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Abstract 

The a d y s i s  of truncated data when  a,n unobserved latent  structure is as- 
sumed is considered. A Bayesian analysis of truncated  data in the presence of 
covariates is presented. -4 method is  derived  for the analysis of truncated  data 
when the response for the unobserved members is known. The Gibbs sampler 
is used to approximate the required posteriors. The method is applied to some 
simulated data and to a real data set.' 
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1 Introduction 
This  paper  examines  the regression analysis of data from a truncated Poisson distri- 
bution, where the response is truncated at zero. An example of such dat,a is the  data 
on fishing trips presented in Grogger & Carson (1991). This data, set is based on a 
sample of households and records t,he number of fishing trips  undertaken as well as 
a range of covariates. Inclusion in the sample is based on at least one fishing trip 
being undertaken,  and  sample selection was  not affected by the number of trips  taken 
greater  than 1. This is an example of truncation where the response of the unobserved 
members is known, in  this case zero. This ca,n be  contrasted  with truncated Gaussian 
regression, where the value of t,he unobserved responses is unknown, only that obser- 
va,tions were observed outside a certain level. The results  in  this  paper are developed 
for the analysis of truncat,ed data where the response is know-n for the unobserved 
members of the sample. This applies when only one state is unobserved. An example 
oi this is grouped truncated binary data detailed  in  O‘Neill& Ba,rry (1993a). Group 
truncated  binary  data occurs when groups of binary outcomes are observed only if 
at least  one of the responses is positive. An example of this is data on car accidents 
involving fatalities.  In  this case accidents where no htalities result, are not observed 
in the  data set. The results of this paper can also be  extended to more general forms 
of truncation. 

Truncated data arises when t,he range of possible responses is  restricted  in some 
way. Methods for  t.he regression modelling of such data have been proposed for a 
number of situations. For example, forms of the Tobit model (Amemiya, 1979) deal 
with the regression modelling of truncat,ed Gaussian responses. ‘There is discussion of 
these  models in  the economet.rics literature. More recently, Grogger & Carson (1991) 
and Shaw (19SS) have detailed a regression model for data with a trunca,ted Poisson 
distribution,  and  extended  it  to  the  truncated Negative Binomial distribution. O’Neill 
& Barry (1993a) have recently proposed a truncated  model for grouped binary data 
which O’Neill & Barry (1993b) extend  to grouped ordinal data. Weiss (1993) has 
proposed a truncated model for correlated o r d i d  clat,a. 

A distinction should be  made between data  that is observationally truncated  and 
data which is distributionnlly truncated. Observationally truncated  data refers to 
data where it is nat,ural to view the observations a,s being a truncated sample  from 
a  larger, unobserved, sample. An example is t,he group trunca,ted  data  in O’Neill & 
Barry  (1993a),  or the fishing data described a,bove. In this ca,se questions regarding 
the size of this unobserved sample  and the covariate distribution of the unobserved 
sample may be of interest,. Alternat,ely, distributionally  truncated  dat,a is data where 
the response is truncated in some manner which  does not rely on the observational 
mechanism for its  interpretation. An example of this is data with the response taking 
the posit,ive integers as values. This  data can be  treated as either a sample  from 
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an unknown distribution  with  support t,he positive integers, or a truncated  sample 
from the Poisson distribution.  The mechanism which  gave rise to t,his support is 
not assumed. In this case the  t,runcation is used as a device to allow estimation 
within a familiar (Poisson) framework. This  paper is derived assuming observationally 
truncated  data but is applicable to both forms of truncation.  This is because the 
analysis techniques used in the distribut,ionally truncated case are often used lo  fit 
models to observationally truncated  data. 

The regression modelling of data with a Poisson distribution is routinely  per- 
formed in  t,he  lit,erature as a, generalised linear model (McCullagh k Nelder, 1989). 
The analysis of t,runcated count data has previously been based on maximum like- 
lihood methods.  These all consider the  distribution of observations conditional on 
being observed. This  paper examines the use of Bayesian methods in the analysis of 
truncated Poisson regression, and examines some of the novel aspeck of the approach. 
Section 2 develops the likelihood for the  truncated model. In Section 3 the priors are 
discussed, posteriers a,re derived,  and a Gibbs sa,mpling algorithm to explore them is 
presented. Section 4 presents some numerica,l examples and  the met,hod is discussed 
in Section 5. 

