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Abstract

A major obstacle to the regression analysis of read traffic fatality data is that data is typically
only recorded for accidents where at Jeast one fatality occurs. Examples are the FARS database
in the USA and the Fatal File of the Federal Office of Road Safety. Data of this type is called
group truncated dala. A regression technique should allow for this truncation if it is to avoid
serious biases. Two existing methods are Conditional Logistic Regression {CLR) {Lui, McGee,
Rhodes, & Pollack (1988)) and Double Pair Comparisons {DPC) (Evans (1985)). This report
discusses the implementation of a new procedare called Truncated Ordinal Regression ([TOR).
The technique is more general and efficient than the existing methods. It allows for an ordinal
scale of injury such as uninjured, moderate injury, severe injury, dead. The software consists of
an Splus interface to a suite of C routines. Help files, installation scripts and an example are
provided with the software. As a more complicated example of its use, TOR is applied to the
Fatal File in Appendix B.



0 Executive Summary

A common {eature of mass databases on road traffic fatalities is that only accidents in which at least
one fatality occurred are included. Define a binary response variable Y which is 0 if an individual
survives and 1 if the individual dies. Then this road traffic fatality data is called group truncated
data, since the data is only collected if at least one of the binary response variables is one. The aim of
compiling the mass databases is to relate the fatalities observed to the variables that are thought to
influence the chance of a fatality, for example age, sex and seatbelt use. Ordinary logistic regression
will be subject to serious biases if it is applied to group truncated data. O’Neill & Barry (1993b)
and O’Neill & Barry (1993a} recently proposed the method of Truncated Logistic Regression (TLR)
and its extension TOR to analyze group truncated binary and ordinal data. The only other methods
available to handle such data are Conditional Logistic Regression (CLR} which has been discussed
in the road traffic context by Lui et al. {1988} and the Double Pair Comparisons (DPC) method of
Evans (1985).

In general, since TLR uses the full information from the sample, TLR can be expected to lead
to the maost accurate estimates and the most powerful tests of the eflects of variables on survival

prospects, The following properties hold.

e TLR will give the best estimates of the effect on survival of various variables, for example seat
belt usage or age of the ocrupant, followed by CCLR and then DPC. TLR will also give the
most powerful hypothesis tests. This is because TLR uses all the information that is available
in the data. CLR can only use comparisons within a vehicle. For example the fact that a
female died in one car while a male didn’t die in exactly the same circumstances in another car
does not contribiute any information to the CLR estimate. Also cars in which all occupants die
contribute no information to the CLR estimate. Both of these scenarios would add to the TLR
information. DP(C only uses the data which satisfies a condition on a single rontrol variable
and so will normally be less precise.

e More effects can be fitted using TLR. The conditional logistic regression likelihood equation 4
only includes terms which vary within a given accident. For example, for single vehicle acci-
dents, since the speed of the car is constant for all the ocecupants, its effect on the survival
prospects cannot be estimated using CLR. TLR on the other hand can be used to estimate its
effect. CLR cannot estimate the effect of variables which do not vary within accidents.

e Only TOR can be used to estimate the relative seriousness of crashes for occupants. The
TLR. method allows us to estimate the probability that a given type of crash will kili a given
type of occupant. The TOR method enables the estimation of the probabilities of the various
categories of injury.

e Only TLR can be used to estimate the total number of potentially fatal crashes. The TLR
method allows us to estimate the probability that a particular configuration of factors results
in a fatality. By dividing the observed number of crashes of this type by this probability we
obtain an estimate of the total number of potentially fatal crashes of this type. The estimates
can then be summed over the categories of crashes to obtain an estimate of the total number

of potentially fatal crashes.

e Unlike CLR, TOR can be generalized to different link functions. Varions researchers have
found that the logistic link given in equation 1 does not work well when dealing with very rare
events. The TOR method allows us to choose the link function which best fits a given data
set,



The aims of the seeding grant were:

o To extend the truncated logistic regression estimates of O'Neill & Barry (1993b) to ordinal
response models.

o To develop software to fit the generalized model to the level where it is accessible to road traffic
researchers.

o To apply the software to a suitable data set abstracted from the FORS 1988 Fatal File,

All of these aims have been met. The extension of the theory to Truncated Ordinal Regression
is given in O'Neill & Barry (1993a) which is attached as Appendix A. The software which has been
developed consists of an Splus interface to a suite of C routines. Help files, installation secripts and
an example are provided with the software. As a more complicated example of its use, TOR is
applied to the 1988 and 1990 Fatal Files in Appendix B. The resulting estimates of the effects of
variables are consistent with expectations and are more precise than other methods.

Now that a computer package is available to perform TOR. it can be applied to a variety of road
traffic accident databases by interested researchers. It will improve the accuracy of the estimates
and conclusions and allow more general questions to be posed,



1 Introduction

A common featitre of mass databases on road traffic fatalities is that only accidents in which at least
one fatality occurred are included. Define a binary response variable Y which is 0 if an individual
survives and 1 if the individual dies. Then this type of data is called group truncated data since the
data is only collected if at least one of the binary response variables is one. The aim of compiling
the mass databases is to relate the fatalities to the variables that are thought to influence the chance
of a fatality, for example age, sex and seatbelt wearing. Ordinary logistic regression will be subject
to serious biases if it is applied to group truncated data. O’'Neill & Barry {1993b) recently proposed
the method of Truncated Logistic Regression (TLR) to analyze group truncated binary data. The
only other methods available to handle such data are Coonditional Logistic Regression (CLR} which
has been discussed in the road traffic context by Luj et al. (1988) and the Double Pair Comparisons
{DPC) method of Evans (1985). The aims of the seeding grant were:

e To extend the truncated logistic regression estimates of O'Neill & Barry (1993b)} to ordinal
response models.

e To develop software to fit the generalized model to the level where it is accessible to road traffic
researchers.

e To apply the software to a suitable data set abstracted from the FORS 1988 Fatal File.

All of these aims have been met. The theoretical extensions to group truncated ordinal responses
such as uninjured, moderate injury, severe injury, dead have been made and are described in Sec-
tion 2. The software has been developed and is described in Section 3. The methods and software
are applied to some examples in Section 4 As a more complicated example of its use, TLR is applied
to frontal collision data from the 1988 and 1990 FORS Fatal Files in Appendix B. The merits of the
new software are discussed in section 5.

2 Methods

2.1 The estimators

The method of TLR is described in the paper of O’Neill & Barry {1993b) which is attached as
Appendix B. Suppose that the binary variable Y is (¢ if an individual survives and | if the individual
dies. Also suppose that z is a vector of covariates thought to influence survival. Then the logistic
model is that @
expdz
= = — = =1 1 l
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where 4 is a vector of unknown covariates. The conventional logistic regression estimate of 3 is the

maximizer of )
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This method will result in biased estimators of regression parameters if it is applied to truncated
data.

The TLR approach conditions on the probability that an accident is observed which is the
probability that it results in at least one fatality. This has the effect of introducing a divisor to



logistic regression likelihood equation 2. The truncated logistic regression estimator of 3 is the
maximizer of

II [ieaceidents P(B: i) 98, z)' ™ (3)
aceidents L— H'EﬂccldentJ q(ﬂ1 zl.) :

This modification of the logistic regression likelihood equation 2 gives a well behaved estimator
which has all the nsual desirable properties of maximum likelihood estimators.

The conditional logistic regression estimator is obtained by conditioning on the exact number of
deaths in an accident. In the example given by Lui et al. (1988} only accidents with two occupants
where exactly one death occurred were used. The conditional logistic likelihood estimate of 3 is the

maximizer of

H exp ;3".5'; (4)
Y
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where 5, = 5 4.aths i€accident Bz, is the sum of the covariates of the individuals who die in acci-

dent j.
The method of Evans (1985) is not a regression technique. For two levels of a factor of interest.
it compares the relative frequency of deaths of each level to a specified control group in another

seating position in the vehicle.

accidentsay

2.2 Ordinal Models

Of the three methods discussed above only the truacated logistic regression likelibood of equation 3
extends naturally to ordinal data. The arguments that can be advanced for the use of the conditional
logistic regression method in the binary case fail to hold in the ordinal case. A full discussion of the
Truncated Ordinal Regression is given in O'Neill & Barry (1993a) which is attached as Appendix A.

The ordinal response variable is assumed to have £ + | levels and the case k = 1 corresponds to
binary data. An example where £ = 3 would be a four point scale for injury:

[. No ipjury

2. Injury

3. Died after hospitalization
4. Died at scene

The data is said to be group truncated if the respouses for a group are only known if at least one of
the group attained a specified level, j say. In the above example the cutoff might be j = 3 in which
case the injury levels are only recorded if at least one person in the accident dies. The truncated
ordinal regression (TOR) likelihood is the natural generalization of equation 3. The method allows
for different relationships between the covariates to the logistic link given in equation 1.

