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Abstract 

This report describes the influence of non-road  safety  factors on the  level of fatal  road crashes. 

Economic,  social  and  meteorological  factors  were  analysed as independent processes, each 
capable of influencing the number of fatal crashes. Various  statistical  models  were  fitted to 
determine  the power of each factor to predict crash trends. 

This report's findings are summarised in report CR 109. 
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Factors  affecting  fatal  road crash trends 

This study investigates the effect  of various  non-road safety factors on the 
level o f  fatal road crashes. Steps were taken to develop equations capable of  
predicting  future levels. 

Factors affecting fatal  road  crash trends (CRlO6) 

This report is a single  volume with two distinct parts: 

1 .  Literature  Review of Explanatory and Predictive  Models for the 
Number of Fatal  Road Crashes 

A detailed  literature  review of  factors which have been 
investigated for their  ability  to  explain  or  predict the number o f  
fatal road crashes. 

2. Explanatory  and  Predictive  Models for the  Number of Fatal  Road 
Crashes. 

Describes steps taken by this study to develop and test various 
statistical models. These models were  fitted to various 
economic, social  and  meteorological factors to determine  the 
power of  each factor to  predict  fatal  road  crash trends. 

N.B. A short  summary of the main findings of this work is also  available in 
the following separate report: 

Factors  affecting fatal road crash  trends: 
Summary  Report. 

(CR109) 
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literature Review of Explanatory 
and  Predictive  Models  for  the Number of 

Fatal Road Crashes 
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glossary 
Abbrev.  Definition 
ABS  Australian  Bureau of Statistics 
ARIMA 

BAC 
BAT 
BR 
C P I  
DUI 
G D P  
G N P  
4 2 1  

iid 

LT 
KSI 
NBER 
PCGNP 
PSV 
p t i  
R’ 

RDU 
RPI 
us 

V M T  
V K T  

Autoregressive,  Integrated,  Moving Averagc 
model 
Blood  Alcohol Level 
Blood  Alcohol  Testing  unit 
British  Rail 
Consumer  Price  Index 
Driving  Under  the  Influence  (ofdrugs  or  alcohol) 

Gross National Product 
Gross Domestic Product 

If z is true,  then  this  evaluates to 1, otherwise 0. 
independent  and  identically  distributed  (randon 
variables) 
London  Transport 
Killed and  Seriously  Injured 
National  Bureau of Economics  Research  (US) 
Per  Capita Gross National  Product 
Passenger-Srrr~ce Vehicles 
Per  Thousand  Inhsbitants 
amount of variation  explained by a regression 
model  compared to  a null model 
Restraint Device  Usage 
Retail  Price  Index 
United  States 
Vehicle Kilometres Travelled 
Vehicle hliler  Travelled 
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1 Introduction 
This  paper  reviews  both  Australian  and  worldwide  literature in the  area of road 

road  crashes,  and how these  have  been  statistically  modelled by researchers. 
and  traffic safety. The  investigation is focussed  on  road  crash  fatalities  and  fatal 

crashes,  it is then  necessary  to  decide  the following: 
Given that  the  variables of interest  are  road  crash  fatalities  and fatal road 

1. What  is the  form of the response  variable? Is a ratio of fatalities  to 
population  or vehicles rcgistered a more  meaningful  response  variable? 

2. Which czplanotory variables  should be included in the  model, as suggested 
by  theory, in such  areas as road  safety,  socioeconomics, and  psychology? 

3. What  type  ofstatisl ics model and  error  structure is appropriate? 

The  three  major  requirements  are  addressed in three  sections. 

51 Choice of response  variable 

52 Choice of explanatory  variable(s) 

$ 3  Choice of statistical  model  (also  addressed in 51 and $2.)  

1.1 Overall 
Overall,  the  literature in the  area of the  analysis of road  fatalities  seems  to 

effects models. The  characteristics of these  two  types of models  are  tabulated 
be  concentrated  on  two  major  types of models,  local  effects  models  and  global 

below. 

Characferistic 

macro-models, regres- indepth  analyses applications 
(macro-leuel) (micro-level) of model 
Global effects models Local  effects models 

! sion,  time-series  analysis 
focus of model i local  impacts  present at global  impacts  on  the  to- 

, each  particular  fatality t a l  number of fatalities 
examples of i emotional,  physical,  and state  ofthe  economy,  fuel 
nlodcl effects ~ psychological state of prices;  average  weather 

driver; vehicle character-  conditions;  number  ofve- 
istics;  road  design;  road hicles on  the  road,  num- 
conditions bcr of young  drivers. 

effects of coun- 
new  set of traffic  lights termeasures 

effect of new  legislation effect of installation of 
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range  of  explanatory variables, in models which are mostly based  on  regression 
Hakim Rr Shefer review 1 5  of the  more  recent papers, which  use a wide 

models.  Some of the  models  they cover are  discussed  elsewhere in this  report: 
Eshler (1977) ,  F r i d s t r ~ m  (1989) ,  Hautzinger (1986) ,  loksch (1984) ,  Loeb (1987) ,  
Partyka (1984) ,  Peltzmann (1975)  and  Zlatoper (1984) ,  and  one  paper  with a 
time  series  approach,  Wagenaar (1984) .  The  authors discuss  some ‘issues and 
probelms’  with  analysing  global effects. 

