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Abstract

The analysis of truncated data when an unobserved latent structure is as-
sumed is considered. A Bayesian analysis of truncated data in the presence of
covariates is presented. A method is derived for the analysis of truncated data
when the response for the unobserved members is known. The Gibbs sampler
is used to approximate the required posteriors. The method is applied to some
simulated data and to a real data set.}
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1 Introduction

This paper examines the regression analysis of daia from a truncated Poisson distri-
bution, where the response is truncated at zero. An example of such data is the data
on fishing trips presented in Grogger & Carson {1991). This data set is based on a
sample of households and records the number of fishing trips undertaken as well as
a range of covariates. Inclusion in the sample is based on at least one fishing trip
being nndertaken, and sample selection was not affected by the number of trips taken
greater than 1. This is an example of truncation where the response of the unobserved
members is known, in this case zero. This can be contrasted with truncated Gaussian
regression, where the value of the unobserved responses is unknown, only that obser-
vations were observed outside a certain level. The results in this paper are developed
for the analysis of truncated data where the response is known for the unobserved
members of the sample. This applies when only one state is unobserved. An example
of this is grouped truncated binary data detailed in O’Neill & Barry (1993a}. Group
truncated binary data occurs when groups of binary outcomes are observed only if
al least one of the responses is positive. An example of this is data on car accidents
involving fatalities. In this case accidents where no fatalities result are not observed
in the data set. The results of this paper can also be extended to more general forms
of truncation.

Truncated data arises when the range of possible responses is restricted in some
way. Methods for the regression modelling of such data have been proposed for a
number of situations. For example, forms of the Tobit model {Amemiya, 1979) deal
with the regression modelling of truncated (Gaussian responses. There is discussion of
these models in the econometrics literature. More recently, Grogger & Carson (1991)
and Shaw (1988) have detailed a regression model for data with a truncated Poisson
distribution, and extended it to the truncated Negative Binomial distribution. O'Neill
& Barry (1993a) have recently proposed a truncated model for grouped binary data
which O'Neill & Barry (1993b) extend to grouped ordinal data. Weiss (1993) has
proposed a truncated model for correlated ordinal data.

A distinction should be made between data that is observationally truncated and
data which is distributionally truncated. Observationally truncated data refers to
data where it 1s natural to view the observations as being a truncated sample from
a larger, unobserved, sample. An example is the group truncated data in O'Neill &
Barry (1993a), or the fishing data described above. In this case questions regarding
the size of this unobserved sample and the covariate distribution of the unobserved
sample may be of interest. Alternately, distributionally truncated data is data where
the response is truncated in some manner which does not rely on the observational
mechanism for its interpretation. An example of this is data with the response taking
the positive integers as values. This data can be treated as either a sample from
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an unknown distribution with support the positive integers, or a truncated sample
from the Poisson distribution. The mechanism which gave rise to this support is
not assumed. In this case the truncation is used as a device to allow estimation
within a familiar (Poisson) framework. This paper is derived assuming observationally
truncated data but is applicable to both forms of iruncation. This is because the
analysis techniques used in the distributionally truncated case are often used to fit
models to observationally truncated data.

The regression modelling of data with a Poisson distribution is routinely per-
formed in the literature as a generalised linear model (McCullagh & Nelder, 1989).
The analysis of truncated count data has previously been based on maximum like-
lihood methods. These all consider the distribution of observations conditional on
being observed. This paper examines the use of Bayesian methods in the analysis of
truncated Poisson regression, and examines some of the novel aspects of the approach.
Section 2 develops the likelihood for the truncated model. In Section 3 the priors are
discussed, posteriers are derived, and a Gibbs sampling algorithm to explore them is
presented. Section 4 presents some numerical examples and the method is discussed
in Section 5.

2 Bayesian Model

As the results in this section will be developed with respect to the Poisson model, it
will be briefly reviewed. Following McCullagh & Nelder (1989}, consider a sample,
(Yi,z1) ... (Yy,zn) where ¥ is the response for the ith individual and z; are covariates
measured on the ¢th individual. It is assumed that Y; follows a Poisson distribution

e—.u‘f _1!‘
Pr(Y,=y) = ‘#‘; y=0,1,2,...

where pu, is the mean of the process. If the log link is used the mean is modelled by

g(p) =log p; = .3

where 3 is a vector of parameters and g¢() i1s the link function.

