.001	< 0.005	0	<0.001	< 0.001	0
Perfluorodecanoic acid (PFDA)	μg/L	0.01	-	-	-	-	-	-	-	0.06	-	0.12	0.17	34	-	-	-	-	-	-	-	-	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg μg/L	0.0002 0.01	0.0075	0.0070	7	0.0075	0.0099	28	0.0075	<0.01	+ -	<0.02	<0.02	- 0	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0
Total documents and a Community	mg/kg	0.0002	0.0012	0.0014	15	0.0012	< 0.005	0	0.0012	-	-	-	-	-	<0.0002	<0.0002	0	<0.0002	<0.005	0	<0.0002	<0.0002	0
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	-	-	-	-	-	-	-	< 0.01	-	<0.02	<0.02	0	-	-	-	-	-	-	-	-	-
Perfluorooctanoic acid (PFOA)	mg/kg μg/L	0.0002 0.01	0.0081	0.0044	59	0.0081	0.0053	42	0.0081	0.65	+ -	0.88	0.99	12	<0.0002	<0.0002	-	<0.0002	<0.005	0	<0.0002	<0.0002	0
Total designation and a first only	mg/kg	0.0002	0.0170	0.0198	15	0.0170	0.025	38	0.0170	-	-	-	-	-	0.0004	0.0004	0	0.0004	< 0.005	0	0.0004	0.0004	0
Perfluoroalkane Sulfonic Acids																						1	
Perfluorononanesulfonic acid (PFNS)	μg/L mg/kg	0.01 0.005	-	-	+ -	-	<0.005	-	-	<0.01	+ -	-	-	+ -	-	-	-	-	<0.005	+ -	-	-	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	-	-	-	-	-0.000	-	-	0.81	-	1.52	2.10	32	-	-	-	-	-0.000	-	-	-	-
D. 4	mg/kg	0.0002	0.137	0.124	10	0.137	0.16	15	0.137	-	-	-	-	-	0.0313	0.0311	1	0.0313	0.028	11	0.0222	0.0102	74
Perfluoropentane sulfonic acid (PFPeS)	μg/L mg/kg	0.01 0.0002	0.0014	0.0010	33	0.0014	<0.005	- 0	0.0014	0.02	-	<0.02	<0.02	-	<0.0002	<0.0002	- 0	<0.0002	< 0.005	- 0	0.0002	0.0002	- 0
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01		-	-	-	-0.000	-	-	0.26	-	0.33	0.31	6	-0.0002	-0.0002	-	-0.0002	-0.000	-	-	-	-
D. 6	mg/kg	0.0002	0.0190	0.0214	12	0.0190	0.01	62	0.0190	-	-	-	-	-	0.0007	0.0006	15	0.0007	<0.005	0	0.0028	0.0038	30
Perfluoroheptane sulfonic acid (PFHpS)	μg/L ma/ka	0.01 0.0002	0.0015	0.0015	- 0	0.0015	<0.005	- 0	0.0015	0.01	+ -	0.03	0.02	40	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	0.0005	0.0003	50
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01	-	-	-	-	-	-	-	< 0.01	-	<0.02	<0.02	0	-	-	-	-	-	-	-	-	-
D. 6 (PEDO)	mg/kg	0.0002	0.0103	0.0145	34		0.014	30	0.0103	-	-	-	-	-	0.0015	0.0016	6	0.0015	<0.005	0	<0.0002	<0.0002	0
Perfluorobutane sulfonic acid (PFBS)	μg/L mg/kg	0.01 0.0002	0.0009	0.0011	20	0.0009	<0.005	- 0	0.0009	0.02		<0.02 -	<0.02	0 -	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0	<0.0002	0.0003	40
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	-	-	-	-	-	-	-	< 0.01	-	-	-	-	-	-	-	-	-	-	-	-	-
Sum of PFHxS and PFOS	mg/kg	0.005	-	-	-	-	<0.005	-	-	1.07	-	- 4.05	- 244	-	-	-	-	-	<0.005	-	-	-	-
Sum of PERXS and PEOS	μg/L mg/kg	0.01 0.0002	0.156	0.145	7	0.156	0.17	9	0.156	1.07	+ -	1.85	2.41	26	0.0320	0.0317	1	0.0320	0.028	13	0.0250	0.0140	- 56
Perfluoroalkyl Sulfonamides																						1	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L mg/kg	0.05 0.0005	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.05	+ -	<0.05	<0.05	-	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.005	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005	< 0.05	+ -	<0.02	<0.02	- 0	<0.0005	<0.0005	-	<0.0005	<0.005	-	<0.0005	<0.0005	-
	mg/kg	0.0002	<0.0002	<0.0002	0	<0.0002	<0.01	0	<0.0002	-	-	-	-	-	<0.0002	<0.0002	0	<0.0002	< 0.01	0	<0.0002	<0.0002	0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L mg/kg	0.02 0.0002	<0.0002	<0.0002	- 0	<0.0002	<0.01	- 0	<0.0002	<0.05	-	<0.02	<0.02	0	<0.0002	<0.0002	- 0	<0.0002	<0.01	- 0	<0.0002	<0.0002	- 0
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.002	-0.0002	-0.0002	-	-0.0002	-0.01	-	-0.0002	<0.05	-	<0.05	<0.05	0	-0.0002	-0.0002	-	<0.0002 -	-0.01	-	-0.0002	<0.0002 -	-
	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	-	-	-	-	-	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L mg/kg	0.05 0.0005	0.0012	0.0014	- 15	0.0012	<0.005	- 0	0.0012	<0.05		<0.05	<0.05 -	0 -	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.005	- 0.0012		-	- 0.0012	-0.003	-		<0.05	-	<0.05	<0.05	0	-0.0003	-0.0005	-	~0.0003 -	-0.005	-	-0.0003	-0.0003	-
	mg/kg	0.0005	<0.0005	<0.0005	0	<0.0005	< 0.005	0	<0.0005	-	-	-	-		<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0
Perfluorooctane sulfonamide (FOSA)	μg/L mg/kg	0.02	0.0075	- 0.0063	- 17	0.0075	- 0.0053	- 24	- 0.0075	<0.05		<0.02	<0.02	0	-0.0002	<0.0002	- 0	-n nnn2	- <0.005	-	<0.0002	<0.0002	-
PFAS	mg/kg	0.0002	0.0075	0.0063	11/	0.0075	0.0053	34	0.0075	-	+-	-	-	+ -	<0.0002	~U.UUUZ	U	<0.0002	<0.005	0	<u>\0.0002</u>	<u>\0.0002</u>	0
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	-	-	-	-	-	1.72	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-
Sum of LIS EDA DEAS /DEAS + DEAA*	mg/kg	0.005	-	-	-	-	0.195	-	-	1.46	-	-	-	-	-	-	-	-	0.028	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L mg/kg	0.01 0.005	-	-	-	-	0.185	-	-	1.46	+ -	-	-	-	-	-	-	-	0.028	+ -	-	-	-
Sum of PFAS	μg/L	0.01	-	-	-	-	-	-	-	3.05	-	4.32	5.28	20	-	-	-	-	-	-	-	-	-
	mg/kg	0.0002	0.273	0.261	4	0.273	0.2678	2	0.273		- 1	-	-		0.0367	0.0359	2	0.0367	< 0.05	0	0.0265	0.0156	52