1.2 Road  crash  data 
Many  developing  countries  have  only  recently,  or  are  still  in  the  process, of 
determining  the  structure of the  data  on  fatal  road  crashes  to  be  collected.  Most 
European  countries,  America  and  Australia  have  passed  this  milestone,  and now 
devote  much  of  their  research  effort  to  analysing  this  information.  This  change 
in collection  itself  could  be  changing  what we are  measuring  and  thus  produce 
spurious  results.  Fridstrdm  and  Ingebrigtsen (1991)  incorporated  the  effect of 
changing  accident  reporting  procedures  into  their  models for traffic  safety in 

legislation. 
Norway.  Unfortunately  this effect was confounded  by  concurrent  changes  in 

Analyses of road  crash  data  are  usually  one of following types,  in  increasing 
order of sophistication: 

1. aggregation of da ta  

(a) numbers of road  crash  fatalities  and  fatal  road  crashes 

(b)  road  crashes  according  to  country,  state  within  country,  road  user 
type,  age,  sex,  etc 

2. in-depth  accident  studies 

3. before-and-after  studies of the effectiveness of countermeasures 

4 .  using  various  explanatory  variables  or  factors  to  explain  the  variation  in 
the  numbers of fatal  road  crashes  or  fatalities 

5. using  time-series  models to  predict  future  numbers of fatal  road  crashes 
or  fatalities 

1.3 Aggregation of data 
Similar  to  other  countries,  Australia  has a Bureau of Statistics  (ABS)  which 
publishes  monthly  national  figures  on:  the  number of road  crashes,  the  number 
of fatal  road  crashes,  the  number  of  fatalities  resulting  from  road  crashes.  Cor- 
responding  figures for the  different  states  are  not  always  available;  only  Victoria, 
Queensland,  Tasmania  breakdowns  are  supplied. 

7 



In  order  to  model  the  number of fatalities  resulting  from  road  crashes  and 
the  number of fatal  crashes,  our  study relies heavily on these  aggregates.  Thus 

scope of our  study. 
the  degree of disaggregation  available  (by  state)  determines,  to  some  extent,  the 

of crash  victims  might  not  behave  similarly. For example,  compare  multi-vehicle 
Care is required  when  using  aggregated  accident  data,  since  different  groups 

and single vehicle crashes,  or  vehicle-occupant  and  pedestrian  accidents,  (See 
Hakim  et al (199l ) ,  among  others for more  discussion.) 

1.4 In-depth  accident  studies 

accident to  the  severity of the  injuries in order  to  locate  primary  causes  and 
In-depth or  local-effects accident  studies try  to  relate  the specific features o f a n  

then  to  finally  eliminate  them.  Thus  fatal  accidents  are a natural  focus  for de- 
termining  the  major  contributing  factors  to  serious  road  crarhes.  These  studies 
concentrate  on  the  local  factors  influencing  the  crash,  such as road  geometry, 
signage,  roadside  objects, BAC level of driver,  age/ser of driver,  weather con- 
ditions at the scene of the accident,  and  the  time,  day,  and  month of accident. 

However, due  to  their  specific  nature,  these  models  are  not  relevant  to OUI study. 
Most of the research  etfort  has gone into  these  types of studies, worldwide. 

1.5  Before-and-after  studies 
Before-and-after  studies  arc  generally  conducted by governmental  departments 
to  determine  the  impact of countermeasures  either at a local  or a global level. 
They  may  investigate  the  effectiveness of some  global  countermeasure  such u 
new legislation, by state/county  or  entire  nation;  or  the  effectiveness of some 
local  countermeasure,  such ns the  installation of some new traffic  safety  device 
(traffic  lights, new road  design,  rtc). 

There is a multitude of poprrs discussing the succcss  or  otherwise of various 
legislative  measures.  Srxt-hclt  legislation,  drink-driving laws. age of licence, 
and  drinking  age  are S O I U C  of the main  measures  considered over the last two 
decades. 

concluded  that  the effect of countermeasures h s  been  swamped by a steady 
In  particular,  there  are a number  ofpapers  (eg  Peltzmann (1975)) which have 

downward  trend in fatalities  during  the  last  two  decades. 

1.6 Explanatory  models 
These  models  have  been  considered  in  international  research  much  more  than 

depth  accident  analyses.  According  to  Hakim  et al (1991), explanatory  models 
time  series  models,  but  considerably less than  before-and-after  studies or in- 

have  two  main  advantages: . They  provide  understanding  about  the  causes  oiaccidents. 
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They  provide a basline for evaluating  the  effectiveness of countermeasures. 