We now consider the case truncated at zero. We will begin by considering the
likelihood of obtaining a particular truncated sample. Consider a sample of size N
from the non truncated distribution. For clarity we will use the notation found in
Gelfand, Smith, & Lee (1992) for the densities. This notation denotes the density of
a random variable K as [K] instead of the usual functional notation f(%).

Agsume that the covariates z are realisations of the random variables X with
density [X], independent of the response. Consider the sample with n non truncated



observations. By permutation if necessary this is

(}/1*1 ’EI)H Tt (Y:5 mn)v (U, Q:?'H-l):\ R (DJ ‘T’N)

where n is the sample size of the truncated sample. The likelihood of the complete
sample is then

NY ¢ i
voxg ) = () TIvi. e 1T ¥ =0, )
=1 1=n+

and the posterior 1s thus

BIY, X] o [Y, X18][8].

This is of no immediate use. as the covariate values for the truncated observations
are unknown. To avoid this problem we calculate the marginal distribution of n and

(Y7, z7) ... (Y, z;). Thisis

ol n

[Y*,X*,nw,N]:(‘:)H[le X f f ﬂ v = 01X, 811X ﬁ dzi.

=1 t=nA41 i=n+1

As the distribution of the X’s are identical this reduces to

v als N = () T sl - pen™ )

=1

where

P(8) =1~ [I¥ = 01X, Fl[X]ds, (2)

the unconditional probability of observing a unit randomly chosen from [X].

If N and [X] are known Equation 1 could be used to form inferences about 3,
although this could prove problematic due to the (possibly ) multi dimensional integral
in BEquation 2.

With truncated data, it is not usual for N to be known. In this case we assume
that N is a random variable and postulate a distribution for N. We will denote this
by [N|)A] where A is a fixed parameter. The joint distribution of [¥™, X*,n, N|3, A] is
then

Th

v ¥ = () T A0 - POV )

=1

and the marginal for {¥™=, X~ n8, )] is

E()HYmﬂ[m—(WHﬁm:my )

=1



The choice of [NV|A] will depend on the particular problem being considered. For ex-
ample if it is assumed that N has a Poisson distribution with mean A then Equation 4
simplifies to
(Y™, X=, 0|3, A] o [][¥i|X:, B [XJAme M)
=1

The last issue that must be resolved is the distribution of the z;’s. It is possibly
multi dimensional and with no knowledge of the distribution, the specification of a
form that is flexible enough is difficult. Arguing that the observed covariates provide
the only information regarding the distribution of X we propose to approximate the
covariate density by using the “empirical” support of the observed covariates. By this
we mean that we shall let the support of the distribution be defined by the observed
covariates. Thus the empirical distribution is a multinomial distribution. We use the
parameter 7 in this case to represent the vector of length n with components the cell
probabilities of the multinomial distribution. This 1s Ioosely analogous to the use
of the multinomial simplification to derive empirical likelihoods from the intractable
non parametric likelihoods (see Efron & Tibshirani {1993)).

The density is then

Y7, X0l 8, A, 1) o TT X, B Xelple= 700 9

i=1

where P{8ln)is 1 — X2, [Y = 0|z, 8.

3 Priors and Posteriors

3.1 Prior Specification
3.1.1 3, A priors

Where there is no prior information we propose using a uniform prior for A and
3. These priors are attractive as they are dominated by the likelihoods, and produce
estimates which maximise the likelihood function in Equation 5. We will now consider
the prior for 7.