2 Bayesian Mode1 
-4s the results  in this section will he developed with respect to  the Poisson model,  it 
will be briefly reviewed. Following McCullagh si Nelder (1989); consider a  sample, 
(x ,  q )  . . . (YH, I G N )  where E is the response for the  ith individual  and x; are covariates 
measured on  the  ith individual. It is assumed that E follows a Poisson distribution 

where p e  is the  mean of the process. If the log link is used the mean is modelled by 

g ( p )  = log LL; = x:p  

where i3 is a  vector of parameters  and g() is the link function. 
We  now consider the case truncated  at zero. We will begin by considering the 

likelihood of obtaining  a  particular  trunca,t,ed sample. Consider a  sample of size N 
from the non truncated distribut,ion. For clarity we will  use the notation found in 
Gelfand, Smith, si Lee (1992) for the densities. This  notation denotes the density of 
a random  variable K as [ K ]  instead of the usual hnctional not,ation f ( k ) .  

Assume tha,t the covaria,t,es z are realisations of the random variables X with 
density [ X ] ,  independent of the response. Consider the sample with n non truncated 
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observations. By permutation if necessa,ry this is 

(T, z;:),. . . , ( K ,  %),  (0; 2, t1) ,  , . . ,  (0 ,ZN)  

where n is  the sample size of the t,runca,ted  sample. The likelihood of the complet,e 
sample is then 

N 

[Y,X,nJp,N] = ( 1 ; )  fIlKlX,,,Pl[Xil n [Y = OlX,,PlI-Y;l. 
i=1 I.=n+1 

and the posterior is thus 
[BlY;Xl = [Yix1,81[p1. 

'This is of no immediate use; a,s the covariate d u e s  for the  truncated observations 
are unknown. To avoid t,his problem we calculate the marginal  distribution of R. and 
(q; x ; ) .  . . (Y,',z;). This is 

As the  didr ibdon of t,he X's are identical this reduces to 

the unconditional  probability of observing a unit ra,ndomly chosen from [X-]. 
If N and [ X ]  a.re  known Equation 1 could be used to form inferences about P ,  

akhough  this could prove problematic  due t,o the (possibly)  mulli dimensional inkgral 
in  Equation 2. 

With  truncated  data, it, is not usual for N to  be known. 111 this case we assume 
that N is a random  mriable  and  postulate a dist,ribution for N We will denote this 
by [NIX] where X is a fixed pa,rameler.  The joint distribution of [E",X*,n,NIP, X] is 

and the marginal €or [Y";X'; nip,  X] is 



The choice of [ N l X ]  will depend on t,he particular problem being considered. For ex- 
ample if it is assumed that A J  has a Poisson distribution wit,h mean X then Equation 4 
simplifies t o  

n 

[Y',X',nl$;X] K n[11:Ix-,P][X~]X"e-XP("'. 
1 = 1  

The last issue that must  be resolved is the distribution o€ the zi's. It is possibly 
multi  dimensional and with no knowledge oi the  distribution,  the specification of a 
form that is flexible enough is difficult. Arguing that  the observed covariates provide 
the only information regarding the dist,ribution of X we propose to approximat,e the 
covariate densit,y by using the "empirical" support oE the observed cormiates. By this 
we mean  t.hat me shall  let the  support of the distribution  be defined by the observed 
covariates. Thus the empirical dishibution is a multinomial  distribution. We use the 
pa,rameter 7 in this case to represent the vect,or of length n with components the cell 
probabilities of the multinomial  dist.ribution.  This is  loosely analogous to  the use 
of the  multinomial simplification to derive empirical likelihoods from the  intractable 
non parametric likelihoods (see Efron Sr Tibshirani (1993)). 

The density is then 

3 Priors and Posteriors 

3.1 Prior Specification 
3.1.1 p ,  X priors 

Where  there  is no prior  information we propose using a uniform prior for X and 
p .  These priors are  attractive as they are dominated by the likelihoods, and  produce 
estimates which maximise t.he likelihood function in Equation 5. We d l  now consider 
the prior for 7.  