There  are  several  types of models  identified  in the  literature: 

1. longitudinal  models,  often called time  series  models 

2. crosssectional  models 

3. pooled  crosssectional  and  longitudinal,  or  spacio-temporal  models 

Hakim  et  al  (1991)  pointed  out  the  advantages  and  disadvantages of these 

lifestyle, etc, in cross-sectional  analyses.  With  annual  longitudinal  data, at least 
different types.  It is hard  to  control for geographical differences, such as climate, 

30 years’  worth of observations  are  required  to  provide  the  minimum  database, 
and  a large  time  trend  appears to  dominate  most of the  variability in  annual 
series.  With  monthly  longitudinal  data,  the  number of years of data required is 
much  smaller  but less countries/states collect da ta  on a monthly  basis  than on 
an  annual  basis. 

1.7 Predictive  models 
Often  regression  models  have  been used to  predict  fatality  rates  or  numbers  in 
future  years,  eg  (Partyka  1984, 1991). Hakim  et al (1991) gave a good review 
of models used for prediction,  and  the  problems  associated  with  using  them. 
They  considered  both  regression-type  models  assuming an independent  error 
structure,  and  ARIMA  or  structural  models which do  not  assume  independent 
error  structures. 

in  using  time  series  models  (with  autocorrelation  error  structures as opposed to 
Relatively  little  has  been  done  in  this  area, even overseas.  Most of the work 

regressions  with  trend  and  monthly effects) was  prompted  by a need  to  model 
the  impact of legislation,  such as seatbelt  or  speed  reduction. 

9 



Part I 

Choice of response variable 

2 Exposure 
The  response  variable used  in an  analysis is often  the  raw  number  of  fatalities, 

arc  thought  to be especially useful when  comparing  fatality  rates  in  different 
fatal  road  crashes  or  accidents.  Two  other  forms of the  reponse  variable,  which 

geographic  rcgions/counties: 

1.  fatality  rate  per  head of  population:  especially  from a health  or  epidemi- 
ological  point of n e w  

2. fatality  rate  per vehicle mile travelled: attempts  to  balance  the  differences 
between  areas  with  rslatlvely  little vs large  amounts of travel 

2.1 Relating road deaths to motorization 
Since  Smeed’s  intluentlnl ]paper w a s  published  in 1949, there  has  been  much 
work and  controversy o n  t h e  relationship  between  the  road  death rate-as mea- 
sured  per  head o i  popu1:~t lon .  or alternatively  per  registered vehicle-and the 
motorization level-the n u r l , b r r  of registered vehicles per  head of populalion. 
The  comparison o i  road death rates  between  different  countries was a large  area 
of interest in the following years. In particular,  work  was  done on comparing 
the  road  death  rates S c t u r c n  developing  and  developed  countries. See Haight 
(1980), Jacobs & Cutting ( l g j t i ) ,  Jacobs & Hards (1977), hiekky (1985), Smeed 
& Jeffcoate (19iO) and \ V ~ a t ~ m u t c  (1585) for example. 

2.2 Smeed’s equation 
Smeed (1949) obtained  the following  well-known equation  relating D the  num- 
ber of deaths  due  to  road  occldcnts, V ,  the  number of vehicles, and P ,  the 
population,  using  least squares analysis: 

D I P  = G.0GG3(V/P)t’3 

and  then  derived, via simple  algcbraic  manipulation, 

Dj\’ = 0.0003(V/P)”’3 

According  to Weiss ( 1 9 8 j ) ,  Snleed’s  law of traffic  safety,  which was derived 
from a set of 1538 da ta ,  was a result  that is ‘still  cited and  that  is apparently 
still valid.’ Hc found  that  it d l  ‘gives a satisfactory fit’ to  more  recent data 
from 1580, as  shown by Adams (1985). 

1 0  



especially  since  it was one of the earliest  attempts  to quantify  the  relationships 
Smeed’s  1949 paper  has  had considerable  impact in the field of  road  safety, 

between  road  fatalities  and easily obtained  macro-data. We have  found  numer- 
ous  references  to his work in  the  road  safety  literature.  Not  only  have  researchers 
applied  his  model  to  their  own  data,  but  they  have  also  used his model as a 

the  number of vehicles for  different  countries and regions  within  countries.  See 
basis for more  complex  models  incorporating  the effects of population size and  

Hampson (1982) ,  and  Preston  (1982). 

tioned by many,  including  Haight  (1980),  Jacobs & Sayer  (1983),  Wintemute 
However, in the  last  decade,  the  accuracy of Smeed’s  formula  has  been q u e c  

(1984),  Mekky (1985) and  Andreassen  (1985). In particular,  Andreassen (1985)  

finds  many  problems: 
conducts a thorough review of the  theoretical basis for Smeed’s  formula  and 

The  original  regression  is  different in form  from  what is known as Smeed’s 
formula.  To  obtain  the  formula,  the  equation  containing  the  coefficients 
estimated  by  least  squares was simply  algebraically  manipulated.  This 
rendered  suspect  both  the values and  the  accuracy of the  coefficients of 
the new formula.‘ 

8 The  equivalence of the  different  forms of Smeed’s  formula was a coinci- 
dence,  due  to  the  data  set  used and rounding  performed. 