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

	,	Location Code	A 9950	A SS50	1	A SS52	A SS52	1	A SS52	A SS52	1	A SS60	A SS60	1	A SS60	A SS60	$\overline{}$
		Field ID		QC214	1	A_SS52 A SS52	QC115	1	A_SS52 A SS52	QC215	1	A_SS60 A SS60	QC116	1	A_SS60 A SS60	QC216	-
	}		22/01/2020	22/01/2020	1	22/01/2020	22/01/2020	1	22/01/2020	22/01/2020	1	23/01/2020	22/01/2020	┪	23/01/2020	23/01/2020	1
	ŀ	Sample Type		Interlab D	1	Normal	Field D	1	Normal	Interlab D	1	Normal	Field D	1	Normal	Interlab D	1
		Lab Report No.		699303	RPD	ES2002806	ES2002803	RPD	ES2002806	699303	RPD	ES2002806	ES2002803	RPD	ES2002806	699303	RPD
	Unit	EQL		•		•	•		•	•		•	•		•	•	
Physical Parameters	+ +			ī	1	Ī	I	T	I	T	1	I	T	1	I	Ι	т —
Leachate Fluid			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Moisture Content	%	0.1	9.1	7.2	23	5.2	4.5	14	5.2	4.1	24	15.2	13.2	14	15.2	14	8
pH (Initial)	pH Units	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH of Leaching Fluid pH (Final)	pH Units	0.1 0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -
n:2) Fluorotelomer Sulfonic Acids	pH Units	U. I	-	-	-	-	-	-	-	-	+ -	-	-	+ -	-	-	一
	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:2 Fluorotelomer Sulfonate (6:2 FtS)	mg/kg μg/L	0.0005 0.05	<0.0005	<0.005	0 -	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0
	mg/kg	0.0005	<0.0005	<0.01	0	<0.0005	<0.0005	0	<0.0005	<0.01	0	<0.0005	< 0.0005	0	<0.0005	<0.01	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L mg/kg	0.01 0.0005	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoroalkane Carboxylic Acids	mg/kg	0.0005	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0
Perfluorohexanoic acid (PFHxA)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	mg/kg	0.0002	0.0004	<0.005	0	0.0010	0.0011	10	0.0010	<0.005	0	0.0007	0.0007	0	0.0007	< 0.005	0
Perfluorododecanoic acid (PFDoDA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.005	- 0	<0.0005	0.0004	- 0	<0.0005	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0
Perfluorononanoic acid (PFNA)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg μg/L	0.0002 0.01	<0.0002	<0.005	0	<0.0005	0.0005	0	<0.0005	<0.005	0 -	0.0002	0.0004	67	0.0002	<0.005	0 -
	mg/kg	0.0002	<0.0002	< 0.005	0	<0.0005	0.0003	0	<0.0005	<0.005	0	0.0009	0.0006	40	0.0009	<0.005	0
Perfluorotetradecanoic acid (PFTeDA)	μg/L mg/kg	0.01 0.0005	<0.0005	<0.005	- 0	<0.0012	<0.0005	- 0	<0.0012	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0
Perfluoroheptanoic acid (PFHpA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.005	- 0	<0.0005	0.0004	- 0	<0.0005	<0.005	- 0	0.0004	0.0004	- 0	0.0004	<0.005	- 0
Perfluorobutanoic acid (PFBA)	μg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorodecanoic acid (PFDA)	mg/kg μg/L	0.001 0.01	<0.001 -	<0.005	0	<0.001	0.003	100	<0.001	<0.005	0 -	0.002	0.001	67	0.002	<0.005	0 -
, ,	mg/kg	0.0002	<0.0002	< 0.005	0	<0.0005	0.0005	0	<0.0005	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0
Perfluorotridecanoic acid (PFTrDA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.005	- 0	<0.0005	<0.0002	- 0	<0.0005	<0.005	- 0	<0.0002	<0.0002	0	<0.0002	<0.005	- 0
Perfluoroundecanoic acid (PFUnDA)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.005	- 0	<0.0005	0.0004	- 0	<0.0005	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0
Perfluorooctanoic acid (PFOA)	μg/L	0.01	-	<0.005	-	<0.0005	-	-	<0.0005	<0.005	-	-	-	-	-	<0.005	-