3.1.2 q prior 

'The specificat,ion of the prior is conlplicated by the  truncation.  It is important  to 
distinguish between priors at the  untruncated  and  truncated levels of the likelihood. 
The correspondence between a prior [p, X] in the untruncat,ed space and the induced 



prior [p, X ] ,  in  the  truncated space is 

So for example  in  situations where 9 and X are assumed to he apriori  independent 
and the non-informative priors [!3] and [X] are constants, then the non-informative 
truncated prior will be 

which is not of the usual  form. Note that Equation 6 ca,n he inverted  to give 

Equat,ion 7 suggests that, priors in the  truncated  situation should he  tilted by 
P(P,X)-' to obtain  the corresponding prior in the  untruncated  situation. Not,e that 
if ,O and X are assumed to  he apriori  independent  in the  untruncated  situation,  then 
[P ,  X] = [p][X] and from Equat,ion 7:  

or 

So the prior [X] is equal to  the prior [ X  I p ] ~  tilted by .P(/3,X)-'. 
In the case where X is known to be discrete and have a finite set of values, t,he prior 

[ X ]  can be specified with  support  the observed truncated z. Since ultimately  all of the 
possible values of N will appear in the truncated  sample;  this will ultimately  he equiv- 
alent to knowing the support, of [ X ]  apriori a,nd specifying the prior on that  support. 
The  nonpammetric  approach would assume that [_T; I 8 1 ~  is  multinomial^ with  support 
the observed z and  parameters 7 which have a, Dirichlet distribution. If a Multinomial 
has k points, then a, non-informative self-consistent prior for the parameters of the 
Multinomial is Dirichlet(2/k; 2 / k , .  . . , 2 / k ) .  Self consist,ent means that when the k 
points  are  aggregated  in ko equal sized sets, t.he marginal prior for the ko equal sized 
sets  obtained  from  the n dimensional prior is Dirichlet(2/ko,2/ko,. . . , 2 / k o ) .  Note 
that for k = 1, Dirichlet(1,l) is U(0;  1) which  is the non-informat,ive prior for two 
points.  Equation 8 suggests that t.he location of the  truncated prior for X should he 
tilted by P ( p , X ) - l .  This can be achieved in the non parametric  setting by taking 
the 'non-informative'  Empirical Dirichlet Prior (EDP) t,o be 

Dirichlet (aj; ,  i = 1, , . . , n )  

G 



where 

It is worth  examining  in  det,ail the outcome if EDP is applied t o  a situation where 
X is actually  discrete. For simplicity of presedation we will study  the case where 
X- has only two values, u and 6 with  probabilities ro and "1 respectively. Using the 
knowledge that X is discrete  and assuming a uniform prior for TI, we would obtain 
posteriors 

[ p  1 X,7r1~Y*,XLln] K [ Y '  j A"]exp(-XP(P I 7r1j)[,6'], (9) 

[X I , !3 ,7r1 , l7* , -X~~7z]  !x Xnexp(-AP(p I rl))[X], (10) 

[TI I X,/3,Y',S'~n] K exp(-XP(P I 7r1))ryrTz (11) 

where 
p(9 1 71) = ~ o p ( P ,  a )  + ~ I P ( P ,  b ) ,  

n1 is the number of 6 observations in the sample  and no = n - nl. By- contrast, if 
EDP is used and we define 

7r1 = c 7; 
b observations 

and "0 = 1 - "1, then  the posteriors for p and X are once again given by Equations 9 
and 10. Assuming without loss of generality that, the b observations are labelled 
1,. . . , n1 and  letting 

Y i  = { q;/xl ~ i = 1, . . .  ,nl 
7,/xo i = n.l + I , _ _ _ ,  'IZ ' 

the posterior of r l , y ~ ? .  . . , ~ ~ , - 1 , y ~ , ~ + l ~ .  . . yn-l is 

[TI, YI,  . . . , ynl-l, ynl+1,. . . yn-l I & 0, Y-*,-X=> 77.1 x exp(-XP(,O I rl)) 

x -n1+r.1-1 n o t r o - 1  
J' 1 TO fi Y,"' 

1 

where 

and 



So rl and y1,. . . , yn,-l; ynnl+l;. . . ;yn-l  are independent  in the post,erior and  the pos- 
terior of is 

[rl I X , /~ ,Y* , -X ' ,~ ]  .:exp(-,W(~ I T~))T?+'~-' T O  (1'4 

Note that y l , .  . . ~ ynl-l, ynl+l; .  . . yn-l do  not, appear  in  the posteriors for /3 and X 
and so can  be ignored unless  specifically required. Consequently the only difference 
between t,he posteriors are  the coefficients of TI and T O  in  Equations 11 and 12. 
Since the difference in the coefficients  is  at. most one and converges to zero  as the 
sample size increases; the difference in the posteriors will be negligible as the  sample 
size increases and EDP will be essentially equixTa1ent to  the known  two point case. 
An identical  argument a,pplies to  establish the essential equivalence of EDP and k 
point  support for X .  Finally- since any continuous density for X can be  arbitrarily 
well approximated by a discret,e k point support  density  with k sufficiently large, it 
follows that any  non truncated prior for X can be  arbit,rarily well approximated by 
EDP for sufficiently large  sample sizes. 