2.3 Theoretical Relative Merits of the Methods

Since the TLR uses the full information from the sample it can be expected to lead to the most
accurate inference. The following general properties hold.

o TLR will give the best estimates of effects, such as for example seat belt usage or age of the
occupant, followed by CLR and then DPC. TLR. will also give the most powerful hypothesis
tests. This is because TLR uses all the information that is available in the data. CLR can



only use comparisons within a vehicle, For example the fact that a female died in one car
while a male didn't die in exactly the same circumstances in another car does not contribute
any information to the CLR estimate. Also cars in which all occupants die contribute no
information to the CLR estimate. Both of these scenarios would add to the TLR information.
DPC only uses the data which satisfies a condition on a single control variable and so will

normally be less precise.

o More effects can be fitted using TLR. The conditional logistic regression likelihood equation 4
only includes terms which vary within a given accident. For example, for single vehicle acci-
dents, since the speed of the car is constant for all the occupants, its effect on the survival
prospects cannot be estimated using CLR. TLR on the other hand can be used to estimate its
effect. CLR cannot estimate the effect of variables which do not vary within accidents.

o Only TOR can be used to estimate the relative seriousness of crashes for occupants. The
TLR method allows us to estimate the probability that a given type of crash will kill a given
type of accupant. The TOR method enables the estimation of the probabilities of the various
categories of injury,

o Only TLR can be used to estimate the total number of potentially fata] crashes. The TLR
method allows us to estimate the probability that a particular configuration of factors results
in a fatality. By dividing the observed number of ¢rashes of this type by this probability we
obtain an estimate of the total number of potentially fatal crashes of this type. The estimates
can then be summed over the categories of crashes to obtain an estirnate of the total number

of potentially fatal crashes.

e Unlike CLR, TOR can be generalized to different link functions. Various researchers have
found that the logistic link given in equation | does not wark well when dealing with very rare
events. The TOR method allows us to choose the link function which best fits a given data

set,

3 Software

3.1 Technical Issues

3.1.1 Imtroduction

This section describes installation and the technical operation of the software in greater detail. The
techuical detail is included for users who may wish to medify the software for a particular purpose,
or are having installation problems. It is assumed that users wishing to modify the routines will have
a sound knowledge of Splus and C, and will be familiar with the issues involved in fitting truncated
ordinal regressions. The general reader may wish to skip to the installation section.

3.1.2 General description of routiues

The programs are written to take advantage of the Splus enviroment for data analysis with the
efficiency and control of C code. The roles are divided as follows:

The routines use the Splus language to allow the specification of the model and to ensure that the
specification is consistent with the assumptions of the model. Thus it uses the built in functionality
of Splus to construct factors/contrasts and hence the design matrix.



Splus is notoriously poor at perfortning iteration and in freeing memory after function calls.
Hence the calls to C are used when these factors would come into play. These calls are characterised
by the fact that they have been written at the lowest leve] possible, in the sense that Splus performs
as much of the work as is sensible/possible before passing to the C code. The calls to C from Splus

are

o formXblocks: This takes a (model) matrix and the number of levels of the response and returns
a matrix correctly blocked for the proportional odds model. For example if the model matrix

produced by Splus is:
1 2 4
5 8 8

with 3 (as | is redundant) levels of response to be parametrised the function would return (as
1 is redundant)

-1 3

1 01 2 3 4
o 1 L 2 3 4
L &0 5 6 7 38
01 5 6 7 8

o formZ: This takes a vector of the responses (assumes integer levels (ie 1,2,3 .. k)} and returns
the response vector needed by the fitting func. For example if the possible response levels are
1-3 then if :

response :{ 1 3 2 j

returns
:nmt:[l 1 ¢ 0 1 0]

o fitfune: This performs the fisher scaring. [t takes the design matrix, the response vec, the
vector of groups, the truncation point and an initial estiate of the parameters, and iterates
until convergence.

The result is that the C routines are effectively support routines to Splus, and should not normally
be modified. As an example say there is a problem in the convergence of a model that is being fitted.
This problem should not lie in the C code as the function it performs is fixed, in that all matrices
have been specified. If they are passed correctly everything should work. The problem must lie
with the data that is being passed to the C functions. For instance the fitting func assumes that
the design matrix is full rank. If it is not, the problem is arising on the Splus side and the Splus
function should be modified to ensure that the matrix is full rank.

3.1.3 Routines

The Splus code has been documented to some extent and should be faily self explanatory. Copies
of the help files for {runc.fit and fruncim.object are included Appendix C. The Splus functions that

are needed are:

¢ init.beta: This performs an untruncated logistic regression to find initial values for the fisher
scoring algorithm.



® no.groups: returns the number of unique elements in a vector.

& setup.prop: construct model matrix and response vector for proportional odds model and calls
init.beta.

o trunc.fit: Performs the actual fitting.

The following routines use some of the inheritance mechanisms in Splus. This implementation
is fairly basic, but is set up to allow the use of the summary() function in Splus. The setup is as
follows:

L. trunc.fit{) produces an object of class “trunclm”.

2. print.summary.truncim and summary. frunclm are implemented along the lines of those for Im
to produce similar output.

These functions can be found as source in GTLRfuncs.s,
The C code is in 5 files:

& matmult.c : defines all the matrix routines.

o matmult.h : header file for the (C routines.

» fitfunc.c : defines all functions used in the fitting.

o xblock.c : defines functions to produce the design matrix and response vector,
o minv.f: invert matrix. (note this is a Fortran routine).

There is also a makefile listing the dependencies. The only file that should be modified is
matmult.h. In this file the macro variable mazgroups can be modified to satisfy whatever space
requirements you may have. For instance lowering maxgroups lowers the base (ie fixed) amount of
space the routines take up. Note that the routines also use dynamic allocation and are not pratected
against out of memory signals from allocation requests.

The help functions are in the files:

& init.beta.d

& no.groups.d

» setup.prop.d

& trunc.fit.d

o trunclm.object.d

These files are copied to the . Help sub-directory that is being used, without the .d extension.



3.2 Installation
Installing the softwate involves three steps,

1. Compiling the source into the object file fittruncim.o and placing it in the appropriate directory.
This directory is either the directory that Splus is run from{which from here will be referred
te as “Sdir”} or an appropriate library.

2. Sourcing the Splus functions (using the Splus function sourcef) to the .Data sub directory of
“SDir”/.Dala , or to a directory that is attached (using the Splus command attach()).

3. Copying the help files (without the .d postfix) to the .Help sub directory of whichever directory
the Splus functions were placed in.

Installation should proceed as follows:

e nix
The file fruncpact.-tar is a tar file that has two components,

1. truncfil.tar contains the code/Tunctions.

2. truncfil.install contains a simple shell script to install functions into a specified directory,
that ts, the directory that Splus will run from.

[nstall as follows.

1. Decide on the directory that Splus is to be run {rem, call it “Sdir”. The directories
“Sdir/. Data” and “Sdir/. Data/ Help” MUST exist.

2. Uapack truncpack.tar by executing
{ar zf truncpack. tar
this should extract the two files described above
3. Run the C script by typing
truncfif.install “Sdir”
where Sdir is defined as in (1).

This should compile the code and copy the help and Splus functions to the appropriate direc-
tories. If you wish a different setup simply modify {runcfil.install.

As an example, say you wish to install the software in the directory
/home/stati/barstat

and you are presently in
Shome/stat]/barstat/treport /lestarea

all you need to do is move fruncpack.iar to your present directory and execute
{ar zf (runcpack.far

truncfil.install fhome/stalf /barstat



This will install it provided fhome/statl/barstat/ Data and /home/stat! /barsiat/. Data/ Help
exist.

The other option is to install the code in a Splus library, “Slib”, say. This is more complicated.
To do this use

truncfil.install “Shb”

You will then have to modify trunc.fit{) or the function .First.lib(} to ensure that the object
file fittrunclm.o is dynamically loaded. See Splus help for details on dynamically loading from
libraries.

When you run Splus you may need to run the function help findsum(“ Data”) to use the help
facility.

o Other systems
For other systems the files are packaged individually, and ALL functions tncluded as text files

You will need to:

1. Produce fitirunclm.e. This will be compiler dependent, but will consist of compiling
each of the source files to produce olject files and then linking these together. See the
documentation for your machine for details.

2. Capy the help files listed above to the “SDir”/ Data/ Help directory, dropping the d
postfix. See the Splus function prompi().

3. Start Splus and use the function “source()” to parse the Splus functions from GTLR-
funcs.S into the working directory.

The makefile used for the compilation and the truncfit.instail script are printed in the appen-
dices. These should give a general idea of what goes on, and how to extract files independently.

3.3 Software features

During the testing of the software the major problem that was confronted was the situation where
the data is sparse and as a result the model is not well specified. In this case the Fisher scoring
algorithm for the parameters will not converge (aithough the fitted values for the probabilities will).
This can be diagnosed by examining the path of the log likelihood as output by frunc.fif{). If these
estimates fail to converge then certain parameters are tending to infinity. The particular parameters
that are extreme provide information regarding the terms that are leading to the problem.

The problem occurs in this binomial regression context usually due to the sparseness of data for
certain combinations of levels of factors. For example if there is only one observation at a particular
level of a factor, then the parameter estimate for this level will go to + or - infinity, so that the data
fits the model exactly. Note that the specification of the logistic model causes the problem to cease
as the size of the data set grows

One way around this is to choose levels of factors such that it does not happen. The problem
with this is that the recursive nature of this approach is incompatible with the assumptions needed
for the asymptotic behavicur of the MLE estirnators. Hence any inference that is made must be
interpreted carefully.

Another problem that may arise is that Splus may produce design matrices that are not of full
rank. In this case certain parameters are not identifiable, This problem can arise for various reasons,
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but the most usual is from using crossed/nested terms. In this case if some levels of a factor do not
occur at levels of another factor Splus wil] still incorporate this nested parameter into the model
matrix. If this problem arises it is recornmended to rewrite the function to modify (ie remove non-
identifiable columns) the design matrix before it is passed to the C routines. The use of browser()
and solve(i{destgn.mal) % * % design.mal) to detect singularities is recommended.

If the routine continually crashes on large datasets it could be a problem with memory. The file
malmull. k contains the macro variable mazgroups which should be modified and the the routines

re-compiled.