Perfluoroalkane Sulfonic Acids	mg/kg	0.0002	0.0004	<0.005	0	<0.0005	0.0004	0	<0.0005	<0.005	0	0.0005	0.0006	18	0.0005	<0.005	0
Perfluoroalkane Sulfonic Acids Perfluorononanesulfonic acid (PFNS)	μg/L	0.01	_	_	-	_	 _	<u> </u>	 	 -	+ -	_	 -	+ -	 	 	+ -
refilluotofionariesulionic acid (FT 140)	mg/kg	0.005	-	<0.005	-	-	-	-	-	<0.005	+ -	-	-	1	-	<0.005	 -
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoropentane sulfonic acid (PFPeS)	mg/kg μg/L	0.0002 0.01	0.0222	0.018	21	0.0492	0.0515	5	0.0492	0.037	28	0.0274	0.0299	9	0.0274	0.031	12
	mg/kg	0.0002	0.0002	< 0.005	0	<0.0005	0.0005	0	<0.0005	< 0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0
Perfluorohexane sulfonic acid (PFHxS)	μg/L mg/kg	0.01 0.0002	0.0028	<0.005	- 0	0.0029	0.0056	64	0.0029	<0.005	- 0	0.0008	0.0011	32	0.0008	<0.005	- 0
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	-	-0.005	-	-	-	-	-	-0.005	-	-0.0002	-	-	-	-0.005	-
Perfluorodecanesulfonic acid (PFDS)	mg/kg µg/L	0.0002 0.01	0.0005	<0.005 -	-	<0.0005	0.0005	-	<0.0005 -	<0.005 -	-	<0.0002	<0.0002	-	<0.0002	<0.005	-
,	mg/kg	0.0002	<0.0002	<0.005	0	0.0078	0.0092	16	0.0078	<0.005	44	0.0004	0.0007	55	0.0004	<0.005	0
Perfluorobutane sulfonic acid (PFBS)	μg/L mg/kg	0.01 0.0002	<0.0002	<0.005	- 0	<0.0005	0.0004	- 0	< 0.0005	<0.005	- 0	<0.0002	<0.0002	- 0	<0.0002	<0.005	- 0
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	-	-	-	-	-	-	-	-0.005	-	-	-	-	-	-0.005	-
Sum of PFHxS and PFOS	mg/kg μg/L	0.005 0.01	-	<0.005 -	-	-	-	-	-	<0.005 -	-	-	-	-	-	<0.005	-
	mg/kg	0.0002	0.0250	0.018	33	0.0521	0.0571	9	0.0521	0.037	34	0.0282	0.0310	9	0.0282	0.031	9
Perfluoroalkyl Sulfonamides N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	-	-	-	-	-	 	-	-	+-	-	+ -	+	-	-	+-
, ,	mg/kg	0.0005	<0.0005	<0.005	0	<0.0012	<0.0005	0	<0.0012	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L mg/kg	0.02 0.0002	<0.0002	- <0.01	- 0	<0.0005	-0.0002	- 0	<0.0005	-0.01	-	<0.0002	<0.0002	- 0	<0.0002	-0.01	- 0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	<0.0002 -	<0.01 -	-	<0.0005 -	<0.0002 -	-	<0.0005 -	<0.01 -	-	<0.0002 -	<0.0002 -	-	<0.0002 -	<0.01 -	-
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	mg/kg μg/L	0.0002 0.05	<0.0002	<0.01	0 -	<0.0005	<0.0002	0 -	<0.0005	<0.01	0 -	<0.0002	<0.0002	0	<0.0002	<0.01	0
· · ·	mg/kg	0.0005	<0.0005	<0.005	0	<0.0012	<0.0005	0	<0.0012	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L mg/kg	0.05 0.0005	<0.0005	<0.005	- 0	<0.0012	<0.0005	- 0	<0.0012	<0.005	- 0	<0.0005	<0.0005	- 0	<0.0005	<0.005	- 0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.005	-	-	-	-0.0012	-0.0003	-	-0.0012	-0.003	-	-	-0.0003	-	-0.0003	-	-
Perfluorooctane sulfonamide (FOSA)	mg/kg μg/L	0.0005 0.02	<0.0005	<0.005	0	<0.0012	<0.0005	0	<0.0012	<0.005	0	<0.0005	<0.0005	0	<0.0005	<0.005	0
Periluorooctane sunonamide (FOSA)	mg/kg	0.002	<0.0002	<0.005	0	<0.0005	0.0004	0	<0.0005	<0.005	0	<0.0002	<0.0002	0	<0.0002	<0.005	0
PFAS		0.04															1
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L mg/kg	0.01 0.005	-	0.018	-	-	-	-	-	0.037	-	-	-	-	-	0.031	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-
Sum of PFAS	mg/kg μg/L	0.005 0.01	-	0.018	-	-	-	-	-	0.037	-	-	-	-	-	0.031	-
545.1.7.6	mg/kg	0.0002	0.0265	< 0.05	0	0.0609	0.0751	21	0.0609	< 0.05	20	0.0333	0.0354	6	0.0333	< 0.05	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