With these priors the posterior becomes, 

3.2 Gibbs Sampling Algorithm 
To produce inference about p ,  X and 7 requires the numerical integration of the form 
given in  Equation 13 t,o obtain  the required  posteriors.  This is computa,tionally 
prohibitive in all but t.he most simple cases. 

Instead we propose using a Gibbs sa~npling a,lgorithrn to  approximate the poste- 
rior 13. 'The Gibbs sampler is described in numerous articles, for example see Tanner 
(1993). The implementation of the Gibbs sampler requires the decomposition of 
Equation 13 into a  set of convenient conditioml  distributions. We have chosen the 
following. 

To sample  from  Equation 14, note  that it, consists of the usual likelihood used 
in  the non truncated analysis, but  tilted by the remaining terms. Following  Zeger 



& Karim (1991) we sample from Equation 14 by rejection sampling. This is done 
by maximising the function for , O >  and finding the curvature at  the  maximum  point. 
A normal  density  with deflated curvature is then used as the rejection envelope. 
Although we have not proved the log concavity of Equation 14, no problems with 
incorrect  acceptances have a,risen in a mnge of simulat,ions carried out. Heuristic 
arguments suggest it should not present difficulties. The choice of the deflation factor 
depends on the  problem,  but no dificukies were encountered in choosing a value that 
achieved acceptable  rejection  rates, while still being a valid envelope. 

Examining  Equation 15 it is immediately  apparent that  it is proportional to a 
Gamma density  with  shape  and  location  parameters, n and P(pI7) respectively. It 
is thus simple to generate devia,tes from this distribution. Of course in some ap- 
plications it is of interest t.o lnalce inference regarding N .  This can be done by 
noting  that  the Gibbs sampling algorithm produces approximate samples from the 
marginal  distribution [/3, X: qIl”*, X * ,  . I .  Thus points sufficient,ly separated in t,he se- 
quence can  be treated as independent  realimtions and the conditional density for N, 
[NIB, X ,  7 ,  Y*, X*, n.] can be derived from Equation 3 and used  t,o produce a sample 
from the full  posterior 

Sampling from Equation 16 presents  greater difficulties. One approach is to con- 
sider the reduced vector [TI , .  . . i ~ ~ - 1 1 .  Observing that  the conditional distribution of 
qi, given the other 7’s is 

[q*Ip, X ?  n., 7-i: y = >  x*]  m “-d.“.T 1 - V3 ( if. r =  
(17) 

where 
di = XP(l3, x ; )  - AP(P?xn); T-i = 71,. . .7i-l,7i+l,. . . , h - l  

0 5 7 i 5 1 -  ETj 
and 

i#J,. 

It is therefore possible to use a rejection sampling algorithm  to  sample qi. This is 
done using a uniform  distribution over [0, 1 - &i,n q3] scaled to  the  maximum of 
Equation 17. This  maximum is the solution of a quadratic  equation  and is thus easily 
found. To produce a sample from the full vector a Gibbs sampling sub-chain can be 
used, by repeating  this process unt.il a.pproximate convergence is reached. 

A concern with this algorithm is t,hat convergence may be slow due  to  the depen- 
dence between the components of 7. An alternative is to consider a rejection sampling 
algorithm to simulak from the full 7 vector. This can be  used either to  a,sses the con- 
vergence of the Gibbs a,pproximation, or if efficient enough, to directly  sample 7. This 
is  detailed  in the appendix. The conclusion  was that  the Gibbs algorithm a,ppeared t,o 
give good approximation to  a. sample  from [7\cond’itiona!] if t,he following conditions 
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were met. Firstly, if it wa,s run for n full iterations. Secondly if, by permutation if 
necessary, vn was set to the 7 with the largest expectation.  This second condition 
allows the easiest traversal of the simplex and  thus speeds convergence. 

4 Examples 

4.1 Example 1 

.4s a simple  example consider a.  regression model with a single intercept term. In this 
ca,se X is 1 with  probability 1. Thus the posterior 13 reduces to 

For any 7) this  function is maximised (and hence is the posterior mode) by X = 
n/P(/3)  and  the solution of 

E n %  - P 
n P(P) (19) 

which is the same as the maximumlikelihood estimatebased on the condit.ional model. 