4 Examples

4.1 Introduction

In this section the use of the software is demonstrated. Reference should be made to the help files
and technical documentation included in the appendices. For pedagogical reasons, the examples
are very detatled. There are of course alternative (and more preferable) ways to perform the data
manipulations. All references to Splus functions and output is in itafics, The data set used in the
examples is the same as in the online help for the function trurc. fit(). For information on the fitting
of statistical models in Splus see Chambers & Hastie (1992).

4.2 Example 1
Counsider the following data:

>response [I]Jaccabaababrabebaaboed

> bell
[fJrotre100100111101000
> age

(1234567891 2345678912
> group

1111111 17122822222222
>

where all data is either simpie numeric or simple character

We may consider this to be a sample of fatal accidents where bell is an indicator for whether the
person was wearing a seatbelt {1=ves, 0=no) and age is their age. The vector group determines to
which accident the individual belongs. The response variable is coded as:

1. 2 = uninjured
2. b = injured
3. ¢ = killed

Assume that the data was observed given that at least one individual died in the accident. If we
wish to fit the truncated model to this data we must manipulate it into the correct Splus formats for
trunc.fit{). Suppose that for the above two accidents we only want to model the probability of being
killed in the accident. Then the model is a truncated logistic regression model, and by definition

11



the response is either killed, or not killed. Hence we must modify the vector response by assigning
all observations with a response different to killed to another factor as follows:

> responsel < — response

> inder < — respanseS!="“c”

> responselfindez] < — “nof killed”

> response?

[1] “not killed” “c” “c” “nol killed” “not killed”

[6] “not killed” “not killed” “nof killed” “not killed” “not killed”
[11] “c™ “not klled” “not killed” “c” “not killed”

[16] “not killed™ “nol killed” “notl killed” “c” *not killed”

To logically fit a truncated ordinal model the response must be ordered. We thus use

> response? < — ordered(response? levels=c( “not killed”, “c"}}
> responsel?
1] not killed ¢ ¢ not killed not killed not killed
[7] not killed not killed not killed not killed ¢ not killed
[13] not killed ¢ not killed not killed not killed not killed
[19] ¢ not kilied
not killed < ¢
To generate the ordered factor. If belt is an indicator variable for the use of a seat belt we

obviously want to fit it as a factor. Il we also wish to use treatment contrasts in the construction of
the design matrix we can do this as follows:

> beltf < — faclor(belt)
> class{beltf)
[1] “factor”
> beltf < — C{belif treatment)
For information on the use of factors and contrasts see the online help or Chambers & Hastie (1592).
We are now in a position to fit the model. Examining the documentation we see that the first

argument to trunc.fif{) is a formula. In this example we are interested in modelling response? in
terms of beltf and age. We express this as

response? ~belif+age

The second argument is a data frame. As we do not have one at this point we must construct
ii. The function trunc.fii() expects that all variables in the model formula will be on this frame, as
well as the variable identifying which group it belongs to, We thus use

> examl.frame < — data frame(response? bellf, age.group)

12



The next argument is the tolerance. We will, as an example, set the tolerance to .00C001. By
examining the convergence of the loglikelihood (output by frunc.fit()} we can asses if this is sufficient,
The next argument is the number of iterations that we will run for before terminating. If the model
is well specified convergence is rapid (in our experience in 4-8 iterations). We will set this to 20.
The next argument is groupvar. In this case the name of the group variable is in fact “group”, and
so we use this as the argument. The next variable is trune, the point at which the the distribution
is truncated. In this case the data were only observed given that some one died in the accident.
Being killed is coded as “c” in the response vector, or is the second level of the response. Thus the
truncation point is level 1, or “not killed”. Examining the help documentation we can use either

trunc=1 or trunc="“not killed”.
The last parameter is ,the initial value of beta. This parameter is optional so we will allow the

routine to choose its own starting value, We thus use
> exam.fit] < — trunc.fit{ formula = response? ~ beltf + age , data = erami frame
lolerance = . 000001 , iter=20 , groupvar = “group”, trunc = “noi killed”)
-8.890799
-8.862969
-8.882067
-8.882867

Note the convergence of the log likelihood. Examining the fitted model:

> ezam.fill

Scall:

trunc.fit(formula = response? bellf + age, data = examl frame, iolerance =
Te-06, iter = 20, groupvar = *group”, {runc = “no! killed”)

Bfitted: [1] 0.4689223 0.5189034 0.7008293 0.7911075 0.8213461 0.907688 0.922616
{8] 0.9504274 0.89761095 0.5961386 0.5153058 0.6985921 §.789545 0.858243
[15] 0.9069980 0.9400892 0.9618748 0.9683336 0.3916230 0.515305
Svariance: [ 1] [ 2] (3]

[1,] 1.3165525 0.9729987 0.22590995

2] 0.3729987 1.4752876 -0.10944208

[3.] 0.2253088 -0.1094421 0.08691102

$z: [1] [,2] ]3]

[1]1-1-1
[2]10-2
[3]1-1-3
(J1-1-4
[5]10-5
/6] 1-1-6
[7]10-7
[8]10-8
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9] 1-1-9
[16]10-1
(11,]1¢0-2
[12)1-1-3
[13,] 1 -1 -4
[14]1-1-5
f15]1-1-6
[16] 1 -1 -7
[17,]1-1-8
[18,]10-9
[19)10-1

[20,) 1 0-2
Scoefficients:
model coeff bellf age
-0.7919592 -0.281752 -0.4737266
$z:
[tjiogrrririrreridirilat
$linear.pred: [, 1]
[1,]-0.03648064
2] 0.15543588
[3.] 0.91097248
[4.] 1.38469904
[5,] 1.57667357
[6,] 233215218
(7] 252412669
[8,] 2.99785585
[9,] 3.75385184
{10.] -0.31823367
[11,] 0.15549389
[12,] 0.91097248
[13,] 1.38469304
[14,] 1.85842560
[15,] 233215216
[16,] 2.80587872
[17.] 3.27960528
[18,] 8.47157981



[19,] -0.81823267

[20,] 0.15549389

$log.lik:

[1] -8.882967

Siteraiions:
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$tolerance:

[1) 8.10811e-07

$frame: response? belif age group
I “nof killed™ “1™ 17 “17

K(‘” “0” “:3]'.1 HIJ’

o ke

R R L

“not killed™ “1” “4" “I"
“nol killed” “07 “57 “1”
“not killed” “1” “67 “1”
“nol killed” “0” “7" *1”
“nol killed” “0” “8" “I1”
“not killed” <1 “9” “1”
I0 “net killed” “0" “1" “1"
11 “e” “gn 2gn «a2r

12 “nol killed” “17 “37 “2”
13 “nof kiiled” *I7 447 407
1§ “c” “I7 %57 “on

15 “not killed” “17 “§7 “27
16 “not killed” “1” “7" “2”
17 “not killed” “17 “g7 “a”
18 “not killed” “p7 “g" “2”
1§ “cm “pm “f» “a”

20 “not killed” “07 “8” “2”
atir(, “class”):

[1] “truncim”

L=TR= TS N L T

more convenient summary is found by

> summary(ezam. fitl)
Call: trunc.fit(formula = response? ~ bellf + age, data = ezam/ frame, tolerance
= Ie-08, iter = 20, groupvar = “group”, {runc = “nol killed”)

Residuals:

15



Min 1@ Median 3 Maz
-0.8582 -0.07999 0.06865 0.2093 1.6039

Coefficients:
Value Std.Error  zvalue Pr(> |z]}
model.coeff —0.7520 1.1474 —0.6902 {1.4901
beltf —0.2818 1.2146 —0.2320 0.8166
age —0.4737 0.2948 —1.6069 0.1081
model.coeff belt f age
Correlation: maodel.coef f 1.0000  0.2676  0.6678
’ beltf 0.2676  1.0000 —0.3056
age 0.6678 —0.3056  1.0000

Log likelihvod:
[1] -8.883

The parameters have there usual logistic regression interpretation as log odds ratios, keeping in mind
the following.

o We are modelling the probability of the response being less than a certain level. [n the logistic
case, if pis the probability of death, we are in fact modelling 1-p.

o The design matrix is constructed based on the negative of the covariate design matrix See
Appendix E.
» The interpretation of parameters telating to factars will depend on the contrasts used.

For this example beltf was incorporated into the model using treatment contrasts. The odds of dying
for an individual at the top level is then
probabilily die given level |

odds for level L of beltf = probability don't die given level |

We are modelling the probability of not dying so
exp(C + .2818)
I+ exp(C + .2818)

Where ' depends on the other factors, and the negative value arises due to the negative value of
the design matrix. Thus

probability don't die af level | =

L
T¥ezp[C+.2818)
erp(C+.2818)
l+erp(C+.2818)

= exp(—C' — 2818)

odds for level | of beltf =

Similarly
odds for level 0 of belif = exp(—(7)
So it follows that
exp(—C — 2818)

odds ratio = ezp(—C) = exp(—0.218)

So
log{odds ratio) = —0.218
ie individuals with bfellf at level | have a lower probability of dying.