3.1.2 7 prior

The specification of the prior is complicated by the truncation. It is important to
distinguish between priors at the untruncated and truncated levels of the likelihood.
The correspondence between a prior [3, X] in the untruncated space and the induced



prior [3, X7 in the truncated space is

CX|P(3,X

[-QE‘X]T = [’6 - ] ( b ) Gl (6)
JI18. X]P(5, X)dBdX

Se for example in situations where 3 and X are assumed to be apriori independent

and the non-informative priors [3] and [X] are constants, then the non-informative

truncated prior will be

o P(B,X)
P X = 7P, Xydpax

which is not of the usual form. Note that Equation 6 can be inverted to give

(8, X]r P(8, X)"

8, X1 = 7778, X7 P(3, X1 dBdx (7)

Equation 7 suggests that priors in the truncated situation should be tilted by
P(8,X)! to obtain the corresponding prior in the uniruncated situation. Note that
if # and X are assumed to be apriori independent in the untruncated situation, then
[8, X] = [A][X] and from Eqnation 7,

[X | Blr(Bl(8] P8, X)

[X] = 118, X]rP(3, X)1dB3dX

or
[ —1 — [‘X | ﬁ]TP(ﬁv‘).()_l ] (8)
JIX 1 8P (8, X)1dX
So the prior [X] is equal to the prior [X | 8]7 tilted by P{3,X) .

In the case where X is known to be discrete and have a finite set of values, the prior
[X] can be specified with support the observed truncated z. Since ultimately all of the
possible values of o will appear in the truncated sample, this will ultimately be equiv-
alent to knowing the support of [X] apriori and specifying the prior on that support.
The nonparametric approach would assume that [X | 3]y is Multinomial with support
the observed x and parameters n which have a Dirichlet distribution. If a Multinomial
has % points, then a non-informative self-consistent prior {or the parameters of the
Multinomial is Dirichlet(2/%,2/k,...,2/k). Self consistent means that when the %
points are aggregated in kg equal sized sets, the marginal prior for the &y equal sized
sets obtained from the n dimensional prior is Dirichlet(2/kq, 2/%q,...,2/kq). Note
that for & = 1, Dirichlet(1,1) is &/(0,1) which is the non-informative prior for two
points. Equation & suggesis that the location of the truncated prior for X should be
tilted by P(3,X)~'. This can be achieved in the non parametric setting by taking
the ‘non-informative’ Empirical Dirichlet Prior (EDP) to be

Dirichlet (v;,i=1,...,n)
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where

2P (.‘3 ; Eg)fl
V= e
22 P (Bt
It is worth examining in detail the outcome if EDP is applied o a situation where
X is actually discrete. For simplicity of presentation we will study the case where
X has only two values, ¢ and & with probabilities mp and 7 respectively. Using the
knowledge that X is discrete and assuming a uniform prior for 71, we would obtain
posteriors

(3§ A m, Y7, X% n] o [Y7 | X7 exp(—AP(3 | 1)) (8], (9)
AN B, m, Y™, X7 n] oc N exp(—AP(S | m1))[A], (10)
[ﬂ-l | AsﬁrY*a"Y,‘: n‘] x exp(_)\P(ﬁ | Wl))“—?lwgoi (11)

where

P3| m)=mP(B3,a)+ m P(3,5),

ny 18 the number of & obsgervations in the sample and nyg = n — ny. By contrast, if

EDP is used and we define
Ty = > 7

b observations

and mg = 1 — 7, then the posteriors for 7 and A are once again given by Equations 9
and 10. Assuming without loss of generality that the b observations are labelled
1,...,n; and letting

_— nim ,  i=1,...,m
i mfre , t=m+1,...,n ]

the posterior of T, 91, ..., Yngm1s Ynytls - - -; Y1 18

[71'1,3}1,- s —1sYni4+1s- - -2 ¥n—1 | A':BJY'*)‘X:”} x ehp(*)‘P(ﬁ |’;T1))

T
S ﬁ-:?l"}‘"l _I’IFSO_HG—I H ycz

1
1

where
N inP(ﬁ,bJ_l
1T i P(B.6) T+ noP(B, a) L
o IngP(3,a)~"
O P(3, 5+ noP(B.a)"
and
o 2P(B, ;)"

n P(3,6)7 1 + ngP(3,a)"1"
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So w1 and Yy, .-« Yny—1s Yny+1s- - - s Un—1 are independent in the posterior and the pos-
terior of m; is