The  formula  encouraged  people  to  assume  that P and V account for all 
the  variation  in D .  

Andreassen  (1985)  then  proceeded  to  show  that: 

The  values  in  Smeed’s  formula were not  applicable  to  many  different  coun- 
tries. 

Deaths  per vehicle was not a good  basis for international  comparisons. 

Despite  the  fact  that  the  coefficients  derived  in  Smeed’s  formula  are  not 

introducing a way  of  thinking  about  traffic  problems on a large scale.‘ Minter 
always  applicable, Weiss (1985)  reminded us that  ‘his work is important  in 

required  for  different  countries,  but  conlmented  that ‘Smeed’s formula  still gives 
(1987) echoed  Andreassen  (1985)  in  suggesting  that  separate  constants  might  be 

remarkably  good  prediction of accident  rates  over a wide  range of conditions.’ 
In a later  paper,  Andreassen  (1991)  further  investigated  the  problems  with 

of spurious  correlations  between  independent  and  dependent  variables  may  arise 
the  application of Smeed‘s  ‘formula‘  to  various  data. In particular,  the  problem 

when  one  variable  is  used  to  calculate  both  the  independent  and  dependent 
variables. 

Another  problem  with  Smeed’s  model w a s  that  the  measure of goodness-of- 
fit was  not  significant at  the  usual levels. 

‘Note that when these approximations were made, the advanced cornpuking regression 
tools of today were not avaiiable to allow simple changes of the regressed  vcuiable. 
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2.3 Motorization level 

Mekky  (1985)  defined  the  motorization  rate m as follows: 

where m, is the  final  motorization  rate, mo is the  initial  motorization  rate, n is 
the  number of years  during which the  change in motorization level took  place. 

given by a Smeed-like  fornlula: 
Then  the  number of road  fatalities of several  countries  in a given year was 

where Vis   the  number  of  vehicles, F is the  annual  fatality  rate, P is population. 
The  elasticity, b, of the  annual  fatality  rates of several  countries, F ,  was 

regressed on the  motorization  rate: 

b = o + p m  

erately  significant for industrialised  countries  during  the  fifties.  Thus,  the orig- 
The  regression was highly  significant  for rich developing  countries,  and  mod- 

inal  hypothesis  that rich developing  countries  experience  worse  road  fatality 
rates  than  already  developed  countries was not  supported  by  this  evidence. 

2.4 Exposure 
A number of in-depth  studies  have  considered  the  probability of a fatality given 
the  amount of exposure a person  has  had  on  the  roads. It seems  reuonable 

dangerous  situations,  than  somconc  who  travels  every  day.  On  the  other  hand, 
tha t  if a person  only  travels  once a week, they  are  less likely to  be  exposed  to 

someone  who  travels  regularly  should  have a better  technique  than  someone 
who  travels  irregularly! 

Jovanis & Chang (1989) wrote: 

obtain  acompletc  understanding of accident risk. This is because  the 
'A study of accidelrr occurrence  alone is generally  not sufficient to 

must  be  compared  to  the  number of opportunities  available  to  be 
occurrence of accidents, as reflected  in accident  reports, for example, 

involved in an  accident.' 

The  amount  of exposure could be measured by the  hourly  traffic  volume, 
as done  by  Oppe  (1979), Ivey et a l .  (1981),  Ceder & Livneh  (1982);  average 
daily  traffic  volume  and  total  VMT as described by Jovanis & Chang  (1986). 
Other  measures used include:  travel  speed as done by Hall  k Dickinson  (1974), 
Lavette  (1977);  tonne-miles;  passenger-miles; vehicle registrations;  weather  and 

12 



vehicle type  from  Jovanis Pr Delleur (1983);  sales of gasoline,  eg F r i d s t r ~ m  & 
Ingebrigtsen  (1991);  and  population. 

aggregated  on a daily, weekly, monthly  or  most  often  yearly  basis,  with  accident 
One of the  main  problems  identified was how to  combine  exposure, which is 

da ta ,  which is discrete by nature. 
Johnson & Garwood  (1971)  offered  the following opinions  on  the  advantages 

and  disadvantages of many  different  measures of exposure. 