16



4.3 Example 2

[n this example we will fit the full ordinal madel to the data from example |. We thus need to
construct a new data frame. Assuming belif still exists and response holds the responses we use
> response < —ordered(response)
> eram?2 frame < —dala frame(response, bellf, age, group)
We can now call the trunc fil{). Assuming the data was only observed if someone died in the group
the truncation point ts “b”, or 2. We thus use
> eram.fit] < —trunc.fit(formula = response bellf + age, data = ezam? frame,
tolerance = le-06, iter = 20, groupvar = “group”, trunc = “4”)
+ -18.357277
-18.002097
-17.99258¢
-17.992529
-17.99252
-17.992528
-17.992528
-17.892528
-17.99252
It has obviously converged with this tolerance. As the complete output would be Jong and messy
we use summary().
> summary(ezam. fit?
Call: trunc fitfformula = response  beltf + age, dala = exam?. frame, tolerance
= Je-06, iter = 20, groupvar = “group”, trunc = ")
Restduals:
Min 1Q Median 3G Maz
-0.8146 -0.3775 0.05862 0.2283 0.6868
Value Std.Error  zvalue Pr( ;|z|)
model.coeff —2.6797 1.1854 —2.2607 0.0238
Coefficients. model.coeff —0.6199 1.0261 —0.6041 0.5458

beltf —1.6803 0.9429 -—1.7821 0.0747
age —0.2737 0.1764 —1.5517 0.1207

Correlation:
model.coeff model.coeff  beltf age
model.coef f 1.0000 0.7898 (.5132 0.7482
meodel.coef f 0.7898 1.0000 0.3758 0.6872
beltf 0.5132 {.3758 10000 0.0182
age 0.7482 0.6872 0.0182 1.0000
Log likelthood:
(1] -17.99

Nate that there are now two intercepts, corresponding to the three levels of the factor.
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5

Summary

The aim of the seeding grant was to provide a computer implementation of the new statistical
pracedure Truncated Ordinal Regression. This repart has described its successful implementation
in the Splus package using a suite of C routines. The software should make the technique generally
available to road traffic researchers who have access to the package Splus, either on UNIX or in
Windows. The advantages of combining Splus and C routines are:

The Splus model language is used for the design aspects of the regresston problem.
The Splus generic functions can be used to extend the functions and make them user friendly.
The computationally intensive aspects of the procedure can be relegated to C.

Because of the division. the resulting software is both very efficient and very rich in the types
of model structures that can be fitted.

The speed of the software is such that it can be used as a primitive in such procedures as
stepwise model selection, bootstrap and non-parametric modelling

Now that a package is available to perform TOR, it can be applied to a variety of road traffic accident
databases by interested researchers. [t will improve the accuracy of the estimates and conclusions

and allow more general questions to be posed,
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Group Truncated Ordinal Regression
by
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and
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Abstract

O'Neill (1992) proposed truncated logistic regression as an alternative to conditional
logistic regression (Breslow and Day, 1980) which has previously been used for the analysis
of truncated binary data (Lui, Rhodes and Pollock, 1988). This paper extends truncated
logistic regression to truncated ordinal regression. This is important since conditional logistic

regression does not extend to ordinal data. *
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1. Introduction
This paper considers the modelling of ordinal data from groups subject to truncation.
As an example consider an ordinal scale for injuries sustained in a motor vehicle accident:
1 — no injury
2 - injury
3 — died subsequent to accident
4 — died immediately,
and suppose that data is only available on accidents involving a fatality. Then the ordinal
responses for all individuals in a given accident are observed if and o;nly if the maximum
response over the group is at least 3. 'We call such data, group truncated ordinal data. For
binary data only group truncation is meaningful since ordinary truncation would imply
degenerate data. O'Neill & Barry(1992) recently proposed truncated logistic regression as an
alternative to conditional logistic regression which has previously been used for truncated
binary data (Lui er al., 1988). The aim of this paper is to extend the methods of O'Neill (1992)
to ordinal data. This is important since the conditional logistic model does not extend to either
different link functions or true ordinal data.
In section 2 conditional logistic regression is briefly reviewed and it is shown that it
depends crucially on the assumption of a logistic link and that it does not extend to ordinal data.

In section 3 the estimates for group truncated ordinal regression are derived.



2. Conditional Logistic Regression

In this section we review conditional logistic regression and its possible extension to
other link functions and ordinal regression. In conditional binary regression, the conditioning
event is the number of responses greater than 1 where 1 indicates a null response and 2 a
positive response. In general, for ordinal data with ordered responses 1,...,k+1 and a group
of size n, the conditioning event would be the number of responses C = ¢ which are greater

than £ where £ < k. Now if R denotes the set of individuals in the group, then

P(C=c)= Z{Hn o= v} G-)

Je:

where R _, is the set of all subsets of R of size n- ¢ and 7,,...¥, is the set of cumulative

A=L

probabilities of categories 1,...,k for individual i. ie y, is the probability that individual I's
response is less than or equal to category J.
Following McCullagh and Nelder (1989) we consider link functions of the form

e{7,)=7,=8 - Bx.

where x; is the covariate measured on individual Z. Then if g has inverse 4,

PC=c)= 3 {H h(n,) 7 (1-A{ m))}l—[ (1-4(n,,)

DeX,_, x

and if y is the set of observed levels,

I;.[{h(nf-r") h h(n,,,;_1)}
-4} 3 (T ) - |

® Jed,

(2.1)

Ply/C=c)=



Now if k=1 and g is the logistic link, then we have conditional logistic regression and

.exp((rz-—c)@l -5 Exl)
Z exp((n-c)&l—ﬂ] Zx,]
3

AR,

P(y/C=c)=

(2.2)

= exp[—ﬁ,g;x,}/ > exp[-ﬁl zs“x]

JeXo,

Where 3 __ = {i ¥y < f} .the set of reponses less than or equal to £.
The fact that the group level effect 8, does not appear in (2.2) is the primary reason for the

popularity of conditional logistic regression. However the removal of the group level effect

only occurs for the logistic link and for k= 1. It is a simple matter to check that the 8's do not
cancel from (2.1) for £ > 1, even for the logistic link. To check that cancellation implies the
logistic link for k = 1, take f = h/(1-h). Then cancellation must apply for groups of size 2

where the individual with response 1 hasx=0. So
f0)1{£(6)+ £(8+n)}=m(,)
where m() is some function and 1, = B,x for the individual dead, or
f(6+y)=f(8)m(y)
where mj()} is a function of m(). Taking 8 =0, we obtain

m(y)=f(y)/ £(0)and £(6)f(y)/ £(0)



This has solution f(n)=exp(a+bn) for a and b which implies that the link function is
logistic.

In generalized linear modelling, we are used to the inference being fairly robust to the
link function, so it is a matter of some concern that the inclusion of group level effects in the
conditional likelihood is determined by whether or not the logistic link function is assumed.
Also, even if the logistic link is assumed, the property of no group level effects in the
conditional likelihood is not preserved when we split categories.

Because of these problems with extending conditional logistic regression to ordinal
responses and other link functions, it is necessary to consider the extension of truncated

logistic regression to group truncated ordinal data.

3. Group Truncated Ordinal Regression
Since the likelihood equations for group truncated ordinal regression are very similar to
those for conventional ordinal regression, we begin with a brief summary of the standard

results presented in McCullagh and Nelder (1989). We suppose that for each of N distinct
experimental situations, there are cumulative frequencies z;y,...,2;; for the m; individuals

observed. So z;; is the number of individuals with response at most j and E(z;;) =7,

Following McCullagh and Nelder (1989}, we consider link functions of the form
g(?q): nu = BJ - ﬁ;xj’

where x; is the p x 1 vector of covarjates for observation i.

Let

D.= diag[%) = diag(] /g’(y,).))

i

where diag(a, } refers to a k x k diagonal matrix with jth diagonal element a,.

= diag()’.—j (1- 74)) :



for the logistic link and
ro=m(7,(1- Yo )b i<s

where T, is symmetric. Then I, has a ri—diagonal inverse with entnes

i Yijr — Yij .
'Y= . E , J=1k
(YI,J'FI - YJJ)(YU- - }IE,j-l)
rij'jﬂ z_(Tl.fH —yj.j)—lf jzl!-“rk-l'

where I'** refers to the element in row @, and column 4, of T';.

Then for the sample of size N, let
D = Bdiag(D,), I = Bdiag(T",)
M = diag{m,) ® I, 2 =(2,.2y)

Y= (Yo V) X, =(l.-ex),

Where Bdiag(a, ) is a block diagonal matrix, with ith block a,, 7, is the k x k identity
matrix, and e, is a k x 1 column vector of I's,

and

X =(X{ ,..X4 ) 3.1)

If

B'=(8,...6,.B/ )



then the score functions are
Dt=MI"(z—-My)
and
Dyl = X'DMT " (z~ My)

where D, is the vector differential operator Dy f = [c?f/ 06, df / 38, Jof 1 aﬁp] . The

Fisher information is

3(B8)=X'DMT ™ MDX.