[71 | A, B, ¥, X~ n] o exp({—AP(B | 1))t ggotro—t, (12)

Note that y1,...; ¥n -1, ¥ny41s- - - Yu—1 do not appear in the posteriors for F and A
and so can be ignored unless specifically required. Consequently the only difference
between the posteriors are the coefficients of 7y and 7y in Equations 11 and 12.
Since the difference in the coefficients is at most one and converges to zero as the
sample size increases, the difference in the posteriors will be negligible as the sample
size increases and EDP will be essentially eqnivalent to the known two point case.
An identical argument applies to establish the essential equivalence of EDP and %
point support for X. Finally since any continuous density for X can be arbitrarily
well approximated by a discrete k point support density with % sufficiently large, it
follows that any non truncated prior for X can be arbitrarily well approximated by
EDP for sufficiently large sample sizes.
With these priors the posterior becomes,

n

[3, A m|Y*, X7 n] = H
=1

e~

the #’y’ n i .
| i H me—,\P(ﬁln) H ???‘_l. (13)
Yo i=1 =1

3.2 Gibbs Sampling Algorithm

To produce inference about 3, A and % requires the numerical integration of the form
given in Equation 13 to obtain the required posteriors. This is computationally
prohibitive in all but the most simple cases.

Instead we propose using a Gibbs sampling algorithm to approximate the poste-
rior 13. The Gibbs sampler is described in numerous articles, for example see Tanner
(1993). The implementation of the Gibbs sampler requires the decomposition of
Equation 13 into a set of convenient conditional distributions. We have chosen the
following.

Tk * - e—“-{{'y’ - .- - [
312 m X7 ¥ 7o) o [T [Tnedte™ O I i ™ (14)
A8, Y=, X" n] o Ame M2 (13)
3, A Y" X* 0] o [[nA7e PO ] pp (16)
=1 =1

To sample from Equation 14, note that it consists of the usual likelihood used
in the non truncated analysis, but tilted by the remaining terms. Following Zeger
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& Karim (1991) we sample from Equation 14 by rejection sampling. This is done
by maximising the function for A, and finding the curvature at the maximum point.
A normal density with deflated curvature is then used as the rejection envelope.
Although we have not proved the log concavity of Equation 14, no problems with
incorrect acceptances have arisen in a range of simulations carried out. Heuristic
arguments suggest it should not present difficulties. The choice of the deflation factor
depends on the problem, but no difficulties were encountered in choosing a value that
achieved acceptable rejection rates, while still being a valid envelope.

Examimng Equation 15 it is immediately apparent that it is proportional to a
Gamma density with shape and location parameters, n and P({#3|n) respectively. It
is thus simple to generate deviates from this distribution. Of cowrse in some ap-
plications it is of interest to make inference regarding N. This can be done by
noting that the Gibbs sampling algorithm produces approximate samples from the
marginal distribution [3, A, n|Y™*, X*, n]. Thus points sufficiently separated in the se-
quence can be treated as independent realizations and the conditional density for N,
INIB, A, 7, Y™, X*, n] can be derived from Equation 3 and used to produce a sample
from the full posterior.

Sampling from Equation 16 presents greater difficulties. One approach s to con-
sider the reduced vector [ij1,- - -, 7,—1]. Observing that the conditional distribution of
7:, given the other 7’s is

Tn

AN RN R (1 -2 m-) (17)

i#Fn
where
d; = )\P(.ﬁv :13,;) g ’\P(ﬁﬂrﬂ), Mei =M - M- i1y - -3 i1
and
0<m<1- Z UK
i#in

It is therefore possible to use a rejection sampling algorithm to sample n;. This is
done using a uniform distribution over [0,1 — ¥"..; . »,] scaled to the maximum of
Equation 17. This maximum is the solution of a quadratic equation and is thus easily
found. To produce a sample from the full vector a Gibbs sampling sub-chain can be
used, by repeating this process until approximate convergence is reached.