Measure 
ale 
When appropri- Comment 

per  head of pop-  pedestrian  data vehicles contain  one  or  more oc- 
ulation  cupants 
per  occupant km effect of age im- exposure levels per  head of popu- 

portnnt  lation  varies  more  with  age  than 
it  does for pedestrians 

per k m  road  indicates  ideal 
location for re- 
mcdial  measures 

per vehicle kilo- colnpares differ- allows for traffic flow 
metres  travelled  ent  types of road 

Jovanis !L Chang  (1986)  included  automobile  and  truck  VMT  derived  from 
a toll  collection  systettl,  the  weather as measured  by  average  hours of snow and 

They  retained  all  but  the weekend variable as valid coefficients in  the  resulting 
rain for the toll  road,  and a weekend binary  variable as explanatory  variables. 

loglinear  regression. 

statistical  problems  with  the use of simple  ratios  to  represent risk. 
See the  section  on  Problenls  with  Regression Models for a discussion of the 

2.~5 Risk compensation 
The  paper  by Fridstrom !J Ingebrigtsen  (1991)  considered  two  basic  types of risk 
compensation.  The  first  theory,  advocated  by  Peltemann  (1975) and Andreassen 
(1991), is that  the  relative  accident risk to  road  users  who  are  not  benefited  by 
the  introduction of a particular  legislation  or  countermeasure  may  increase, Yet 
result  in  no  change in the  overall risk to  road  users  ofall  types.  Thus  the  response 
variables  need  to  be  disaggregated  by  road  user  type  to  obtain a clearer  Picture 
of the  effects  of  the  explanatory  variables  on  different  road users. 

Alternatively,  drivers  may  change  their  behaviour in response  to  changes  in 

legislation.  This  change in Lehaviour  may  mean  that  drivers  are less careful  in 
their  environment,  inFluding  attempts  to  increase  road  safety,  such  changes  in 

a safer  environment,  and  thus  make  the  roads less safe  for  pedestrians  and  other 
non-occupants  of  motor vehicles. Since  it was difficult  to  measure  these  changes 
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in  behaviour.  an  indirect  method  to  account for them w a s  used. I t  involved  the 
simultaneous  regression of the  nutnber of fatal  crashes  and  the  number of fatal 
casualties  per  accident (also referred to as  the  gravity  index)  on  the  same  group 
of explanatory  factors. 

was the  only  explanatory  variable whose effect was  opposite for the  number of 
The  authors’  results were not  conclusive. The  proportion of new drivers 

and  wine consumption were opposing  for  the  two  response  variables,  but  not 
crashes  and  the  gravity of crashes.  The effects of snowfall,  road  improvement 

significant  in  explaining  the  gravity of crashes. 
The  model  form used by the  authors is discussed  in  more  detail  in  section 8 . 3  

and a summary of the  results  lor  various  explanatory  variables  can  be  found  in 
section 6 .  

2.6 Hazard models 

this  idea of risk (or  differing  amount  of  exposure.) 
In a later  paper,  Jovanis 8~ Chang (1989) used a hazard  model  to  incorporate 

There  are a number  of different hazard  models  to  choose  from: 

Independent c o m p e t i n g   r i s k  model Under  this  model,  the  failure  of  one 
risk component would cause a traffic  accident.  However,  it is widely ac- 

Treat et a1 (1977) for example. Also, it  is hard  to  precisely  define  the 
cepted  that  most  traffic  accidents  have  many  contributing  factors.  See 

failure of a risk component  such as weather  and  road  conditions. 

A c c u m u l a t i v e   h a z a r d   m o d e l  Each  individual risk component  contributes  some 
hazard  to  the  system  depending  on  its level. Hazards  accumulate  and  the 
system  fails  when  the  cunlulative  hazard level reaches a threshold  value. 
This  model would be appropriate when the levels of all the risk compc- 
nents  may be easdy  measured;  and  each  individual risk component  does 
have  some effect on  system  failure. 

L a t e n t  system h a z a r d  model Here  the  probability of a failure  at  time i is 
determined by the total hazard  contributed  by  the level of each risk com- 
ponent at that  particular  lime.  This  overcomes  the  problem of defining a 

accidents. 
‘failure’ for  risk components,  and  also  of  specifying  the  specific  causes of 

The  population used was a fleet of trucks in the US, since  the levels of the 

bility tha t  a vehicle  survives untd time t in both  an  additive  and a multiplicative 
various risk components were adequately  recorded.  They  modelled  the  proba- 

latent  hazard  model. 
The  individual risk components  included were: winter,  night,  age,  weight 

& experience of  the  driver,  hours  driving in the last 8 days,  and  recent  hours 
off. They  found  that  the risk of  a severe  accident is strongly  related  to  driver 
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experience  and  environmental  factors  (winter,  night),  whereas  the risk of minor 
accidents is related  most  strongly  to  the  number  of  hours  driving. 

a number of trials. 
Chang & Jovanis  (1990)  extended  their  hazard  model  further  to  account for 

riched  sampling of failure vs censored da ta  would be  required. For instance, 
The  authors  noted  that since accidents  are  such  rare  occurrences, a n  en- 

the  authors  mcntion that Chang  (1987), in a study  on  truck  accidents,  required 
6000 nonaccident  trips  to  obtain a risk factor  that  significantly  contributed  to 
accident  occurrence. 