So the Fisher scoring method is
W) (B~ o) = X WMDY (2 147
where
W =DMT'MD
orif 1= X, itisa weighted linear regression of
fi+(MD) "' (z— My) on X with weights W.
Subsequently in this discussion we will assume that M =/, that is we do not aggregate over

individuals. Consider for the moment a single group subject to truncation and for clarity suppress

the i subscript. Then the likelihood for the observed group is



1 (g.x)= 246, ) (1T |- 6. 0)" (B 3)

x

where L(3,X) is the unconditional likelihood and

P(B.X)=1-1]r.=1-0(B.X)
x

is the probaility of observing the group. Now
Dy log P(B.X )=~ [Dﬁl;[ y,J/ P(B,X)

=-{0(B.X)/ P(B,X)} gD,m 1Y

=-{0(8.x)/ P(8.X)} gg—?Dﬁm 'Y

=-{0(B.x)! P(8,X)}X'DE,y"
where Ep=I®E,, where E,, 1Is the k x k matrix with one in the £,2 position and zeros
elsewhere and I has dimension the number in the group. Alsoy~! is the vector of inverses of the

elements of ¥. So the score function for the group is

iy Q(B,X) .
XD{I‘ (z y)+———P(ﬁ'X)E,y }

Q(B8,X)
P(B.X)

= X’DF“{Z -+ FETy"}

But the jth element of the vector



LV +Q(ﬁ,X)ﬁjS£
{z_y+Q(ﬁ,X)rE ,l}z TPBX) P(BX)y,
PBX) T eBX) o,
' P(B.X) P(B.X)

Now forj< 2
E(zj I observcd) = Pr(y < j, observed) / Pr(observed)

gB.X) 7,

=y (1-Q(B.X)/ v\ P(B,X)=v I P(B.X)-
v(1-QB.X) 17} P(B.X) =7,/ P(B.X) =L g5s e

and forj> £
E(zj I observed) = Pr(y> j, observed)/ Pr(observed)
=1-Pr{y> j)/ Pr{observed)
=1-(1-y,)/P(B.X)

=y, P(B.X)-Q(B.X)I P(B.X).
So the score statistic for [ is
Up(B,X)=Ur =XDI (2 - ;) (3.2)

where (L1 is the mean of an observed z given that it is subject to truncation. Now if we use

Fisher scoring to estimate J3, then we require

0=~ g



But

3(8) = &[ulpuip) |

(3.3)
= X'Drv,I'DX

where V,(B,X)=V, = Var(z| observed). The diagonal blocks of this variance matrix contain

the covariance of the response vector within an individuals response. These are analagous to the

" matrix in the non-truncated case. Now for individual i ,since for j < j*

E(z}. z, ! obscrved) = E(zJ. l observed),

it follows that the j j* entry of the diagonal blocks of V-, for j< " is
(1= bzy)

In a departure from the non-truncated model, the truncation causes the responses between

individuals in a group to be correlated. As defined previously let z;}, ..,zjx be the response for
individual i in the group. Thus for two individuals, i and j , calculations analagous to those

above lead to:



fora<¥é, b<{

YooY Q(BX)
P(B.X) P(B.X)V.,.7

E(Z:.az,,b /Observed) _

fora>é, b>{

Ya¥is _ Q(B.X)

E(z‘..azj.b/observed) = P(3.X) PB.X)

andfora<é, b>¢

ViaVie _Yia Q(8.X)

E(z"dzj_b/observed)= P(B.X) v, P(B.X)

It is thus straight forward to complete the off diagonal blocks of VT given that the conditional

expectations are known.

Hence for N truncated groups using the extended definitions of X, D, and z in (3.1) and

letting
1o =ty e tin')
where
#J}T = yy '{P - (Q ” P) ’}/(,}A.[ / YJ',Z
£ j>{
where j A £=
J  isf
and

V; = Bdiag(V ;)



we have that the general score statistic and Fisher information are also given by (3.2) and (3.3).

So the Fisher scoring algorithm for the estimation of B is defined by the equation

(X'DT 'V, DX ) Bugw ~ Bovo )= XDT ™ (Z — 27 ). (3.4)

The behaviour of the estimate will depend crucially on the condition number of X'DI'"'V,T'DX.

In the next section the impact of this on the efficiency is discussed.
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Abstract

Truncated binary data occurs when a group of individuals, who each have a binary response,
are observed only if at least one of the individuals has a positive response. This paper considers the
regression modelling of such data when covariates are also observed and quantifies the loss of
efficiency that can arise from the truncation. Although the efﬁciéncy loss compared to untruncated
data can be substantial, viable estimation is still possible with truncated binary data. An alternative
procedure called conditional logistic regression (Breslow and Day, 1980), which conditions on the
actual number of deaths, has been previously used for this type of data. Truncated logistic regression

is computationally simpler than conditional logistic for groups of size greater than two and is shown

to be considerably more efficient generally.*
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Introduction

This paper was motivated by a call for tenders for the analysis of the 1988 Fatal File. This is a
file compiled by the Federal Department of Transport and Communications in Australia and consists
of records of ail road traffic accidents involving fatalities in Australia in 1988. The aim of the
proposed analysis was to examine the effects of covariates such as for example seat position, seat belt
usage, size of vehicle, on the probability of death in a road traffic accident. One obvious problem
with this data set is that we only see the accidents involving fatalities. So we only observe the binary
variables for death for individuals involved in an accident if at least one of the binary variables is 1.
This truncation means that standard logistic regression is no longer appropriate and different methods
must be used. The truncated logistic likelihood considered in this paper allows for the correlation
induced between individuals involved in a given crash.

Conditional logistic regression has been previously used in this area by Lui er. af (1988) to
analyse data from the Fatal Accident Reporting System. They restricted their analysis to two vehicle
accidents where each vehicle had a single occupant and exactly one fatality resulted. It is obviously
possible to generalise their approach to multi-occupant, multi-fatality crashes, but the simple nature of
the conditional likelihood is not preserved and computational difficulties result. Some approximate
methods of maximising the resulting conditional likelihood are discussed in Thompson (1991). The
truncated logistic likelihood is no more complex for multi-occupant, multi-fatality crashes. Further,
since it is only conditioning 'on at least one death, it will clearly be more efficient.

The aim of the present paper is to show that truncated binary regression is feasible
computationally and to show that the truncated data contains a large component of the total
information compared to untruncated data. This paper also evaluates the efficiency of conditional to
truncated logistic regression for several examples and shows that the efficiency losses using
conditional logistic regression can be substantial. Since the truncated likelihood is also
computationally simpler, it should ofien be preferred to conditional logistic regression.

There is a large literature on truncation models where the response y; for an individual is only
observed if y; 2 ¢, where ¢, is some known constant. Some recent examples are Lagakos, Barraj
and De Grutta (1988) who consider truncation models for AIDS survival data and Hodoshima (1988)
who considered the effect of truncation on the identifiability of regression coefficients. The present
example is believed to be non standard since rather than an individual being observed if and only if its

response achieves a certain level, a group or cluster is observed if and only if the maximal response



2
over the group achieves a specified level. Hence the truncation here is novel and standard truncation

likelihood formulae do not apply. If the only covariate indicates a dichotomous treatment, then the
responses of the group form a 2 x 2 contingency table where the total dead is conditioned to be at
least one. Various examples of estimation for constrained contingency tables using quasi likelihood
have been presented by McCullagh and Nelder (1989). The present situation however does not
appear to have been considered.

Although the preceding discussion has been couched in terms of road traffic data, it is clear that
there will be other areas of application. The likelihood proposed in this paper will often be an
alternative to those proposed in proband studies (Thompson, 1986) if registered clusters are sampled
on an equally likely basis. A possible economic application might be Iooking at employment in

families where at least one member is registered unemployed.

In section 2, maximum likelihood estimation of truncated logistic regression is considered.
Section 3 dedves the efficiency losses that are caused by the truncation and conditioning. Section 4
evaluates the efficiency losses for some examples. Section 5 presents an analysis of some road safety

data.

2. The Truncated Binary Regression Likelihood

In the following let

yi = the response for the ith individual in the cluster.
xj = the p x 1 vector of covariates specific to individual 1.
X = the n x p matrix with xj in the { th row.

R, = the set of individuals in the group.

B = the p x 1 vector of regression parameters.

Consider a group of size n subject to truncation. We suppose that a logistic model holds for the

individual binary responses,

Pr(yj = 1) = exp(Bxi)/ {1 +exp (B'xD}
= p(B, xi)
=1-q(B, xi).



3

Note that the covariates X may include group level effects as well as individual specific covariates.
For example in road traffic applications X would include information on the vehicle and the severity

of the crash. Then the log likelihood for a truncated group becomes

> | y; log p(B. x) + (1 - y;) log q (B, x;) } - tog P(B, X)
(58

where
1 - P(B! x) = Q(B’ X) =I-[ Q(B» XJ) ]
(4N
and 3 = Y denotes summation over the individuals in the group.
R jeR
Now since

d log P(B, X) /9B = Q(B, X/ P(B, X) X p(b. x;) x;.,
[48

the score function for a truncated group is

up =3 { y; - p(B. xp) }xj -QBR. X/ PB.X) T p(B. x;) x;
R [4
=2 Xij'u(ﬁs X) (2.1)
R

where for truncated binary regression

pB.X) =E| T x;y; IR X yj2 1
AN [

=PB.X)" X p(B. X)) x;
R

The sample information matrix from the group is thus

IR, X) = ou'(B, X) /B



4
= Z 2(B. x) 4B )/ P(B. X0xys - Q(B. XOu(B. X0u. X",

= 3 p(B, x) / P(B, X)x;x;" + 3, p(B. x;) p(B, x;) / P(B. X)xx;’
(4R i*]

- u(B, Xu@@. Xy’

=Var| ¥ xjyjl'ﬂl;Z yj2 1
" R

= V(f, X).
So
I(B. X) = V(B. X). (2.2)
Hence letting
r=2 %Yj-

(AR

then for a sample of N truncated groups, the score function is

N
> {r-nd xp}

and the sample information matrix is

N
3 VP.X).

Thus a simple Newton-Rhapson scheme can be used to find the maximum likelihood estimate E via

~ ~ N -~ - N ~ -
B=Be1+ {3 VB p) ’,21 {r- nBer xp}
1= 1=

and the estimated covariance of E is given by

N ~ -
(z vi. %}
i=



Inference can be performed using the asymptotic normality of the maximum likelihood estimators. In

addition model testing can be done in the usual way using differences of deviances.
As a very simple case consider the following example:

Example 2.1: Psychiatric data
Cox and Snell (1989, p. 53) analyse the following paired comparison data of Maxwell (1961, p. 28)

on the effect of a treatment on twenty three matched pairs of depressed patients.