RD		Location Code	PWS AIRPORT BORE	PWS AIRPORT BORE	1	PWS AIRPORT BORE	PWS AIRPORT BORE	1	PWS HEAD DAM	PWS HEAD DAM	1	PWS HEAD DAM	PWS HEAD DAM	
		Field ID	PWS AIRPORT BORE	QC101	1	PWS AIRPORT BORE	QC201	1	PWS HEAD DAM	QC100		PWS HEAD DAM	QC200	
			14/01/2020	14/01/2020	1	14/01/2020	14/01/2020	1	14/01/2020	14/01/2020	1	14/01/2020	14/01/2020	-
		Sample Type		Field D	1	Normal	Interlab D	1	Normal	Field D	-	Normal	Interlab D	\dashv \mid
			ES2002626	ES2002626	-	ES2002626	699266	-	ES2002626	ES2002626		ES2002626	699266	
	1	Lab Report No.	ES2002626	ES2002626	RPD	ES2002626	099200	RPD	ES2002626	ES2002626	RPD	E52002020	699266	RPD
	Unit	EQL												
Major lons														
Calcium (filtered)	mg/L	1	8	-	-	8	-	-	8	-	-	8	-	-
Chloride	mg/L	1	104	-	-	104	-	-	191	-	-	191	-	-
Magnesium (filtered)	mg/L	1	9	-	-	9	-	-	12	-	-	12	-	-
Potassium (filtered)	mg/L	1	2	-	-	2	-	-	3	-	-	3	-	-
Sulfate (as SO4) (filtered)	mg/L	1	26	-	-	26	-	-	27	-	-	27	-	-
Sodium (filtered)	mg/L	1	73	-	-	73	-	-	102	-	-	102	-	
Anions Total	meq/L	0.01	4.27	-	-	4.27	-	-	6.51	-	-	6.51	-	-
Cations Total	meq/L	0.01	4.37	-	-	4.37	-	-	5.90	-	-	5.90	-	-
Ionic Balance	%	0.01	1.07	-	-	1.07	-	-	4.91	-	-	4.91	-	-
Alkalinity														
Bicarbonate Alkalinity (as CaCO3)	mg/L	1	40	-	-	40	-	-	28	-	-	28	-	-
Carbonate Alkalinity (as CaCO3)	mg/L	1	<1	-	-	<1	-	-	<1	-	-	<1	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L	1	<1	-	-	<1	-	-	<1	-	-		-	-
Total Alkalinity (as CaCO3)	mg/L	1	40	-	-	40	-	-	28	-	-	28	-	-
(n:2) Fluorotelomer Sulfonic Acids														
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	<0.01	0	< 0.05	< 0.05	0	< 0.05	< 0.01	0
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	< 0.05	<0.05	0	<0.05	<0.05	0	< 0.05	< 0.05	0		< 0.05	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01	< 0.05	<0.05	0	<0.05	<0.01	0	< 0.05	< 0.05	0		< 0.01	0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	<0.01	0	< 0.05	< 0.05	0	< 0.05	< 0.01	0
Perfluoroalkane Carboxylic Acids														
Perfluorohexanoic acid (PFHxA)	μg/L	0.01	1.35	1.34	1	1.35	1.2	12	< 0.02	< 0.02	0	<0.02	< 0.01	0
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01	<0.02	< 0.02	0	<0.02	<0.01	0	< 0.02	<0.02	0	<0.02	<0.01	0
Perfluorononanoic acid (PFNA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	< 0.02	< 0.02	0	<0.02	< 0.01	0
Perfluoropentanoic acid (PFPeA)	μg/L	0.01	0.33	0.33	0	0.33	0.27	20	< 0.02	< 0.02	0	<0.02	< 0.01	0
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	<0.05	< 0.05	0	<0.05	<0.01	0	< 0.05	<0.05	0	<0.05	< 0.01	0
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01	0.28	0.27	4	0.28	0.25	11	< 0.02	<0.02	0	<0.02	< 0.01	0
Perfluorobutanoic acid (PFBA)	μg/L	0.05	0.2	0.2	0	0.2	0.15	29	<0.1	<0.1	0	<0.1	< 0.05	0
Perfluorodecanoic acid (PFDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	< 0.02	<0.02	0	<0.02	< 0.01	0
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	< 0.02	<0.02	0	<0.02	< 0.01	0
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	< 0.02	<0.02	0	<0.02	< 0.01	0
Perfluorooctanoic acid (PFOA)	μg/L	0.01	0.57	0.57	0	0.57	0.57	0	< 0.01	<0.01	0	<0.01	< 0.01	0
Perfluoroalkane Sulfonic Acids														
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01	-	-	-	-	0.10	-	-	-	-	-	< 0.01	-
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	33.1	20.6	47	33.1	22	40	0.02	0.02	0	0.02	< 0.01	67
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01	1.62	1.47	10	1.62	1.2	30	< 0.02	<0.02	0	< 0.02	<0.01	0
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01	11.4	8.24	32		10	13	< 0.02	<0.02	0	< 0.02	<0.01	0
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	0.92	0.89	3	0.92	0.62	39	<0.02	<0.02	0	< 0.02	<0.01	0
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01	< 0.02	<0.02	0	< 0.02	<0.01	0	<0.02	< 0.02	0	< 0.02	<0.01	0
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	1.27	1.23	3	1.27	1.1	14	< 0.02	<0.02	0	< 0.02	< 0.01	0
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	-	-	-	-	0.50	-	-	-	-	-	< 0.01	-
Sum of PFHxS and PFOS	μg/L	0.01	44.5	28.8	43	44.5	32	33	0.02	0.02	0	0.02	< 0.01	67
Perfluoroalkyl Sulfonamides														
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02	<0.02	< 0.02	0	< 0.02	< 0.05	0	< 0.02	<0.02	0	<0.02	< 0.05	0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	< 0.02	<0.02	0	< 0.02	<0.05	0	< 0.02	<0.02	0	< 0.02	< 0.05	0
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	<0.05	<0.05	0	<0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05	< 0.05	<0.05	0	< 0.05	< 0.05	0	<0.05	< 0.05	0	< 0.05	< 0.05	0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	< 0.05	0		<0.05	0
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.05	0	<0.02	<0.02	0		<0.05	0
PFAS	1.0	1			ΤŤ			 			Ť			-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	-	-	32.57	<u> </u>	-	-	+ -	-	<0.01	-
Sum of US EPA PFAS (PFOS + PFOA)*	µg/L	0.01	-	-	-	-	22.57	-	-	-	-	-	<0.01	_
Sum of PFAS	μg/L	0.01	51.0	35.1	37		37.96	29	0.02	0.02	0		<0.1	0
	ILD	1 0.01	01.0	55.1	, 0,	31.0	01.00	1 20	3.02	0.02		0.02	70.1	