A concern with this algorithm is that convergence may be slow due to the depen-
dence between the components of 7. An alternative is to consider a rejection sampling
algorithm to simulate from the full  vector. This can be used either to asses the con-
vergence of the Gibbs approximation, or if efficient enough, to directly sample . This
is detailed in the appendix. The conclusion was that the Gibbs algorithm appeared to
give good approximation to a sample from [g|conditionel] if the following conditions
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were met. Firstly, if it was run for n full iterations. Secondly if, by permutation if
necessary, 1, was set to the  with the largest expectation. This second condition
allows the easiest traversal of the simplex and thus speeds convergence.

4 Examples

4.1 Example 1

As a simple example consider a regression model with a single intercept term. In this
case X is 1 with probability 1. Thus the posterior 13 reduces to

n

* * eu#ﬂyl e wn — : { Dl
18, A qln,y%,2%) & [ —— [ mAme & T o (18)
i=1

i=1 E i=1

For any # this function is maximised (and hence is the posterior mode) by A =
n/P{$3) and the solution of
Dnl M
n P()

which is the same as the maximum likelihood estimate hased on the conditional model.

(19)

4.2 Example 2

In this section a small scale simulation experiment is presented. The Gibbs sampling
algorithm was implemented using Splus, with C code used to gain efficiency in the
sampling from the 5 vector. The simulations consisted of the following steps:

1. A covariate matrix was generated with 100 rows and ith row

(17 i1, :CI?.])

where x;; had a uniform distribution over [-1,1] and z;; was Bernoulli with
probability .5. From this the expected values, u were generated via the link
function g() and the linear predictor X3, where 8 = (8o, 51, 82) = (1,-2,2).
In the simulations the marginal probability of being observed was .598, so each
data set had approximately 60 observations.

2. The following steps were iterated.

e A sample y was generated from .

e The sample was truncated to form a sample y™, z*.
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e The Gibbs algorithm was run for 2000 iterations, and the sample path
saved.

The use of simulation to assess the behaviour of a Bayesian procedure is worthy of
comment. The Bayesian approach does not require the frequentist justification over
repeated samples. The Bayesian could simulate from their priors and then the densi-
ties, but this would be purely an exercise in verifving the calculus. The simulations
carried out here are justified in the following ways. Firstly, the use of the uniform
priors for 7 and A means that the posterior is approximating the likelihood function
and so the posterior modes are interpretable as maximum likelihood estimates. Sec-
ondly, the use of the procedure with the Empirical Dirichlet prior in any practical
problem requires confidence in its behaviour.

Each iteration of the Gibbs sampler consisted of drawing samples directly from the
conditional densities for 7 and A and using the Gibbs subchain described in Section 3.2
to gain an approximate sample from the n’s. The number of iterations used in the
Gibbs subchain was equal to the length of the observed y*.

The Gibbs sampler was started by using the known true parameter values. It was
run for 50 iterations to eliminate the effect of the initial conditions. Ir the preliminary
investigations the posterior densities appeared unimodal and well behaved so it was
considered unnecessary to use a sequence of different starting values. The simulations
have confirmed this view.

For each run, the posterior mean, mode and selected quantiles were estimated for
each of the A and # marginals. The mode was estimated using kernel smoothing. The
mean exhibited considerable bias in estimafting the mode due to the skewed posterior
distributions. This was most pronounced with respect to A, which posessed a long
right tail. For the n’s the calculation of the mode could only sensibly be done by
considering the joint mode. As the dimension of this is &z 60 it was not undertaken.
The results of the simulations for the regression coefficients are presented in Figure
1. 'This figure shows the distribution of the estimated modes from the simulations.
For comparison the distribution of the maximum likelihood estimates (MLE) based
on the true truncated model and those produced by the Poisson model, ignoring
the trumncation, are also presented. These were produced from the same data sets
generated during the simulation. Examining the figure it is seen that the estimate
of the intercept term exhibils a slight negative bias over the simulations, while the
estimate for the continuous covariate has an small positive bias. The exact extent of
these biases would require extensive simulation. This is currently not computationally
feasible. The outlying terms in these plots are produced by simulations were the
response for units with z; = 1 were all 1. In this case #; can equally plausibly have
a range of negative values (implying heavy to severe truncation), and this is reflected
in the Gibbs sampler, which drifts over this parameter. This also causes A to inflate
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Table 1: Table 1. Estimated coverage probabilities.
|para.mete1‘f Fa I 31| Ba ‘ T|
| coverage | .93 [.92 [ .86 [ .86 |

as there is no information regarding the extent of the truncation.