Table 3.1 Recovery of psychiatric patients

Response:
Depersonalised Not Depersonalised Number of Pairs
0 0 2
1 0 2
0 1 5
1 ! ' 14

For illustration purposes only, we consider truncating this data by discarding pairs where
neither patient responded. When a two group model is fitted to the full data we obtain estimated

logits of the probabilities for the two groups of .827 and 1.558 with an estimated variance matrix of

('203 .30? -

When the two group model is fitted to the truncated data the estimated logits are 1.030 and 1.950

with an estimated variance matrix of

271 .071 )
071 571 7

It is worth emphasising that for the truncated data, the number of truncated groups is not known.

The estimated probability from the truncated fit of a group being observed is .967 which can be
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compared to an estimate of .947 from the full data set and an observed frequency of 21/23 = 913

of non-truncated pairs. In the next section, we consider the efficiency loss which arises from the

truncation.

3. Efficiency of Truncated Logistic Regression

To compare the efficiency of the truncated model to the conditional model we will assume that the

logistic model
Pr(yi = 1) =exp(B'xi) / {1 +exp (§xi) ]

holds and that the x;s are known for each individual. This assumption is not restrictive. For
example, in the case of road safety data, logistic regression would be a logical initial analysis
technique. It is only the truncation of the responses that precludes its use. What this is effectively

saying is that the probability structure induced by the logistic model is appropriate, but that the

sampling scheme is causing complications.

In the truncated case, conditional logistic regression is used to avoid the difficulties introduced by the
truncation. This is different to its use in, for example, matched case/control studies where its purpose
is to remove the effect of group level covariates. Of course, the use of conditional logistic regression
with truncated data will have the effect of removing the group level effects, but if these effects can be

adequately modelled by the logistic model then the technique will be less efficient. In this section this

efficiency loss is quantified.

In the following the efficiency will be compared on a prospective basis. This is done so that the
methods are compared with respect to a common sample space. The underlying sample space is
based on grouped, but not truncated data. The terrn prospective relates to the expected information
provided by a group drawn from this sample space. For example, if the group contains no deaths it

provides no information to the truncated likelihood.
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If the group of individuals is not truncated, then the sample information is equal to the Fisher

information and is

IB.X) = T p(B.x)a Bx) X%/
®

while the Fisher information from a (possibly unobserved) group subject to truncation is

91(B, X) = P(B, X) {z p(B.x;)q (B.x;) / P(B.X) x;x;" - Q(B.X) u(B.X) u(ﬁ.xr}
R

=94(B, X} - PR, X0Q(B.X) u(B.X) p(B.X)" .

So the information loss by truncation is
9(B. X) - 97(B. X) = P(B. XHQ(B.X) p(B.X) n(B.X)" .

Next consider the information loss due to conditioning. Consider the group W of n

individuals for which x%; = (u*, v/} } where u’ is constant over the group and only v; vares. If m

deaths are observed, the conditional logistic likelihood is

exp(By’ S) o

z exP(Bz’ Sz ,2)
Zeﬂm

where
ﬁ’ = (Blf, Bz' ),
such that
X’iB= 11’[.))1 +V'i Bz,
and S= Y OX; S2 = T v

observed deaths observed deatbs



and

Sg - z X, Sya= ) Vi
Z subset T of ® " subset Z of ’ﬂ.ml

and R is the set of subsets of W, of size m. The likelihood (3.1) is identical to the Cox

Proportional Hazards Likelihood (Cox 1972, 1975, Efron 1977). Then the sample information for

estimating [}, in the conditional logistic likelihood is ¥V ( By ,X), the variance of S, given the
probability distribution (3.1) over ®,. Hence since by assumption u does not vary over ®,, the

sample information for estimating $ is V(P X),

ValBX0=( 0 vy By )

the variance of S given the probability distribution (3.1). So, letting 9.(X) = 9 (B, X) denote the

Fisher information matrix for P from the conditional logistic likelihood, we have
4(X) 0 0
=0 9000

where
n-1 n
Ic2xX) = I PuB XV 0By X0 = % Pr(B. X)Vin (B2 X0,
m= m=

where P_ (B, X) is the probability that m deaths are observed in the group. 9 5»( X) is thus the

expected, with respect to the distribution of M, information from the group.
Let M denote the actual number of deaths in the group and
I = Ivim=n B X,

the Fisher information in m deaths conditional on there being at least one death. This is the

information in the conditional density of MIM 21,

Ppnis (B X) =PrM=m M= 1)



% exp(p’ Sy)

ZEﬁ.m

{1t +expBxp) -1
[N

Hence the expected information from the ﬂM,m(X) component is
n
MO0 = 3 PrB Xy n(X)

Hence if we let F(X) describe the expected distibution of X where X can be chosen either

stochastically or deterministically, then for each type of information 4, 91, 9~ and 9, it follows

that

4. = [ 4.(X)dF(X)

and since

Pr(y1.y2..¥a M2 1) = Pr(yry2....ysl M) Pr(M IM > 1)

It follows that

and we have that

dr=90 + Iy

We will now consider measures of relative efficiency. With a scalar parameter the choice of measure

of efficiency is straight forward. With vector parameters the choice becomes less clear,
We will use as our measure of efficiency, when comparing method A to the less efficient method B,

Efficiency loss=p ltdat {9a-95}.
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where 9 and dp are the information in the group using method A and B respectively and it is

assumed that 4 A'IQB is positive semi-definite.

This has the obvious property that if 94 = 95 the efficiency loss is zero, and if 9y is a matrix of

zeroes the efficiency loss is one. Itis also invariant under transformations of the parameters. It can

be viewed as the approximate average efficiency loss for the orthogonal parameterisation B* =

| Am(ﬁ)ﬁ. This parameterisation will be orthogonal for method A, but is not necessarily orthogonal

for method B.
With this definition the efficiency loss by truncation is
ET=pluwe! {9-91}.

As an overall measure of the efficiency of conditional compared to truncated estimation of  we will

use
EC = p'1 trﬂ']‘_l {S]T- ﬂc} )

However we note that in the case when u never varies within ®,, and thus the information for the

corresponding parameters in the conditional likelihood is zero,
EC<p,/p

where v; has length p,. The efficiency of conditional to truncated estimation of B, is
EC,=p, tr 9722 {9122 922},

i.e. the efficiency is only compared over the parameters that can be estimated by the two methods.

In section 4 we evaluate these efficiency measures for two examples.
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4. Efficiency examples
Example 4.1 : Two group problem.

We consider the simplest possible regression where the covariate, x, is an indicator
variable for the second of one of two treatments. We also suppose that each group subject to
truncation has only two members who get different treatments. A practical example might be the
driver and front passenger seat occupant of single vehicle accidents where the treatment is the seat

location and the accident is only recorded in the fatal file if a fatality resulted. Without loss of

generality we may assume that the design matrix for the group is

x=(11

Now let

p; = the probability that individual i dies.

by straightforward algebra
ET =(p;q; + p29p) / 201 - 9490 2 172

In Figure 1, we contour ET with respect to py and p,. Note that although the efficiency loss to
truncation can be substantial, the retained efficiency is always at least 50% and viable estimation is

possible. Also, it is well known that the discordant pairs contain all the relevant information

concerning the difference between the two treatments or
EC=1/2, EC,=0

and so in this case, conditional logistic regression is fully efficient for the estimation of f3, .

However this is the only case where conditional logistic regression is fully efficient for estimating a

subset. If the group size is ever larger than 2 or X varies across groups, then EC, > 0.

[Insert Figure 1 about here]
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Example 4.2 : Continuous covariates

We now consider the case where

where x; and x, are chosen independently from the Uniform (0, 1) density. If p, = p(B. x,;) and

P2; = P(By, x;) where

p(B, x)=exp(x"B)/ (1 + exp(x'B))
then
. , 2 ,
VB X)=(1- 307 T pigi %4 %y - 919201 - 4182) “(PyXyq # Pax,)(P1X 4 + PoX,0)
1

2
Vidy X =% P2i%x; [% Pzi*i) -

PB.X)=(1-q9y).

Pi(By, X) = 193 + qiP2
and

2
QC(X) = P1Q1P2QZ(X1 - X5} / (p1qs + p24y)-

Although 91 and 4 cannot be explicitly evaluated, they can be calculated by numerical integration
for a range of B values. In Figures 2,3 and 4 we contour ET, EC, and EC for a range of
values of the intercept and slope parameters. It can be seen that truncated logistic is often very much
more efficient than conditional logistic. It can also be seen that the loss caused by truncation is not

usually extreme.

[Insert Figures 2, 3 and 4 about here]
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5. Federal Office of road safety data.

This section examines the effects of various covariates on the probability of death for passengers
involved in fatal car accidents. This analysis is based on the so called "fatal files" which are collected
by the Australian Federal office of road safety on a biennial basis. These files consist of passenger
and vehicle information for all fatal accidents that occur in the target year. The analysis is based on

the records for the 1988 and 1990 calendar years.

The aim of the analysis was to estimate the effect of various group level and individual leve}
covariates on probability of death. To simplify the analysis it was restricted to single vehicle, frontal
impact collisions that involved passenger cars. This produced a data set with observations on 306

individuals involved in 111 accidents, Note that cars with only a driver are non informative for all

methods.

From this data set the accidents involving a front seat passenger and dnver were extracted for use in
the conditonal analysis. This data set consisted of information from 76 accidents. While this analysis
could have been augmented by constructing the conditional likelihood for each car, the following
points should be noted. Firstly, a large proportion of the accidents involved cars with driver and
front seat passenger. Secondly the construction and maximisation of the conditional likelihood for
varying size clusters, though analytically straight forward, would be complicated to numerically

perform. Finally, in the other analysis published in this area (Lui er al 1988) the paired analysis

considered here was performed.