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Location Code	ID005_TANK	ID005_TANK		ID005_TANK	ID005_TANK		PWS_SCH_BORE	PWS_SCH_BORE		PWS_SCH_BORE	PWS_SCH_BORE	
		Field ID	ID005 TANK	QC103		ID005 TANK	QC203	7	PWS SCH BORE	QC102		PWS SCH BORE	QC202	
		Date	16/01/2020	16/01/2020		16/01/2020	16/01/2020	_	16/01/2020	16/01/2020		16/01/2020	16/01/2020	
		Sample Type		Field D	-	Normal	Interlab D	=	Normal	Field D	-	Normal	Interlab D	_
		Lab Report No.		ES2002626	RPD	ES2002612	ES2002626	RPD	ES2002620	ES2002620	RPD	ES2002620	699263	RPD
	1		L02002012	1202002020	INID	L02002012	1202002020	INID	1202002020	102002020	INID	102002020	033203	INID
	Unit	EQL												
Major lons														
Calcium (filtered)	mg/L	1	-	-	-	-	-	-	4	-	-	4	-	-
Chloride	mg/L	1	-	-	-	-	-	-	57	-	-	57	-	-
Magnesium (filtered)	mg/L	1	-	-	-	-	-	-	5	-	-	5	-	-
Potassium (filtered)	mg/L	1	-	-	-	-	-	-	1	-	-	1	-	-
Sulfate (as SO4) (filtered)	mg/L	1	-	-	-	-	-	-	22	-	-	22	-	-
Sodium (filtered)	mg/L	1	-	-	-	-	-	-	50	-	-	50	-	-
Anions Total	meq/L	0.01	-	-	-	-	-	-	2.50	-	-	2.50	-	-
Cations Total	meq/L	0.01	-	-	-	-	-	-	2.81	-	-	2.81	-	-
Ionic Balance	%	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity														
Bicarbonate Alkalinity (as CaCO3)	mg/L	1	-	-	-	-	-	-	22	-	-	22	-	-
Carbonate Alkalinity (as CaCO3)	mg/L	1	-	-	-	-	-	-	<1	-	-	<1	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L	1	-	-	-	-	-	-	<1	-	-	<1	-	-
Total Alkalinity (as CaCO3)	mg/L	1	-	-	-	-	-	-	22	-	-	22	-	-
(n:2) Fluorotelomer Sulfonic Acids														
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	<0.01	0
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	< 0.05	<0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.01	0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.01	0
Perfluoroalkane Carboxylic Acids					1									
Perfluorohexanoic acid (PFHxA)	μg/L	0.01	< 0.02	<0.02	0	<0.02	<0.02	0	< 0.02	< 0.02	0	< 0.02	< 0.01	0
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01	< 0.02	<0.02	0	<0.02	< 0.02	0	< 0.02	< 0.02	0	<0.02	< 0.01	0
Perfluorononanoic acid (PFNA)	μg/L	0.01	< 0.02	<0.02	0	<0.02	<0.02	0	< 0.02	<0.02	0	< 0.02	< 0.01	0
Perfluoropentanoic acid (PFPeA)	μg/L	0.01	< 0.02	<0.02	0	<0.02	<0.02	0	<0.02	< 0.02	0	<0.02	< 0.01	0
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.01	0
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorobutanoic acid (PFBA)	μg/L	0.05	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.1	0	<0.1	<0.05	0
Perfluorodecanoic acid (PFDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorooctanoic acid (PFOA)	µg/L	0.01	<0.01	<0.01	0	<0.01	<0.01	0	< 0.01	<0.01	0	<0.01	<0.01	0
Perfluoroalkane Sulfonic Acids	F9'-	0.01	-0.01	-0.01	Ť	-0.01	-0.01	Ť	-0.01	-0.01	Ť	-0.01	-0.01	Ť
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01	-	-	 -	-	-	+ -	-	-	-	-	<0.01	-
Perfluorooctanesulfonic acid (PFOS)	µg/L	0.01	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	< 0.01	<0.01	0
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	-0.02	-0.02	-	-0.02	-0.02	-	-0.02	-0.02	-	-0.02	<0.01	-
Sum of PFHxS and PFOS	μg/L	0.01	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0
Perfluoroalkyl Sulfonamides	P9/L	0.01	~0.01	-0.01		~0.01	~0.01	+ •	~0.01	~0.0 i	+ •	~0.01	~0.01	-
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	< 0.05	<0.05	0	< 0.05	< 0.05	0	< 0.05	<0.05	0	< 0.05	<0.05	0
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.03	<0.03	<0.03	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.03	<0.05	0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.05	0
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.05	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L μg/L	0.05												
N-Methyl perfluorooctane sulfonamidoe(MeFOSA) N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L μg/L	0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
Perfluorooctane sulfonamide (FOSA)														
` '	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.02	0	<0.02	<0.05	0
PFAS Compared and locality DEAC (DELIVE + DEAC + DEAC)*	/!	0.04		1	_	1	-	_	1	+	_	+	-0.04	-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	<u> </u>	-	-	-	-	-	 -	-	<0.01	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01	-0.04	-0.04	-			-			-	-0.04	<0.01	-
Sum of PFAS	μg/L	0.01	<0.01	<0.01	0	< 0.01	<0.01	0	< 0.01	<0.01	0	<0.01	<0.1	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Location Code	Cockpit_SW01	Cockpit_SW01		Cockpit_SW01	Cockpit_SW01		DEPOT_TANK1	DEPOT_TANK1		DEPOT_TANK1	DEPOT_TANK1	
		Field ID	Cockpit SW01	QC104		Cockpit SW01	QC204		DEPOT TANK1	QC110	1	DEPOT TANK1	QC210	
			18/01/2020	18/01/2020		18/01/2020	18/01/2020		21/01/2020	21/01/2020	7	21/01/2020	21/01/2020	
		Sample Type		Field D	_	Normal	Interlab D	=	Normal	Field D	1	Normal	Interlab D	- 1
		Lab Report No.		ES2002803	RPD	ES2002808	699303	RPD	ES2002819	ES2002803	RPD	ES2002819	699303	RPD