Note that the comparison between the Poisson MLE, ignoring the truncation, and
the other estimates i1s not simmple. This is due to the Poisson MLE attempting to
model the mean of the observed responses, wheras the other techniques attempt to
model the mean of the underlying process. Thus they are attempting to estimate
different quantities. With this in mind, it is still informative to see the effect of the
tilting in Equation 5 on the usual Poisson likelihood. In addition it also shows the
serious errors in location and precision that can occur if the truncation is ignored.

The distribution of the estimated mode of the marginal posterior for A 1s presented
in Figure 2.

Table 1 estimates the coverage of the 90% Bayesian intervals calculated from the
estimated 5% and 95% quantiles. Note that the coverage for A is not a true coverage
as the method in fact estimates the mean of an assumed underlying process. Although
in this case the process was deterministic, the result is still interpretable.

4.3 Example 3

The Gibbs sampling algorithm was used to fit the Poisson model to some truncated
count data on the abundance of Leadbeaters Possom, an Australian marsupial. This
data consists of counts of possums and habitat variables from a sample of sites. This
data has been analysed in the context of zero inflation. With zero inflation the
number of zero responses is greater than would be expected from the Poisson model.
Welsh, Cunningham, Donnelly, & Lindenmeyer {1994) analyse this data by assuming
that the data is contaminated by zero responses. They proceed by modelling the
probability of a positive response. For the positive responses they modelled the effect
of the covariates on the response, conditional on a positive response, via the truncated
model.

The Gibbs sampling algorithm allows for the fitting of the truncated model, where
we may consider A and the n’s as auxillary variables. In this case the technique
replaces maximum likelihood for the estimation of the regression effects. Alternatively
we can consider the following approach. In this analysis we assume that there 1s an
unobserved covariate with two levels. If the covariate is at the first level then the
habitat is unsuitable for Leadbeaters Possuimns and none will be found. If the covariate

12



Table 2: Table 2. Parameter estimates and standard errors for possum data.

| variable | estimated posterior mode | est. variance | Truncated MLE [ est. variance |
Intercept 1.08 A7 1.13 A1
Tog(stags-+1) 247 019 216 012
bark 040 0003 037 .0002
no.s -.08 001 -.09 0008
slope -.036 0002 -.031 .00016

is at the second level the habitat is suitable and the density of the possums follows a
Poisson distribution with mean depending on the habitat variables via the log link.
The analysis will then enable inference to be made regarding the number of suitable
sites in the sample.

The variables chosen were the same as those used by Welsh et al. (1994). These
were chosen by the standard analysis of deviance used in fitting generalised linear
models.

The Gibbs sampler was run for 20000 iterations, after an initial 100 iterations to
limit the effect of the initial conditions. As in the previous example a Gibbs subchain
was used to sample . The initial conditions were naive estimates produced from
the maximum likelihood estimates. Other starting points were tried. These had no
effect on the results, with the exception of initially upsetting some of the tuning in
the rejection sampling algorithm.

The results from the analysis are presented in Table 2. along with the maximum
likelihood esimates. The approximate marginal posterior distribution for IV is given
in Figure 3. This was generated by taking samples at intervals of 50 from the Gibbs
sequence and drawing from the conditional distribution of V. Note that the estimated
mode is approximately 60 and thus the intensity of truncation is low.

5 Discussion

The techniques presented in this paper provide a novel approach to the estimation
of regression coeflicients with truncated data. They also allow for inference to be
drawn regarding the truncation process. This is an extension of the usual conditional
approach which considers the likelihood of the response within the observed sample.
The results of the simulation study and example provide encouragement about the
stability and interpretability of the estimators.
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When the data are distributionally truncated the new method offers no significant
advantage over the usual maximum likelihood estimates. This is because it is only the
regression coefficients that are of interest, and the truncation is only used to produce a
distribution consistent with the data. Alternately, for observationally truncated data,
the Gibbs model provides a method for infering the observational process. This can
be important in attempting to estimate size and distribution of covanates across the
unobserved population. This is sometimes a side interest, but can also be the primary
focus of the study, as in capture-recapture studies which are a form of truncated data.
The Bayesian approach has considerable advantages over the frequentist analysis, as
the missing components [X] and N can be incorporated. In the frequentist analysis
they cause major difficulties, and the estimation of N 18 non regular.