4.2 Example 2 
In this section  a  small scale simulat,ion experiment is presented. The Gibbs sampling 
algorithm was implement,ed using Splus, wit.h C code used t,o gain efficiency in the 
sampling  from the 7) vector. The simulations consisted of the following steps: 

1. A covariate matrix was generated with 100 rows and ith row 

(l?.i1,.'21) 

where zi1 had a uniform distribution over [-1;1] and R';Z was Bernoulli with 
probability .5. From this  the expected values, p.  were generated via the link 
function g() and  the linear predict.or X., where = ( P o ,  PI, ,&,) = (1, --2,2). 
In  the simulations the marginal  probability of being observed was .598, so each 
data set had  approximately 60 observat,ions. 

2. 'The following steps were it,erated. 

A sample y was generat,ed from p .  

The sample was truncated  to form a sample yx; x * .  
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e The Gibbs algorithm wtas run for 2000 iterationsi  and  the sample path 
saved. 

The use of simulation to assess the behaviour of a Bayesian procedure is worthy of 
comment.  The Bayesian approach does not require the frequentist justification over 
repeated samples. The Ba,yesian could simulate  from t.heir priors and then  the densi- 
ties, but  this would  be purely an exercise in verifying the calculus. The simulations 
carried out here  are justified in the following  ways. Firstly, the use of the unilorm 
priors for /3 and X means that, the posterior is approximating the likelihood function 
and so the posterior modes are  interpretable as maximum likelihood estimates. Sec- 
ondly, the use of the procedure wit,h the  Empirical Dirichlet prior  in any practical 
problem requires confidence in its behaviour. 

Each iteration of the Gibbs sampler consisted of drawing samples directly  from the 
conditional densities for q and X and using the Gibbs subchain described in Section 3.2 
to gain an approximate  sample  from  the TT'S. The number of iterations used in the 
Gibbs subchain was equal to  the length of the observed y'. 

The Gibbs sampler was started by using the known h e  pxameter values. It wa,s 
run for 50 iterations to eliminate the effect, of the  initial condit,ions. In the preliminary 
investigations t,he posterior densities appeared  unimodal  and well behaved so it was 
considered unnecessary to use a sequence of different starting values. The simulations 
have confirmed this view. 

For each run,  the posterior mean, mode and select,ed cluantiles  were estimated for 
each of the X and p margin& The mode was estimated using kernel smoothing. The 
mea,n exhibited considerable bias in estimating  the mode  due to  the skewed posterior 
distributions.  This was most pronounced with respect to X ,  which  posessed a long 
right tail. For the 7's the calculation of the  mode could only- sensibly be done by 
considering the  joint mode. 4 s  the dimension of t,his is N 60 it was not undertaken. 
The  results of the simulations for the regression coefficients a,re presented in  Figure 
1. This figure shows the  distribution of the  estimated modes from t,he simulations. 
For comparison the  distribution a€ the nlaximum likelihood estimates (MLE) based 
on the  true  truncated model a,nd those produced by the Poisson model, ignoring 
t,he  truncation:  are also presented.  These were produced from the same data sets 
genemted  during  the simulat,ion.  Examining the figure it. is seen that  the  estimate 
of the  intercept  term exhibits  a slight negative bias  over the simulations, while the 
estimate for t,he continuous covaria,t,e has an smdl positive bias. The  exact  extent of 
these biases would require  extensive  simulation. This is currently not computationally 
feasible. The out.lying t.ernls in these plots are produced by simulations were t,he 
response for units wit,h zi2 = 1 mere all 1. In  this case /3? can equally plausibly have 
a range of negat,ive values (implying heavy t,o severe truncation);  and  this is reflected 
in  the Gibbs sampler; which drifts over t.his parameter. This a,lso causes X t,o inflate 
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Table 1: Table 1. Estimated covera,ge probabilities. I parameter 1 3 0  I ,01 I 1 X 1 
1 coverace 1 .93 I .92 I 2 6  1 .86 1 

as there is no information regarding the  extent of the  hncation. 
Note that  the comparison between the Poisson MLE, ignoring the  truncation,  and 

the other  estimates  is not simple. This is due t.o t,he Poisson MLE attempting  to 
model the mean of the observed responses, whera,s the  other t,echniyues attempt to 
model the mean of the underlying process. Thus  they are attempting  to  estimate 
different quantities. Wit.h this  in  mind,  it is still  informative to  see the effect of the 
tilting  in  Equation 5 on t,he usual Poisson likelihood. In a.ddition it also shows the 
serious errors  in  location  and precision t,hat can occur if t,he truncation is ignored. 