2.7 Induced  exposure  Index 
Janke  (1991)  showed h o w  exposure  should not be  represented by a simple  num- 
ber of accidents to  V M T  ratio, which may  inflate  the  exposure risk of people 
who  generally  are  only involved in short  trips.  Short  trips  usually  remain  within 
the  city  and  residential  arras,  involving  more  stop/starts  and  much  denser  traf- 
fic. Longer  trips  comprise  mostly  freeway  travel, which has  been  shown  to  have 
a lower rate  of  accident  incldrnce  than  nonfreeway  travel.  Janke  cited  evidence 
from  the  California Bus, Transportation  and  Housing Agency. 

dents  could  also  inflate  the  risk. 
Furthermore, a linear  relationship  between  mileage  and  the  number of acci- 

Cerrelli’s  induced  exposure  method (1973) used a hazard  index: 

hazard  index = liability 
exposure 

where 

exposure  index = \lo lllllocrntly  accident-involved  drivers  in a category 
% licensed  drivers in a category 

and 
liability  intlcx = ’’, accident  responsible  drivers  in a category 

‘“0 licensed drivers  in a category 

the  accident  could be highly subjective,  and  vary widely between  different ob- 
The  main  problem w i t h  th i s  method w a s  that  assigning  responsibility for 

servers,  both  within  the  sanle  rrgion,  and  from  different  regions. Wasielewslti 

induced  exposure  model, b u t  relaxed  the  assumption  that  only  one  driver is 
& Evans  (1985)  created  an  Induced  responsibility  model  similar  to Cerrelli’s 

responsible.  They  assigned  different  degrees of responsibility  to  crash-involved 
drivers.  Nevertheless,  it  remained a highly  subjective  measure. 
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Part I1 

Choice of explanatory variables 

3 Before-and-after  studies 
These  papers  are  ofinterest  to  our  investigation  because  the  models  used  often 
can  be  applied in an  explanatory  context.  Over  the l u t  decade,  the  techniques 
for  comparing  road  fatalities  before  and  after  some  countermeasure  har  been 
introduced,  have  become  more  sophisticated. 

3.1 Simple  before/after  comparison  method 
The  simplest,  most  naive  method,  consists of fitting a simple  regression  line 
over  time  to  the  data,  and  determining  whether  the  slope is different  before  and 
after.  (See  Brinkman  (1986). ) Recently,  however,  more  explanatory  variables 
have  been  incorporated  into  the  regression  before  determining  whether  there 
has  been  some  change.  Wagenaar (1984) ,  for  example,  suggested  that  economic 
factors  may  overwhelm  the  effects of legislative  countermeasures, as supported 

ditions,  such as increasing  unemployment  rate,  are  associated  with  increased 
by common  health  literature  findings  that  ‘negative  changes  in  economic  con- 

incidence of health  problems.’ 
Pcrsaud  (1986) believes that  many  traffic  engineers  hold  the  misled belief 

that   the  effectiveness  (or  reduction  in  accidents)  of a safety  measure  depends 
on  the  number of accidents at the  location  before  installation of the  counter- 
measure,  and  that  the  established effectiveness of a safety  device  may  often  be 
attributed  to  the  ‘regression-to-mean’ effect. 

high  values  may be observed before a change,  and low values afterward. A good 
This  ‘regression-to-mean’ effect is such  that  it is entirely due  to  chance tha t  

explanation of this effect can  be  found in Hauer (1986), p3. Given a random 
variable which fluctuates  around  its  mean,  the  best  estimate of a future  value 
of this  random  variable is just  its  mean.  So  even if we observe  an  unusually 
high  value at a particular  time,  then we still  expect  the following observation 
to  be  the  mean.  Hence, a downward  trend  towards  the  mean is observed  after 
an  unusually high value is observed. 

simplified  before/after  evaluation techniques. He advocated  the use of some 
A paper by Brinkman  (1986) outlined  the dangers  inherent in using these 

basic  statistical  principles:  using  data  over  as  long a time  period  before  and 
after, as is  possible;  randonlised  control  groups;  comparison  groups  (matching); 
time  series  designs;  ernpirical  bayesian  statistics. 

An  earlier  paper  by  Johnson Rr Garwood  (1971)  suggested  that  there  should 
be  ‘allowance  for  growth  of  traffic,  weather,  changes in legislation’  and  that  ‘the 
seasons  be  equally  represented.’ 
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3.2 More  sophisticated  techniques 

for  evaluating  countermeasures. T h e  response  variable  was  observed  for  two 
Fortenberry  et  al. (1985)  described  ahonparametric  quasi-experimental'  method 

different  locations: a treatment  (with  intervention),  and a control.  They  par- 
titioned  the  observations  before  and  after  the  intervention as the baseline and 
operational  period  respectively.  Then a regression  line  was  fitted to  the  baseline 
and  operational  period  separately  for  each  location.  They  proceeded  to  compare 
the  amount of deviation  from  the  regression  line for the  operational  period of 
each  location  using a form of the  Wdcoxon  statistic.  Nevertheless,  the  statistic ' 

they  derived  was  still  based on a simple  regression  over  time. 