	1		L32002000	L32002003	IKFD	L32002000	099303	INFD	L32002019	L32002003	IKED	L32002019	033303	INFD
	Unit	EQL												
Major lons					1		1		I		1			
Calcium (filtered)	mg/L	1	_	 	+ -	_	 	+ -	_	 	-	 -	_	_
Chloride	mg/L	1	-	 	+ -	<u> </u>	 	+ -	-	 	+ -	 	 	
Magnesium (filtered)	mg/L	1	-	-	+ -	-	-	+ -	-	_	-	-	-	-
Potassium (filtered)	mg/L	1	_	 	-	_	 	+ -	_	 	<u> </u>	 -	_	_
Sulfate (as SO4) (filtered)	mg/L	1	-	<u> </u>	+ -	-	-	1	-	-	+ -	-	-	-
Sodium (filtered)	mg/L	1	-	 	+ -	-		+ -		-	+ -	-		
Anions Total	meq/L	0.01	-	 	+ :		+	+ :	-	 	+ -	+	+	
Cations Total	meq/L	0.01	-	-	+ -	-	-	+ -	-	-	+ -	-	-	
Ionic Balance	%	0.01	-	 	+ -			+ -		-	+ -	+		
Alkalinity	70	0.01			+	_	 	+	-	 	+ -	-	-	-
Bicarbonate Alkalinity (as CaCO3)	mg/L	1	-	_	+-	-	-	+-	-	-	+-	-	_	-
Carbonate Alkalinity (as CaCO3)	mg/L	1	-	+ - :	+ :	-	+	+ :		+	+-	+ :	+	- -
Hydroxide Alkalinity (as CaCO3)	mg/L	1	-	 	+ -		 	+ -	-	-	+-	+	-	
Total Alkalinity (as CaCO3)	mg/L	1	-	-	+ -	-	-	+ -	-	<u> </u>	+ -	-	-	
(n:2) Fluorotelomer Sulfonic Acids	mg/L	'		-	+-		+ -	+-	<u> </u>	+	+ -	+	+	+
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	<0.05	<0.05	0	< 0.05	<0.01	0	<0.05	<0.05	0	<0.05	<0.01	0
6:2 Fluorotelomer Sulfonate (6:2 FtS)	µg/L	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	< 0.05	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01	<0.05	<0.05	0	<0.05	<0.01	0	<0.05	<0.05	0	<0.05	<0.03	0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	<0.05	<0.05	0	<0.05	<0.01	0	<0.05	<0.05	0	<0.05	<0.01	0
Perfluoroalkane Carboxylic Acids	P9'-	0.01	40.03	40.00	_ <u> </u>	40.03	40.01	_ <u> </u>	40.00	40.03	-	-0.03	40.01	-
Perfluorohexanoic acid (PFHxA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorododecanoic acid (PFDoDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorononanoic acid (PFNA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluoropentanoic acid (PFPeA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01	<0.02	<0.05	0	<0.05	<0.01	0	<0.02	<0.02	0	<0.05	<0.01	0
Perfluoroheptanoic acid (PFHpA)	μg/L	0.01	<0.03	<0.03	0	<0.02	<0.01	0	<0.03	<0.03	0	<0.03	<0.01	0
Perfluorobutanoic acid (PFBA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorodecanoic acid (PFDA)	μg/L	0.03	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.03	0
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0		<0.02	0	<0.02	<0.01	0
Perfluoroundecanoic acid (PFUnDA)		0.01	<0.02	<0.02				0	<0.02		0			0
Perfluoroctanoic acid (PFOA)	μg/L	0.01			0	<0.02	<0.01		<0.02	< 0.02		<0.02	<0.01	0
Perfluorooctanoic acid (PFOA) Perfluoroalkane Sulfonic Acids	μg/L	0.01	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	0	<0.01	<0.01	- 0
Perfluoroaneaulfonic acid (PFNS)	μg/L	0.01			+	<u> </u>	-0.04	+ -			+		-0.04	$\overline{}$
Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFOS)			0.02	-	-	0.02	<0.01		-0.04	-0.04	-	-0.04	<0.01	-
Perfluoropentane sulfonic acid (PFOS)	μg/L	0.01		0.02	0		0.01	67	<0.01	<0.01	0	<0.01	<0.01	0
Perfluoropentane sulfonic acid (PFPeS) Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	<0.01	0
Perfluoronexane sulfonic acid (PFHxS) Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	0.02	0.02	0	0.02	<0.01	67	<0.02	<0.02	0	<0.02	<0.01	0
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01 0.01	<0.02 <0.02	<0.02 <0.02	0	<0.02	<0.01 <0.01	0	<0.02	<0.02 <0.02	0	<0.02	<0.01 <0.01	0
Perfluorodecanesulionic acid (PFBS) Perfluorobutane sulfonic acid (PFBS)	μg/L					<0.02			<0.02			<0.02		
	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0	<0.02	0.01	0
Perfluoropropanesulfonic acid (PFPrS) Sum of PFHxS and PFOS	μg/L	0.01	-	<u> </u>	-		<0.01	-	-	-	-	-	<0.01	-
	μg/L	0.01	0.04	0.04	0	0.04	0.01	120	<0.01	<0.01	0	<0.01	<0.01	0
Perfluoroalkyl Sulfonamides		0.05		-0.05		-0.05	0.05		-0.05	-0.05		.0.05	.0.05	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.05	<0.05	< 0.05	0	< 0.05	<0.05	0	<0.05	< 0.05	0	<0.05	<0.05	0
	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.05	0	<0.02	<0.02	0	<0.02	< 0.05	0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.05	0	<0.02	<0.02	0	<0.02	<0.05	0
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	<0.05	<0.05	0	< 0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05	<0.05	< 0.05	0	< 0.05	<0.05	0	<0.05	< 0.05	0	<0.05	<0.05	0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05	<0.05	<0.05	0	< 0.05	<0.05	0	<0.05	< 0.05	0	<0.05	< 0.05	0
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02	<0.02	<0.02	0	<0.02	<0.05	0	<0.02	<0.02	0	<0.02	<0.05	0
PFAS PFAS														
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	-	-	0.01	-	-	-	-	-	<0.01	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01	-	-	-	-	0.01	-	-	-	-	-	<0.01	-
Sum of PFAS	μg/L	0.01	0.04	0.04	0	0.04	<0.1	0	<0.01	< 0.01	0	<0.01	<0.1	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

**Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

D	Ī	Location Code	ID014 BORE	ID014 BORE		ID014 BORE	ID014 BORE		PWS HOSP TAP1	PWS HOSP TAP1	
			ID014 BORE	QC117		ID014 BORE	QC217		PWS HOSP TAP1	QC118	
	ŀ		23/01/2020	21/01/2020	-	23/01/2020	23/01/2020	-	13/02/2020	13/02/2020	
	F			Field D			Interlab D	_		Field D	
		Sample Type				Normal		_	Normal	_	
		Lab Report No.	ES2002813	ES2002803	RPD	ES2002813	699303	RPD	EM2002483	EM2002483	RPD
	Unit	EQL									
Major lons											
Calcium (filtered)	mg/L	1	-	-	-	-	-	-	-	-	-
Chloride	mg/L	1	-	-	-	-	-	-	-	-	-
Magnesium (filtered)	mg/L	1	-	-	-	-	-	-	-	-	-
Potassium (filtered)	mg/L	1	-	-	-	-	-		-	-	-
Sulfate (as SO4) (filtered)	mg/L	1	-	-	-	-	-		-	-	-
Sodium (filtered)	mg/L	1	-	-	-	-	-	-	-	-	-
Anions Total	meq/L	0.01	-	-	-	-	-	-	-	-	-
Cations Total	meg/L	0.01	-	-	-	-	-	T -	-	_	-
Ionic Balance	%	0.01	-	-	<u> </u>	-	_	-	<u> </u>	_	-
Alkalinity								_	1		\neg
Bicarbonate Alkalinity (as CaCO3)	mg/L	1	-	-	<u> </u>	-	-	-	-	-	-
Carbonate Alkalinity (as CaCO3)	mg/L	1	-	-	-	-	-	-	-	-	-
Hydroxide Alkalinity (as CaCO3)	mg/L	<u> </u>	-	-	<u> </u>	-	-	<u> </u>	-	-	-
Total Alkalinity (as CaCO3)	mg/L	<u> </u>	-	-	<u> </u>	-	-	<u> </u>	-	-	-
(n:2) Fluorotelomer Sulfonic Acids	9,=			+			+	+	+		+
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.01	< 0.05	< 0.05	0	< 0.05	<0.01	0	< 0.05	< 0.05	0
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	<0.05	<0.05	0	<0.05	<0.05	0	<0.05	<0.05	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.01	<0.05	<0.05	0	<0.05	<0.01	0	<0.05	<0.05	0
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.01	<0.05	<0.05	0	<0.05	<0.01	0	<0.05	<0.05	0
Perfluoroalkane Carboxylic Acids	µg/L	0.01	~0.03	~0.03	- '	<0.03	~0.01		~0.03	~0.03	-
Perfluorohexanoic acid (PFHxA)	μg/L	0.01	0.15	0.14	7	0.15	0.11	31	<0.02	<0.02	0
Perfluorododecanoic acid (PFDoDA)	μg/L μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0
Perfluorononanoic acid (PFNA)		0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0
Perfluoropentanoic acid (PFPeA)	μg/L		0.02	0.04		0.04	0.03				0
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.01			0			29	<0.02	<0.02	
	μg/L	0.01	<0.05	< 0.05	0	<0.05	<0.01	0	<0.05	<0.05	0
Perfluoroheptanoic acid (PFHpA) Perfluorobutanoic acid (PFBA)	μg/L	0.01 0.05	0.02	<0.02	0	0.02	0.02	0	<0.02	<0.02	0
Perfluorodecanoic acid (PFDA)	μg/L		<0.1	<0.1	0	<0.1	< 0.05	0	<0.1	<0.1	
	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	< 0.02	<0.02	0
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0
Perfluorooctanoic acid (PFOA)	μg/L	0.01	0.05	0.04	22	0.05	0.03	50	<0.01	<0.01	0
Perfluoroalkane Sulfonic Acids		2.24			_			_			$-\!\!\!\!\!-$
Perfluorononanesulfonic acid (PFNS)	μg/L	0.01	-			-	<0.01	-		-	<u>_</u>
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	1.93	1.73	11	1.93	1.5	25	0.46	0.48	4
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.01	0.17	0.14	19	0.17	0.10	52	< 0.02	<0.02	0
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.01	1.20	1.02	16	1.20	0.74	47	0.04	0.04	0
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.01	0.08	0.07	13	0.08	0.05	46	<0.02	<0.02	0
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.01	<0.02	<0.02	0	<0.02	<0.01	0	<0.02	<0.02	0
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.01	0.16	0.14	13	0.16	0.11	37	<0.02	<0.02	0
Perfluoropropanesulfonic acid (PFPrS)	μg/L	0.01	-			-	0.04	<u> </u>			
Sum of PFHxS and PFOS	μg/L	0.01	3.13	2.75	13	3.13	2.24	33	0.50	0.52	4
Perfluoroalkyl Sulfonamides	L										
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	<0.05	0
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02	<0.02	< 0.02	0	<0.02	< 0.05	0	<0.02	<0.02	0
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	< 0.02	< 0.02	0	< 0.02	< 0.05	0	< 0.02	<0.02	0
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	< 0.05	< 0.05	0
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02	< 0.02	< 0.02	0	<0.02	< 0.05	0	< 0.02	<0.02	0
PFAS											
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	μg/L	0.01	-	-	-	-	2.27	-	-	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	μg/L	0.01	-	-	-	-	1.53	-	-	-	-
Sum of PFAS	µg/L	0.01	3.80	3.32	13	3.80	2.73	33	0.50	0.52	4

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Table L-3: Rinsate Blank Analytical Results Preliminary Site Investigation Norfolk Island DITCRD

D	Г	Field ID	QC300	QC301	QC302	QC303	QC304	QC305
	F		16/01/2020	17/01/2020	21/01/2020	21/01/2020	21/01/2020	21/01/2020
	F	Sample Type		Rinsate	Rinsate	Rinsate	Rinsate	Rinsate
	F	Lab Report No.		ES2002626	ES2002803	ES2002803	ES2002803	ES2002803
			LOZOCZOZO	202002020	202002000	LOZOOZOOO	202002000	202002000
	Unit	EQL						
(n:2) Fluorotelomer Sulfonic Acids								
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6:2 Fluorotelomer Sulfonate (6:2 FtS)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoroalkane Carboxylic Acids								
Perfluorohexanoic acid (PFHxA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorododecanoic acid (PFDoDA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorononanoic acid (PFNA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluoropentanoic acid (PFPeA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorotetradecanoic acid (PFTeDA)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluoroheptanoic acid (PFHpA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorobutanoic acid (PFBA)	μg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Perfluorodecanoic acid (PFDA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorotridecanoic acid (PFTrDA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluoroundecanoic acid (PFUnDA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorooctanoic acid (PFOA)	μg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroalkane Sulfonic Acids	1.0							
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoropentane sulfonic acid (PFPeS)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorohexane sulfonic acid (PFHxS)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluoroheptane sulfonic acid (PFHpS)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorodecanesulfonic acid (PFDS)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Perfluorobutane sulfonic acid (PFBS)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Sum of PFHxS and PFOS	μg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Perfluoroalkyl Sulfonamides								
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-methylperfluorooctane sulfonamidoacetic acid (NMeFOSAA)	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
N-ethyl-perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	μg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamide (MeFOSA)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Perfluorooctane sulfonamide (FOSA)	μg/L	0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02
PFAS	, ,							
Sum of PFAS	μg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Appendix M: Water Field Parameters

Attachment M: Stabilised Field Chemical Parameters

Project: Preliminary Site Investigation

Client: Department of Infrastructure, Transport, Regional Development and Communications