The distribution of the  estimated mode of the  margiml post,erior for X is presented 
in  Figure 2. 

Table 1 est,imates the coverage of the 90% Bayesian intervals calculated from  the 
estimated 5% and 95% quantiles. Note that  the coverage for X is not a t.rue coverage 
as the method  in  fact  estimates  the mean of an assumed underlying process. Although 
in  this case the process was deterministic, the result is still  interpretable. 

4.3 Example 3 

The Gibbs  sampling  algorithm mas used to fit the Poisson model to some truncated 
count data on the abundance of Lea.dbeat,ers Possom, an Australian  marsupial.  This 
data consists of counts of possums and habitat variables from a, sample of sites.  This 
data has been  analysed in the context. of zero inflat,ion. With zero inflation the 
number of zero responses is great,er than would be  expected  from  the Poisson model. 
Welsh, Cunningham, Donnelly, k Lindenmeyer (1994) analyse this  data by assuming 
that t,he data is  contaminated by zero responses. They proceed by modelling the 
probability of a posit.ive response. For the positive responses they modelled the effect 
of the covariates on the response, conditiona,l on a posit.ive response, via the  truncated 
model. 

The Gibbs sampling  algorithm allows  for the  fitting of the  truncated  model, where 
we may consider X and the 7’s as auxillary variables. In this case the technique 
replaces maximumlikelihood for the  estimation of the regression effects. Alternatively 
we can consider the following approach. In this analysis we assume that,  there is an 
unobserved covariate with two levels. If the covariat,e is a t  the &st level then  the 
habita,t is  unsuitable for Leadbeat,ers Possums and none will be found. If the covariate 
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Table 2: Table 2. Parameter est,imat,es and  standard errors for possum data. 

variable est.  \-ariame Truncated MLE 
" 

est. variance estimated posterior mode 
Intercept 1.08 

,0008 -.09 ,001 -.os no.s 
.no02 ,037 ,0003 ,040 bark 
,012 ,246 .019 ,247 log(stagsS1) 
.ll 1.13 .17 

slope -.036 .DO02 -.031 ,00016 

is at  the second level the  habitat is suita,ble and the  density of the possums €allows a 
Poisson distribution with mean depending on the habit,at variabtcs via the log link. 
The analysis will then enable inference to be  made regarding the number of suitable 
sites in the  sample. 

The variables chosen  were the same as those used by Welsh et al. (1994). These 
were  chosen by the sta,ndard analysis of deviance used in fit~ting generalised linear 
models. 

The Gibbs sampler was run for 20000 iterations,  after a.n initial 100 iterations  to 
limit  the effect of the  initial conditions. As in the previous example a. Gihhs subchain 
was used to sample 7 .  The  initial conditions were naive estimates  produced  from 
the maximum likelihood estimates. Ot.her st,arting  points were tried.  These  had no 
effect on the  resulh, with the exception of initially  upsetting some of the  tuning in 
the rejection  sampling  algorithm. 

The results  from the analysis are  presented  in Table 2: along with the maximum 
likelihood esimates. The  approximate  marginal posterior distribution for N is  given 
in  Figure 3.  This was generakd by t,aking samples at, intervals of 50 from the Gibbs 
sequence and drawing from the conditional  distribution of N. Note that,  the  estimated 
mode is approximately 60 and  thus  the intensity of truncation is low. 

5 Discussion 
The techniques  presented  in  this  paper provide a novel approxh to  the  estimation 
of regression coefficients with  t,runcated data. 'They  also  a,llow  for inference to  be 
drawn regarding the  truncation process. This is an extension of the usual conditional 
approach which considers the likelihood of the response ,uith%.n the observed sample. 
The  results of the simulat,ion study a,nd example provide encouragement about  the 
stability  and interpretdility of the estimators. 



When the  data  are  distributionallp  truncated  the new method offers no significant 
advantage over the usual  maximumlikelihood  estimates.  This is because it is only t,he 
regression coefficients t,hat  are of int,erest,  and  the  truncation is  only used to produce a 
distribution consistent with the  data. Alternately, for observationally truncated  data, 
the Gibbs model provides a method for infering the observational process. This  can 
be  important in attempting  to  estimate size a,nd distribution of covariat,es across the 
unobserved population.  This is sometimes  a side interest,,  but can also be  the primary 
focus of the study, as in  capture-recapture  studies which are a  form of truncated  data. 
The Bayesian approach has considerable advantages over the frequentist analysis, as 
the missing components [X-] and N can be  incorporated. In the frequentist analysis 
they cause major difficulties, and t.he estimation of N is non regular. 