Over recent years, Gibbs sampling has gained wide exposure for its use in obtain-
ing samples from posteriors such as Equation 13, thus allowing the construction of
approximate marginal and joint posteriors for the parameters. In the case of missing
data, the Gibbs sampling algorithm is made more attractive due to the simplifica-
tions that occur when the data is augmented by the unobserved components (Smith
& Roberts, 1993). In censored regression, for example, the censored observations are
included as additional parameters in the model.

It is not apparent that the simplifications found in the censored case are realised
in the truncated case. Note that Equation 1 is analagous to the likelihood used in
the case of censored regression. It differs in this case due to the covariates being
unknown but the response known. In the censored case the data is augmented by the
unknown responses, considerably simplifying the Gibbs sampling. In the truncated
case it is appealing to attempt to augment the data to seek these simplifications. The
obvious candidate is to augment the data with the unknown covariates and to thus
avoid the integration performed in section 2. This augmentation is complicated by
the unknown A and random population size, and will not produce the simplifications
in the Gibbs sampling found in the censored case. This will potentially invalidate the
use of the Gibbs sampling algorithm.

The method is facilitated by the use of the empirical distribution of the covariates.
Research is still required into the effect of this approximation on the procedure. It is
obvious that in very sparse data sets the empirical distribution may provide a poor
approximation to the true distribution. Whether there are any deeper pathological
problems is unknown, although various unpublished simulations have not highlighted
any. A second issue relates to how well the Dirichlet specification reflects the uncer-
tainty 1n #.

The method has application to other truncation problems such as group truncated
ordinal data (O’Neill & Barry {1993a),0°Neill & Barry (1993b)). and data from multi-
ple capture/recapture experiments. It can be potentially extended to include random
effects. It could also be used in sytems with more general truncation patterns by re-
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placing the term [Y = 0|z, 3] with the appropriate integral. The sampling algorithms
should continue to hold providing the hikelihood is approximately quadratic, which is
not a particularly strong assumption.
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A Rejection Sampling from Exponential Tilted
Dirichlet Random Variables

We consider the problem of generating random variables from the density,

Fln) o< Tl ni exp(—cimi)y y_m = 1,6 > 1. (20)

=1 1=1

Since 3.2, m: = 1 we may take in equation 20

Fn) oc JT 0 exp(—din,) (21)
=1
where
di = i — eip.-
and
Cmin = minimum(ey, .. ., ¢.).

Without loss of generality, we may assume by permutation if necessary, that d, = 0
in equation 21. Then letting « be the solution of

n

D DR (22)

= (e diz) ™

it follows that [T, n7 exp(—d,n,) is a strongly unimodal function with maximum at

= [ —" 2
v (an + d¢$>1=11.“,n . ( 3)

We wish to use a combination of rejection sampling and Gibbs sampling to generate
observations {rom equation 20. To do this we require the curvature of f at v. But
since v is the location of the maximum of f, the curvature of f at v is f(v) by the
curvature of log f at v. So

g f
dndny’

iy & log f
- ) ( oy’
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where we are differentiating with respect to

Now

] 1 1
_37757]' = diag (;2—) + ?—QE (24)

There appear to be two main options for approximating f.

The first alternative is to use an approximating Gaussian distribution for the
density of ' = (71, .., #n—1). This method has the advantage of being able to exactly
match the curvature of density 20 at v and therefore potentially lower the rate of
rejection. The drawback is that unlike the tilted Dirichlet where the observations are
constrained to lie in the simplex, the Gaussian random variables can have individual
entries which are less than zero or they can sum to greater than one. Either of these
will cause the random vector to be rejected. However this will not hecome a serious
problem until n = 10. The problem with this method is that the ratios obtained can
be greater than one and so the rejection sampling is not valid. A similar approach
using suitably chosen independent Beta random variables was also tried but suffered
from similar problems.