Although a wide range of variables are available for each individual, a subset was chosen due to their

previous association with fatalities in car accidents. See for example the work of Evans(1985) or Lui

et al (1988). The vanables selected are described in table 1.

The models were fitted using the method presented in section 2 and the results are presented in table
2. All covariates were treated as factors, and the design matrix was constructed using treatment

(Chambers and Hastie 1992) contrasts. The effect of the lowest level of each factor was set to zero.
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[Insert tables 1 and 2 about here]

The agreement between the (wo estimates is encouraging. Although both methods model the mean
response equivalently, departures from the underlying models, such as missing covariates, could
cause discrepancies to arise. Examining the standard errors of the estimates reveals the increase in

efficiency that is achieved using the truncated model.

6. Summary

The results found in this paper are very encouraging for the analysis of truncated binary data.

They show

Viable regression estimation using the truncated likelihood is possible when the binary
variables of groups of individuals are only observed if at least one is positive. The
resulting likelihoods are well behaved and tractable. The truncated likelihood also avoids

the difficulties of the conditional likelihcod (Thompson, 1991) when more than one death

in a group is observed.

The efficiency loss due to truncation although substantial is not catastrophic. For larger

groups the efficiency loss will be less.

The efficiency of truncated versus conditional logistic regression has been evaluated in

several realistic examples showing that the efficiency loss in using conditional logistic can

often be high.

The choice between truncated and conditional logistic regression for the analysis of group
truncated binary data will be governed by the group level effects. If they vary systematically across
groups or clusters then truncated logistic should be used whereas for random or unstructured group
level effects, conditional logistic should be used since it eliminates all group level effects. For
example if the group level effects that affect the probability structure of the response are known (ie the

individual probabilities can be adeguately modelled) then truncated logistic regression is appropriate.
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This appears the case with the road safety data used in the exampie. In this case conditional logistic

regression has been used to remove the biases introduced by the sampling scheme. It may be argued
that the nature of the data will ensure that slight unexplained variation between groups remains.

While this may be true, these slight imperfections are also true for most stochastic models.

Truncated logistic regression provides a natural framework for the analysis of truncated binary data.
It utilises the full likelihood, and is the logical extension of the non truncated case. Because of the

superior efficiency and relative computational simplicity, truncated logistic regression should often be

the preferred method for truncated binary data.
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Table I: Description of variables for 1988/1989 FORS data

Variable Level " Category
—_—
Damage 0 major damage
1 extensive damage
Resavl 0 restraint worn/ restraint use unknown
1 restraint definitely not wom
Sex 0 II male
1 I [emale
Speedlim 0 speed limit 0-60 kmh
1 Il speed limit 60+ kmh
Speedcat 0 ll nol over speed limit
1 orer/possibly over speed limit
Age 0 Il {-15 years old
2 l 15-25 years old
3 | 25-60 years old
4 60 + years old
Perloc 0 front seat
1 not front seat




Table 2: Log odds ratio estimates for single vehicle, frontal impact collisions, using the 1988/1990 FORS dat a.2

Variable! Level GTLR Conditional Logistic
p—— e e
Intercept 1 3.46(.87) NA
Damage 1 0.53(.61) NA
Resavl 1 1.11(.36) 1.35(.65)
Speedlim | 1 0.64(.51) NA‘
Perloc 1 -.34(.31) Not estimated
Sex 1 .36(.26) 0.61(.37)
Age 1 0.00(.50) -0.45(.91)
2 0.24(.53) 0.24(.91)
3 1.21(.72) 1.77(1.4)
Speedcat 1 1.57(.48) NA

1. Estimated standard errors are given in brackets.
odds for level i

2. log oddsratio(level i) = /
080 atioflevel 1) og(odds for level O




Figure 1:Efficiency Loss for Truncated
Binary Regression with Two Treatments
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Figure 2:Efficiency Loss for Truncated
Binary Regression with Uniform Covariates
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Figure 3:Slope Efficiency Loss for Conditional vs.
Truncated Logistic with Uniform Covariates
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Figure 4:Efficiency Loss for Conditional vs
Truncated Logistic with Uniform Covariates
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trunc.fit()

Fit a group truncated ordinal regression.

DESCRIPTION

Produces an object of class truncim which s the fit of a truncated logistic/ordinal grouped
regression.

USAGE

trunc.fit{formula, data, tolerance, iter, groupvar, trunc, initbeta)

REQUIRED ARGUMENTS

formula: aformulaexpression as for other regression models, of the form response predictors.
See the documentation of lm and formula for details.

data: a data frame in which to interpret the variables oc- curring in the formula. See data.frame
for details.

tolerance: The required tolerance to be used in the fitting. It is the euclidean distance between
the fitted expecta- tions from one iteration to the next.

iter: The maximurm number of iterations used in the fisher scoring algorithm.

groupvar: A character string giving the name of the variable on the data frame that defines
the group.

trunc: The level at which the truncation occurs (ie one response in the group must be above
this level). This can either be the number of the level, or a character string for the name
of the level.

OPTIONAL ARGUMENTS

initbeta: Optional initial value numeric vector for the parame- ter vector in the Fisher seoring
algorithm. Otherwise logistic regression estimates are used.

VALUE

an object of class trunclm is returned. See trunclm.object for details.

DETAILS

The output can be examined using print and summary.
The models are fitted using the Fisher scoring algorithm, and the logistic link is assumed.



REFERENCES

O'Neill, T J and Barry, § C (1993). Estimation of Trupcat- ed Ordinal Regression Models. Dept
of transport an com- munications Road Safety Seeding Research Grant Report.

SEE ALSO

trunclm.object

EXAMPLES

Say we have a response vector ”response” with three levels and a explanator vectors "belt” and
age”. We must also have a vector, "group” say, defining which group each individual is in.

We would then use:

>response< —ordered(response)

>

to generate the ordered factor. If belt is a factor then we would use

>belt< —factor(belt)

>

Splus generates the design matrix by using the "contrasts” attribute of an factors in the
model formula. To modify it, say to use treatment contrasts, use >belt< —C(belt,treatment)}

>

So we have

> response

[lJazccabaababcabecbaabeb

a<b<c

> belt

(11101101001001111110060

> age

[1]12345678912345678912

> group

(1j11111111112222222222

>

Last of all construct the model frame.

>exam.frame< —data frame{response belt,age group)

>

> ezam fit? < —trunc.fit{formula = response  bellf + age, data = ezam.frame,
lolerance = le-06, fler = 20, groupvar = “group”, trunc = “b7)

+ -18.8357277

-18.002097

-17.992586

-17.992529

-17.992528



-17.992528
-17.992528
-17.992528
-17.992528

It has obviously converged with this tolerance. As the complete output would be long and messy
we use summary(}.

> summary(ezam.fil2)

Call: trunc.fit(formula = response beltf + age, data = ezam?2 frame, toleranc

= le-06, iter = 20, groupvar = “group”, trunc = “4”)

Restduals:

Min 1Q Medien 3Q Maz

-0.9146 -0.3775 0.05862 0.2288 (.6868

Value Std.Error  zvalue Pr( ;lz|)

model.coeff —2.6797 1.1854 —2.2607 0.0238

Coefficients: model.coeff —0.6199 1.0261 —0.6041 0.5458
beltf —1.6803 0.5429 -1.7821 0.0747

age —0.2737 0.1764 —1.5517 0.1207

Correlation:
model.coeff wmodel.coeff  beltf age
model.coef f 1.0000 0.7898 0.5132 0.7482
model.coef f 0.7898 1.0000 0.37568 0.6872
beltf 0.5132 0.3758 1.0000 0.0182
age 0.7482 0.6872 0.0182 1.0000

Log likelthood:
[1] -17.99



trunclm.object

Group truncated ordinal regression object

DESCRIPTION:

These are objects of class "trunclm” which represent fits of group truncated ordinal regression
models. This class of object is returned from the function trunc.fit(). The components can be
extracted using the "§” operator.

The following components are included in the object.

COMPONENTS:

call: an image of the call that produced the object, but with the arguments all named and with
the actual formula in- cluded as the formula argument.

fitted: the expected value of the response vector under the fitted model. Note that this is not
equal to the fitted category probabilitys of the non truncated model. These should be
found from $linear.pred.

variance: the estimated expected information for the parame- ters.

x: the matrix of predictors used in the fit. Note that the number of rows of this matrix is
(number of levels of response - 1} * number of cbservations.

coefficients: the fitted regression coefficients. The names of the coefficients are the names of the
single-degree- of-freedom effects (the columns of the model matrix) con- structed by Splus.
The "model.coefficients” are the in- tercept terms. There are thus (number of levels of
response -1} "model.coefficients”. The coefficients have a one to one correspondence with
the columns of the model matrix.

z: the vector of responses used in the fit of the model. This has the same number of rows a
object$x. It is constructed of 1's and zeros. For observation i, z[i*(number of levels of
response - 1) + j] = 0 if the response for individual i is greater that j, 1 otherwise.

linear.pred: the linear predictor, ie object®x % % object$coefficients.

log.lik: the value of the maximised log.likelihood.

iterations: The number of iterations used in the fit.

tolerance: The euclidean difference between the parameter vector in the last two iterations.