Over recent years, Gibbs sampling has gained wide exposure for its use  in obtain- 
ing samples from posteriors such as Equation 13, thus allowing the  construction of 
approximate  marginal  and joint posteriors for the parameters.  In the ca,se of missing 
data,  the Gibbs sampling  algorithm is made  more  attra,ct.ive  due to  the simplifica- 
tions that occur when she da,t,a. is augmented by the unobserved components (Smith 
& Roberts,  1993j.  In censored regression, for example, the censored observations are 
included as additional  pammeters  in  t,he model. 

It is not apparent t,ha,t the simplifications found in  the censored case are realised 
in  the  trunca,ted case. Note that Equation 1 is analagous to t,he likelihood used in 
the case of censored regression. It. differs in  this case due t,o the covariates being 
unknown but. the response known. In the censored case the  data, is augmented by the 
unknown responses, considerably simplifying t,he Gibbs sampling. In the  truncated 
case it is appealing to  att,empt to  augment the  data  to seek  t.hese simplifications. The 
obvious candidate is to augment the d a h  with the unknown cova,riates and t,o thus 
avoid the integration performed in section 2. This  augmentation is complicated by 
the unknown X and random  population size, and will not  produce t,he simplificat,ions 
in the Gibbs sampling found in the censored case. This will potentially  invalidate the 
use of the Gibbs sampling  algorithm. 

The  method is facilitat.ed by t,he use of the empirical  distribution of the covariat,es. 
Research is still  required  into the effect of this  approximation on the procedure. It, is 
obvious that in very spa,rse data sets the empirical distribut,ion ma,y provide a poor 
approximation  to  the  true  distribution. Whether  there are any deeper pathological 
problems is unknown, although various unpublished simulations have not highlighted 
any. A second issue relates t,o  how well the Dirichlet specification reflects the uncer- 
tainty in 7 .  

The  method  has applica.tion to other  truncation problems such as group truncat,ed 
ordinal data  (O'Neillk  Barry  (1993a),O'l\eill& Barry (1993b)).  and  data  frommulti- 
ple capture/recapture  experiments.  It can be  potentially  extended  to include random 
effects. It could also be used in  sytems with more general truncation  patt,erns by re- 
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placing the  term [Y = Olz, p ]  with  the  appropriate  integral.  The  sampling  algorithms 
should  continue to hold providing the likelihood is approximately quadratic, which is 
not a particularly  strong  assumption. 
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A Rejection  Sampling from Exponential Tilted 
Dirichlet  Random Variables 

We consider the problem of genemting  random variables hom  the density, 

n n 

f ( 7 )  cc n $ e x p ( - c q i ) , C v t  = L C ;  L 1. 
i=l *=I 

Since Cy=l 7; = 1 we may take in  equation 20 

where 
d,j = c; - h i n ,  

and . .  cmin = mmlrnum(q, . . . , cn). 

Without loss of generality, we may assume by permut,ation if necessary, that d,  = 0 
in equation 21. Then  letting .T be  the solution of 

it follows that nr,l q? exp(--d,q,) is a strongly unimodal function with maximum at 

= i an + 4 . T  1 %=I,,. . ,~ ’ 

(23) 

We wish to use a combination of rejection sampling and Gibbs sampling to generate 
observations from equation 20. To do this we require the curvature of f at u. But 
since ‘u is t,he  location of the ma,xilnum of f ,  t,he curvahre of f at u is f ( u )  by the 
curvature of log f at u .  So 



where we are different,iat,ing with respect to 

Now 

There  appear  to  be two main opt.ions  for approximating f. 
The first alternative is to  use an approximating Gaussian distribution for the 

density of 7' = (71;. . . , ~ ~ - 1 ) .  This  method has the adr-anta,ge of being able to exactly 
match  the  curvature of density 20 a,t 'u and therefore potentially lower the  rate of 
rejection. The drawback is that unlike the t.ilted Dirichlet, where the observations are 
constrained  to lie in  the simplex: the Gaussian random variables can have individml 
entries which are less than zero or they can sum to greater than one. Either of these 
will cause the  random vector t,o be rejected. However t,his will not become a serious 
problem until n N 10. The problem  with  t~his  method is that t.he ratios  obtained can 
be  greater than one  and so the rejection sampling is  not valid. A similar approach 
using suitably chosen independent  Beta random variables was also tried but suffered 
from  similar problems. 