The other alternative is to try to approximate the tilted Dirichlet by an ordinary
Dirichlet. In order to get the maximum to occur at the same location, it 1s necessary
to take a Dirichlet with density o [I", 5" where ¢ is a constant that should be
chosen to get the curvatures to match as closely as possible at v. The best possible
choice turns out to be ¢g = 1/z. Unfortunately when this Dirichlet is used in a
rejection sampling scheme, the rate of rejection can be so large that it makes the
method unusable. This situation occurs when some of the d, are very large, say fifty
or more. This can happen for n = 2.

In order to overcome this difficulty, the # units are split into two groups, those
with d; less than some value, ¢ say, and those with d; greater than ¢. Without loss of
generality we will assume that d, =0 ,d; <c,i=k+1,...,nandd, > c,i =1,...,k.
Then since 1 — z < exp(—z) for z € (0,1) it follows that

an“ exp(—dn;) = {H ;e exp(—d;) }{ H nr GXP(_di"?i)} i

1=1 i=1 i=k41

(1_7?k+1—...—77n_1:)°“n(1# m-+...+ )
I — Mgy — oo — Tint

k
o
< [infrexps—1{d + ‘ i X
En p{ ( 1_”?k+1"---“7?nﬁ1)n}
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{ H 7? e\p 17}1)} (1*7?1:—{—1_'--_7}11—1)&”-

i=k+1

< Hn “exp {—(di + ai) i} % (25)

n—1
{ 1T 7 expf dzm)}(l—mﬂ — = e ) (26)

1=k+1

The recommended carrying density is to approximate the density 26 by a suitably
chosen Dirichlet as discussed above and the density 25 by independent Gammas with
shape o; and scale (d; + o;) ™. Tt is reasonable to restrict the range of the Gamma
random variables and generate another Gamma if this does not hold. It may also
be tempting to generate another suite of Gammas if their sum is either greater than
one or even 1, say. However this has the effect of repeatedly generating Gammas for
unfavourable 5i41,...,7. and so it is necessary to generate a complete new 5 vector
in this case. A potential  should be accepted if

U <Hea,p —L)

i=1 1 - 3=k+1 'z

n—1 }? Dy Oy
i (—) exp{—di(g 7)) § x
i=k+1 \ Ui
(1_ Mt +m ) ’ 20

L= — oo = M

where U/ ~ U(0,1) and v~ is calculated from dyyq,...,d, only using equa-
tions 22 and 23.
There are two reasons for a vector 5 to be rejected:

e The generated deviate may not lie in the simplex which automatically means
that it cannot be a candidate for a tilted Dirichlet variable.

o The vector » may not satisfy the rejection sampling inequality given in equa-
tion 27.

For large n, the combination of these two reasons can possibly lead to high proba-
bilities of rejection and different methods are required. The method that we propose
generates the vector » by Gibbs sampling where we generate the components of 7
in pieces of length & by rejection sampling based on equations 25, 26 and 27. It is
well known (Smith & Roberts, 1993) that by using multivariate sections of the vector
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rather than univariate sections, convergence can be greatly increased in situations
where there is correlation between the components.

The comparison of the rejection sampling approach to the Gibbs sampling approx-
imation considered previously is complicated by the dependance of the results on the
particular situation considered. The convergence of the Gibbs subchain was examined
by running parallel chains and examining the behaviour of the output over iterations,
comparing this via Q-Q plots to a sample from the true distribution obtained via the
rejection sampling algorithm. The results of this for n = 30 and a plausible set of A
and P(f,z;) showed that approximate convergence was obtained after n iferations,
provided that 7, was taken to have d, = 0. In this case the expected value of %,
is larger than that of the other n’s, and the sampler can traverse the simplex more
freely. In addition, the (Gibbs subchain sampling of 7 is only a component of the full
sampler, and approximate convergence is adequate for the convergence of the chain.
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