to  compare  before  and after  accident  rates.  They  also  used  the  rest of Australia 
The  Expert   Group on Road  Safety (1978)  used contingency  table  analysis 

as a control  when  considering  data for Victoria,  which  was  the  first  state  to 
introduce  compulsory  seat-belt  wearing. However, the  authors  decided  that 
the  responses  from  the  other  states were confounded  by  the effect that   the 
widespread  publicity of Victoria's  new  legislation  obtained. 

inflated if the  only  sites  where  the  number  ofaccidents were measured were those 
Danielsson (1986)  proposed  that  the  effect of Countermeasures  may  be over- 

notorious for having  high  accident levels. The  author  based  his  method  on  that 
used by Hauer  (1980a).  The  number of accidents  before  the  countermeasure  was 
modelled  as a Poisson  distribution  with  parameter X; for the  ith  geographic lo- 
cation  affected by the  countermeasure,  The  number of accidents  occurring  after 
the  countermeasure  was also modelled as a Poisson distribution  with  parameter 
aX;, where a represented  the  proportional  change  in  the  accident  rate. 

of accidents  after  the  countermeasure w a s  introduced.  The  traditional estima- 
Danielsson  compared  the  performance of three  estimators of the number 

tor  lost 30% efficiency;  the  nlaximum  likelihood  estimator  was  very  accurate, 
independent of the  true  value of a and  also  best for large  values of a;  and 
Hauer's  estimator  underestimated  the  effect of the  countermearure,  although it 
performed well for  small a.  

3.3 Arguments  against  the  effectiveness of countermea- 
sures 

Several  authors,  especially  Peltzmann (1975)  and  Minter (1987) ,  have  suggested 
that  the  fatality  rate is decreasing  irrespective of any  changes in legislation. 
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4 Regression analysis 

to  characterise  studies  by  the way in which the  variables of interest  have  been 
In  the  road  safety  literature, i t  has  become  more  common  for  researchers 

observed.  This gives  rise to  three  ‘types of studies’: 

longitudinal  studies  (often  referred  to as time-series  studies),  where  the 
observations  are  obtained  from  regularly  spaced  time  periods,  measured 

is changing  over  time. 
at the  same  location. Here the  emphasis ofthe  study  is  how the  variable 

crossectional  studies,  where  the  observations  for  particular  time  periods 
are gathered  from  direrent  geographical  locations.  Here  the  emphasis 
is on  determining  whether  the  observed  phenomenon  recurs in different 
locations. 

pooled  crosssectional  longitudinal  studies which intend  to look at the  effect 
of both  the  geography  and  time  on  thc  variable  (hence  the  term  spacio- 
temporal. j 

on  road  crash  fatality rAtes. He began  with a description o f a  pivotal study by 
Zlatoper  (1989)  presented a ‘selective  survey’ o f the  United States literature 

Peltzmann  (1975).  Its  controversial  finding,  that  there  was  no  decrease in road 
fatalities  after  the  impleuentation of new legislation,  sparked  many  criticisms. 
Peltzmann’s  study is a n  ideal  examplc of the  typical  regression  analysis of road 
crash  fatalities,  and  the  subsequent  criticisms  illustrate  the  many finer points 
which need to  be considered. 

This  paper is also of luterest  because it supports  the  unpopular view tha t  
road  fatalities  are  decreasing  anyway,  irrcspcctivc of new legislation. See the 
section  on  Before-and-After  analysis for more  discussion  on  this  long  term  down- 
ward  trend in fatalitlcs 

4.1 Peltzmann’s initial model 
Initially,  the  response  varlable in Peltzmann’s  (1975)  model  was  the  annual  fa- 
tality  rate  per vehicle  nlile, standardised for type of driving  (urban,  rural)  and 
for  the  type of road  (lughwoy  or  other).  Three  different  road  crash  fatality 
rates,  also called motor-vehicle  death  rates, in thc US were modelled:  total, 
non-occupant  (pedestrians,  bicyclists,  motorcyclists)  and  vehicle-occupant (tc- 
tal  minus  non-occupant).  The  study  compared  annual  data  from  prelegislation 
years, 1947-1965 to  postlegislation  years, 1966-1972. 

The  cxplanatory  variables used were as follows: 

Cost of an a c c i d e n t  In  order  to  measure  the  cost  component of a n  accident 
that is typically  insured,  the  aurhor used the  index of direct  accident  costs 



(property  damage  and  medical  costs)  multiplied by an  insurance  loading 
factor  (ratio of premiums  to  benefit  paid.) 

I n c o m e   T h e  real  earned  income  per  adult  over  fifteen  years of age. 

A lcoho l   The  alcoholic  intoxication level amongst  the  population at risk war 
measured by the  consumption of distilled  spirits  per  persons  over  fifteen 
years  old. 

D r i v i n g  speed was measured by the  estimated  speed of motor vehicles on 
noninterstate  roads  during  offpeak  hours. 