The  other  alternative is to try  to approximate the tilted Dirichlet by an ordinary 
Dirichlet. In order to get, the  maximum  to occur at the same location, it.  is necessary 
t o  take a Dirichlet with  density x n:=l T?"' where cg is a constant that should be 
chosen to get the curvatures  to  match as closely as possible at v. The best possible 
choice turns  out  to  be e,, = 1/x. Unfortunately when this Dirichlet is used in  a 
rejection  sampling scheme, bhe rat'e of rejedion can be so large t,hat it makes the 
method  unusable.  This  situation occurs when some of the d, are very large, say fifty 
or more.  This can happen for n. = 2. 

In order to overcome this difficulty, the n unit,s are split  into two groups, those 
with di less than some value, c say, a,nd those with d; great,er than c .  Without loss of 
genemlity we will assume that d ,  = 0 , d ;  5 c: i = k + l > .  . . , n and d, > c: i = 1,. . . , k .  
Then  since 1 - 3: I exp-x) for .z E (0, I) it follows that 

17 



k 

- < n 7pi exp {- (a, + a;) %} x (25) 

JJ 7;" exp(-d,Ti) (1 - ~ k + ~  - . . . - ~ 7 ~ _ ~ ) ~ ~ .  (26) 

i=l 

{ n-l I z=k+l 

The recommended carrying density- is to a.pproximate the density 26 by a  suitably 
chosen Dirichlet as discussed above and t,he density 25 by independent  Gammas  with 
shape a; and scale (d ;  + ai)-'. It is reasonable to restrict,  the range of the  Gamma 
random variables and  generate  another  Gamma if this does not hold. It may also 
be  tempting  to generat,e another  suite of Gamma,s if their  sum is either  greater than 
one or even 7 ,  say.  However t,his has t,he effect of repeatedly generating Gammas for 
unfavourable 7 k + 1 , .  . . 7" and so it is necessary to generate a complete new 7 vector 
in this case. A potential 7 should be a.ccepted if 

where U - U(0, l )  and is calculated  from &+I , .  . . , d,  only using equa- 
tions 22 and 23. 

There  are two reasons for a, vectmr 7 to  be reject,ed: 

The generated  deviate may not lie in the simplex which aut,omatically means 
that  it cannot  be  a  candidate for a  tilt,ed Dirichlet mriable. 

The vector 7 may not satisfy the rejection sampling inequality given in  equa- 
tion 27. 

For large n,  the combination of these two reasons can possibly lead to high proba- 
bilities of rejection  and different methods a,re required. The  method  that we propose 
generates the vector 1) by Gibbs sampling where we generate the components of 7 
in pieces of length k by rejection sampling based on equations 25> 2G and 27. It is 
well known (Smith &- Robert,s, 1993j that by using multimriate sections of the vector 
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rather  than univariate  sections, convergence can be greatly increased in  situations 
where there is correlation beheen  the components. 

The comparison of the rejection sampling approach to  the Gibbs sa,mpling approx- 
imation considered previously is complicated by the dependance of the resuks on the 
particular  situation  considered. The convergence of the Gibbs subchain mas examined 
by running  parallel chains and examining the behaviour of the  output over iterations, 
comparing this via Q-Q plots  to a, sample from the  true distribution  obtained via the 
rejection  sampling  algorithm. The results of this for n = 30 and a, plausible set of X 
and P(a,  z;) showed that approxima,te convergence  was obtained after n iterations, 
provided that T~ was taken to have d,  = 0. In this case the expected value of vn 
is larger than  that of the  other 7’s; a,nd the sampler can traverse the simplex more 
freely. In addition,  the Gibbs subchain  sampling of 7 is only a compooeot of the full 
sampler,  and  approximate convergence is adequat,e for the convergence of the chain. 

19 



c
 

Q
 

m m c
 

e c
 

.- 

lr 
0
 

(D
 

0
 

x 



/
 

1 

0
 

0
 

d
 

0
 

0
 

@
2 

0
 

0
 

cu 

0
 

0
 

- 

0'0 

cu .. 



(D 
0 
0 

0 
0 

55 60 65 70 75 80 85 

N 
Figure 3: Approximate  marginal  posterier for N 


	View Summary
	Next Page
	Previous Page