Site Address: Norfolk Island

Job Number: 17776

Monitoring Well Informati	ion				Water Qu	ality Results					
	DO (mg/L)			Temp (°C)	Field Observations						
Sample 15	±10% (1)2	±3% ⁽¹⁾	0.65 conversion	±0.05 ⁽¹⁾	±10mV ⁽¹⁾	±10%	Tield Observations				
BBC_SW01	1.26	889	577.85	6.38	-150.8	24.8	Slightly turbid, slight odour. Stagnant water, flowing until recently				
PWS_hosp_bore	3.51	623	404.95	4.96	-120.5	22.1	Clear, low turbidity, no odour, no sheen.				
PWS_HOSP_TANK1	5.8	147.0	95.55	6.72	-199.0	29.2	Clear, low turbidity, no odour, no sheen.				
PWS_HOSP_TANK2	4.70	190.2	123.63	6.79	-149.2	27.8	Clear, low turbidity, no odour, no sheen.				
PWS_hosp_tank_3	5.94	149.7	97.31	6.20	-150.7	26.1	Clear, low turbidity, no odour, no sheen.				
PWS_HOSP_TANK4	5.73	143.5	93.28	5.48	-105.2	25.9	Clear, low turbidity, no odour, no sheen.				
PWS_HOSP_TANK5	5.66	140.9	91.59	5.11	-89.0	25	Clear, low turbidity, no odour, no sheen.				
VC01	6.80	851	553.15	4.45	-83.8	22.4	Clear, low turbidity, no odour, no sheen.				
WC02	3.02	366.2	238.03	5.90	-68.4	20.2	Clear, low turbidity, no odour, no sheen.				
WS_SCH_BORE	6.13	484	314.60	5.9	-61.5	21.9	Clear, low turbidity, no odour, no sheen.				
PWS_SCH_TANK1	5.58	189.9	123.44	7.89	-82.2	23.3	Clear, low turbidity, no odour, no sheen.				
WS_SCH_TAP	6.2	184.7	120.06	7.81	-90.5	19.9	Clear, low turbidity, no odour, no sheen.				
C_SW02	3.72	705	458.25	6.55	-94.1	20.8	Clear, low turbidity, no odour, no sheen.				
D001_bore	5.96	701	455.65	5.59	-95.1	29.5	Clear, low turbidity, no odour, no sheen.				
D002_TANK	5.82	198.9	129.29	6.90	-156.9	29.6	Clear, low turbidity, no odour, no sheen.				
D003_BORE	4.88	737	479.05	5.37	-132.2	22.9	Clear, low turbidity, no odour, no sheen.				
D003_WELL	2.16	1033	671.45	4.84	-150.2	21.3	Clear, low turbidity, no odour, no sheen.				
D003 SW01	2.2	725	471.25	5.78	-165.9	21.7	Clear, low turbidity, no odour, no sheen.				
D004 TANK	0.59	478.2	310.83	6.82	-197.3	25.1	Light yellow brown, Sulfur odour				
C SW01	4.64	850	552.50	7.59	-108.5	21.7	Clear, low turbidity, no odour, no sheen.				
WS pound bore A	5.93	802	521.30	6.66	-79.6	23	Clear, low turbidity, no odour, no sheen.				
WS hessies reservoir	3.45	821	533.65	6.52	-93.4	20.6	Clear, low turbidity, no odour, no sheen.				
PWS duck dam	5.40	915	594.75	6.87	-103.8	23.6	Clear, low turbidity, slight odour, no sheen.				
Bumboras SW01	4.39	1725	1121.25	6.79	-88.8	21.9	Clear, low turbidity, slight odour, no sheen, minor organics.				
PWS head dam	5.07	949	616.85	7.08	-99.5	26.2	Light brown, slightly turbid, no odour, no sheen.				
WS kingfish bore A	3.92	950	617.50	5.12	-59.2	23.7	Clear, low turbidity, no odour, no sheen.				
A bore1	2.70	414.7	269.56	5.13	-102.4	22.7	Clear, low turbidity, no odour, no sheen.				
PWS airport bore	5.25	716	465.40	6.27	-99.1	26.7	Clear, low turbidity, no odour, no sheen.				
D005	6.42	212.9	138.39	7.09	-119.3	23.4	Clear, low turbidity, no odour, no sheen.				
VC 03 BORE	7.71	383.8	249.47	5.98	-61.6	21.4	Clear, low turbidity, no odour, no sheen.				
VC 03 TANK	6.52	380.8	247.52	5.66	-68.4	21.5	Clear, low turbidity, no odour, no sheen.				
VC 03 TRUCK	6.78	379.6	246.74	7.04	-98.1	22.3	Clear, low turbidity, no odour, no sheen.				
D006 BORE1	6.78	810	526.50	6.00	132.0	-	Clear, low turbidity, no odour, no sheen.				
D006 BORE2	6.61	829	538.85	4.81	102.5	24.6	Clear, low turbidity, no odour, no sheen.				
OCKPIT SW01	7.09	1226	796.90	8.09	-97.6	25.1	Clear, low turbidity, no odour, no sheen.				
D007 SPRING	3.95	819	532.35	6.86	-114.3	24.2	Clear, low turbidity, no odour, no sheen.				
D007_3FKING D009 WELL	3.6	878	570.70	6.85	-125.5	22	Clear, low turbidity, no odour, no sheen.				
D010 BORE	6.20	815	529.75	6.47	-99.6	24.1	Clear, low turbidity, no odour, no sheen.				
RE TAP1	3.57	309.6	201.24	9.08	-138.9	27	Clear, low turbidity, no odour, no sheen.				
RE TAP2	2.65	555	360.75	8.47	-113.7	32.8	Clear, low turbidity, no odour, no sheen.				
DEPOT TANK1	5.5	190.5	123.83	9.39	-145.7	29.8	Clear, low turbidity, no odour, no sheen.				
DEPOT_TANK2	3.54	313.1	203.52	8.5	-165.4	26.7	Clear, low turbidity, no odour, no sheen.				
DEPOT_TANK2	4.72	288.9	187.79	8.24	-103.4	25.8	Clear, low turbidity, no odour, no sheen.				
D012 SW02	4.34	675	438.75	6.85	-122.6	23.8	Clear, low turbidity, no ododr, no sheen. Clear, low turbidity, stagnant organic odour, no sheen.				
CHAP TAP1	6.02	169.9	110.44	6.64	-70	25.1					
_	6.02	1174	763.10	6.31	-70 -92.1	23.2	Clear, low turbidity, no odour, no sheen.				
D013_BORE							Clear, low turbidity, no odour, no sheen.				
D013_SW01	0.52	1196	777.40	5.98	-110.6	41.5	Clear, low turbidity, no odour, no sheen.				
D014_BORE	3.22	872	566.80	6.41	-158.1	26.2	Clear, low turbidity, no odour, no sheen.				
D015_BORE	3.41	649	421.85	4.85	-76	24.1	Clear, low turbidity, no odour, no sheen.				

tel: +61 3 9606 0070 fax: +61 3 9606 0074 enquiries@senversa.com.au www.senversa.com.au

Level 6, 15 William Street, Melbourne VIC 3000 Senversa Pty Ltd ABN 89 132 231 380