frame: The data frame used in the fit. This is included for cases where the group variable was
not sorted, and trunc.fit performed the sort.
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"no.groups"<-
function (group)
{
num <- length{unigue{group})
num
)
"trunc.fit"<-
function{formula, data, toclerance, iter, groupvar, trunc, initbeta)
{
if{!{is.loaded (" fitmodel"))) {
dyn.load2 ("fittrunclm.c")
}
if{is.character(datal, groupvar]}) |
stop(“"group variable cannot be character™)
}
$is the data sorted?. If not sort and warn.
nums <- l:nrow{data)
permute <— order{datal, groupvar))
sav.perm <- permute
permute <— permute[ - nrow(data)]
permute <—- append(permute, 0, after = 0)
if (sum{ {nums — permute) == 1) !'= nrow{datal)) |
warning ("data.frame not serted by group. sorted frame returned in $frame
)
}
data2 <- datalsav.perm, ]
call <- match.call({)
fsetup.prop sets up starting values, design mats etc for the #proporticnal odds :
derived <- setup.prop({formula, dataZ2)
new.X <— derived{[l]]
new.Zz <- derived{[([2]]
klength <— derived{[3]]
new.beta <— derived[(4]1]
paramnames <- names (new.beta)
if(Ilmissing{initbeta}) |
new.beta <- initbeta
1
¥ get the trunc point
if (is.character(trunc)) {
temp.trunc <- trunc
trunc <— matchi(trunc, levels{model.extract {model.frame(formula,
data2), "response")))
iffis.na({trunc)) {
stop(paste({"Level: ", temp.trunc,
"is not a valid level for the response"))

}
}
if(trunc >= length(levels (mocdel.extract (model.frame (formula, data2),
"response")))) |
stop{paste(Level: ¥, trunc,
"is the top level+ for the response and is thus invalid as a trur
»)
}
if (trunc < 1) |
stop (paste("level: ", trunc,
"is belew the minimum level. Level go 1,2,3...™))
1
num <- nrow{new.X) /klength
change <- 9399393
dev <- wvector('"numeric", 1)
result <— .C{"fitmodel"™,
as.double{new.X),
as.double{new.2),
as.double (new.beta),
as.integer (num),
as.integer (klength},



as.integer{nrow{new.X)},
as.integer(ncel (new.X) ),
as.integer(data2[, groupvar]),
as.integer (trunc},
as.integer{no.groups(data2|[, groupvar]l),
as.doutble(tolerance),
as.integer{iter),
as.dcuble (dev))
indexvec <—~ l:length (new.X)
indexvec <- indexvec <= (ncol(new.X) * nccl(new.X})
retlist <- list{call = call, fitted = result[[2]], variance = (matrix(
as.vector(result[[1]]) [indexvec], nrow = ncolf{new.X))), x =
new.X, coefficients = result{[3]], z = new.2, linear.pred =
NULL, log.lik = result({(13]], iterations = result[[12]],
tolerance = result[[11]], frame = data2z2)
attr(retlistScoefficients, "names") <- paramnames
linpred <— retlist$x $*% retlist$coefficients
retlistSlinear.pred <- linpred
fitted <- exp{linpred)/{l1 + exp(linpred})
if{sum(fitted > 0.999)) { -
warning{"fitted value c¢lose to 1. Could mean parameter estimates geoing
)
1
if(sum(fitted < 0.0001)}) {
warning("fitted value close to 0. Could mean parameter estimates going
)
}
attr({retlist, "class") <— c("trunclm")
retlist
}
"setup.prop"<-
function(formula, data)
{
$this function constructs the model matrix and response vec for the proportional #odds m
model.terms <- terms(formula)
mod. frame <- model.frame({model.terms, data}
model .mat <— model.matrix(model.terms, data)
model .mat <- as.matrix (model.mat[, -1])
model . .mat <— model.mat % -1
response.vec <- model.extract (mod.frame, “response")
if{lis.ordered(response.vec)} {
stop("response is not an crdered factor")
}
klength <- length(levels{respcnse.vec)) - 1
evec <— vector("numeric", length = klength)
evec([] <= 1
new.X <- matrix {0, nrow = length{response.vec} * klength, ncol =
klength + length(model.mat[l, 1)}
xresult <- C("formXblocks",
as.double (model.mat},
as.integer (nrow{mocdel.mat}},
as.integer(ncol(model.mat)},
as.integer(klength),
as.double (new.X))
new.X <— matrix({xresult[[5]], nrow = length(response.vec) * klength,
ncel = klength + length{model.matfl, ])}
new.Z <— vector{("numeric", length = klength * length(response.vec))
zresult <— .C("formZ",
as.double (as.numeric{response.vec}),
as.integer(length{response.vec)},
as.integer(klength},
as.double{new.Z)}
new.2 <- zresult[[4]]
new.beta <- init.beta(data, new.Z, klength, model.terms}
result <— list (new.X, new.Z, klength, new.beta)
result
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"print.summary.trunclm'<-—
function(x, digits = max{(3, .Opticons$digits — 3}, ...)

{
cat {"\nCall: ")
dput (x$call)
resid <- xSresiduals
df <- x$df
rdf <- df
if(rdf > 5) {
cat ("Residuals:\n")
if(length{dim(resid)) == 2} {
rq <- apply(t(resid), 1, quantile)
dimnames{rq) <-— list (c("Min"”, "1Q", "Median", "3Q",
"Max"), dimnames (resid)[[2]])
}
else |{
rq <— guantile(resid)
names (rg) <- c{"Min", "1iQ", "Median", "3Q", "Max")
}
print (rq, digits = digits, ...)
1
else if(rdf > 0} {
cat ("Residuals:\n"}
print (resid, digits = digits, ...)
}
cat ("\nCoefficients:\n"}
print (format {(round(x$coef, digits = digits)}), quote = F, ...)
correl <- xScov.unscaled * (l/sqrt(diag(x$cov.unscaled}))
correl <- t{correl) *® (1/sqrtidiag(xScov.unscaled}})
dimnames (correl) <- list{dimnames(x$coef) [[1]], dimnames(xScoef) [[1]])
cat {"\nCorrelation:\n")
print (format (round(correl, digits = digits)), quote = F, ...)
cat ("\n Log likelihood:\n")
print (x%leg.1lik, digits = digits, ...)
cat (u\nu)
invisible (x)
}

"summary.trunclm"<-
function(object, correlation = T)
{
$this method is designed on the assumption that the coef method
4 returns only the estimated coefficients. It will (it’s asserted)
4 also work, however, with fitting methods that don’t follow this
# style, but instead put NA’s into the unestimated coefficients
coef <— coefficients{cbject)
log.lik <- object$leg.lik
cnames <- labels(coef)
ctotal <— object$coef
ptotal <- length{ctotal}
resid <— object$z - fitted({object)
fwv <- fitted{object)
n <- length(resid)
p <- length(ctotal)
var <— cobject$variance
coef <- array(coef, cip, 4})
dimnames (coef) <- list (cnames, c("Value", "Std. Error", "z wvalue",
"Pr{>|z|)}™)]
coef[, 2] <- sqgrt{diag(var))
coef[, 3] <- coef[, 1]/sgrt(diag(var))
coef|, 4] <~ pnorm( - abs{coef{, 31)} + 1 — pnormiabsicoef[, 3]))
chject <- object[c("call", "terms")]
objectSresiduals <- resid
objectScoefficients <- coef
objectScov.unscaled <- var
object$df <~ length({resid) - length{ctotal)



object$log.lik <- log.lik
class (object) <— "summary.trunclm"

cbject

}
"init.beta"<-—-

function{datafr, response.vec¢, klength, terms.obj}

{

§for each level of response a logistic regression is performed.
#The intercepts from these are returned as the mcdel coeffs, while the
$average over the regressions are returned for the explanators.

result <— vector() fperform glm(} for each level of response.

for(i in 1l:klength) |

}
}extract model
thetas
params
params
params
result
result

index.vec <- vector("numeric", length = length(response.vec))

temp.vec <~ vector{"numeric", length = klength)

temp.vecfi] <- 1

index.vec{] <- temp.vec

iter.response <- respcnse.veclas.logical (index.vec)]

temp.data <~ data.frame(datafr, iter.response)

medeli <~ glm{paste("iter.response~", paste(attr(terms.obi,
"term.labels"), collapse = "+")), data = temp.data,
family = binomial)

model .coeff <- coef(modeli)

result <— rbind(result, model.coeff)

coeffs and average over others

<- result[, 1]

<- apply(result, 2, mean, na.rm = T)
<— params[—-1] tadded iine

<~ params " -1

<— append(thetas, params)

"y



fl(at:eacl.x t

#!/bin/csh -f
tar xf truncfit.tar
make fittrunclm.o

cp
rm

cp
cp
cp
cp
cp

Im

rm

fittruncim.o 51
fittrunclm.o

trunc.fit.d $1/.Data/.Help/trunc.fit
trunclm.cbject.d $1/.Data/.Help/trunclm.okject
init.beta.d $1/.Data/.Help/init.beta
no.groups.d $1/.Data/.Help/nc.groups
setup.prep.d $1/.Data/.Help/setup.prop

trunc.fit.d init.beta.d no.groups.d setup.prop.d trunclm.object.d

minv.f matmult.c matmult.h matmult.o fitfunc.c fitfunc.o xblock.c xblock.o makefile m

setenv currdir SPWD

cd

51

Splus < $currdir/GTLRfuncs.$S

cd
rm

Scurrdir
GTLRfuncs.$S

unsetenv currdir



!4 Fiyavxctix F;

fittrunclm.¢: minv.o matmult.o fitfunc.c xblock.o
1d -r fd —o fittrunclm.o minv.o matmult.o fitfunc.o xblock.o

minv.o: minv.f
£77 —c minv.f

matmult.o: matmult.c matrmult.h
cCc —¢ matmult.c

fitfunc.o: fitfunc.c matmult.h
cc —c fitfunc.c

xblock.o: xblock.c matmult.h
cc —¢ xblock.c

1y
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