Youth The  driver  age  distribution was represented  by  the  ratio of 15- to 25- 
year-olds in the  population  to  older  people. 

Trend 

4.2 Criticisms 

income,  time  trend,  and  speed  variables were highly  correlated.  Robertson 
Correlation be tween   exp lana to ry   va r i ab le s   Joksch  (1976)  found  that  the 

differed in  the  prelegislation  and  postlegislation  periods.  Peltsmann (1976) used 
(1977)  noted  that  the  paired  correlations  between  the  explanatory  variables 

first  differences to avoid  these  correlations. 

identifying  relationships  between  the  explanatory  variables,  and  omitting  one of 
Other  methods used to  remedy  multicollinearity  are:  obtaining  more data, 

the  correlated  variables. 

C h o i c e  of r e sponse   va r i ab le :  rates or caw totals? Joksch (1976) echoed 
many  critics of Smeed (1949)  in questioning  the  validity of the use of a fatality 
rate ar a regression  response  variable. Basically, using  the  ratio of two  variables 
as a response  variable  assunles a linear  relationship  between  the  two. If this 
assumption is wrong,  then  additional  correlation  may  wrongly  be  introduced 
into  the  model. 

fatalities was regressed on vchicle  miles. A regression coefficient which was 
In  reply,  Peltzmann (19%) investigated  two  things.  First,  the  number of 

insignificantly  slightly less than  one was reported.  However,  it was noted  by 

either. 
Robertson (1977)  that  this  coefficient was not  significantly  different  from  zero 

Secondly,  the  number of fatalities was used as the  response  variable  in  the 
initial  model.  This  produced a similar  pattern in the  regression  coefficients as 
obtained  when  the  fatality  rate was used a response  variable. 



Unstable regression  Joksch (1976) also  found  that  the  regression was  un- 
stable  aiter  periornling a validation  analysis.  The coefficients of some  regressors 
were not consistently  significant  under a slight  change to the  model,  for  example, 
addition  or  deletion of other  regressors,  or a change in the  iunctional  iorm. 

Omit ted   var iab les   The   n la jorcr i t ic i sm was  tha t  various  important  variables 
had  been  omitted  irorn  the  regression.  Thus,  the  change  (or lack thereof)  in 
fatalities,  could  not solely be attributed  to  the  introduction  in  legislation,  since 
Peltzmann’s  initial  model  only  accounted for s i x  other  factors.  Furthermore, 
the  estimated effects of  the  factors  that  are  included in a model  could  be biased 
if important  variables  are  not  accounted  for.  Other  variables  suggested were: 

Graham & Garber (1984) vehicle size  distribution,  no-fault in- 
surance 

Joksch (19iG) highway  improvements,  weight  and 

Zlatoper (1984) 
size of vehicles 

driving as measured by the  ratio of ru- 
volume of driving, vehicle size, type of 

ral to  urban vehicle miles 
lniles of interstate  highways Garbacz (1985) 

C o r r e c t   r n e a s u r e n l e l ~ t  oC the desired  var iables   Robertson (1977) ques- 
tioned  whether t h e  cos:-o?-nn-nl-cident variable was  a valid measure of crash 

The  a l ternat ive  n~rasurc~ucnt  b r  ‘youth’ of  the  driving  population was the ra- 
costs,  and  suggested altrrnxtlvt. expressions  for a few o i  the  other  variables, 

tio of drivers  in  the 1 5 - 2 i  year  old age  group t o  the  total  number of drivers 
involved  in  accidrncs Tlw ;>c:centage of motorcycles  registered as compared 
to all  vehicles registered could  account for the  shift  in risk irom  occupants to 

spirit  consumption 
non-occupants.  The aIcahoI 1nrasure  could  account for beer as well as distilled 

The  author  found  that   he correlation  problem was no longer  present,  and 
tha t   the   impact  o i  legislation was significant  when  the  definitions of these vari- 
ables  were  used.  Peltzmann  colnmcnted  that  data-dredging will often  produce 
the  required  results,  and noted :he arbitrary  nature of the  definitions,  question- 
ing  their  theoretical  justification. 

C h o o s i n g  the c o r r e c t   f u n c t i o n a l  form Graham & Garbcr (1984) found 

a logarithmic  form  may b r  incorrect,  and  that  the  linear  form  should at least 
that  the  model was sensitive to  the functional  form  used.  They  suggested  that 

be  investigated. 

I d e n t i f y i n g   h i e r a r c h y  of r e l a t ionsh ips  amongst explanatory var iab les  
Instead of using  just  one  regression  equation  relating all of the  explanatory 
variables, a number  oiaurhors  have  suggested  the use ofsimultaneous  regression 
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equations.  (See  Zlatoper (1989) and  Hakinl e t  o l ( l991)  for  more  details.) Some 
explanatory  variables  could  be regressed on others to  obtain  estimates of these 
variables  to  be used  in the  fatality  regression.  This  also  ensured  that  prediction 
could  proceed  more  smoothly,  since  predicted  values  of  the  regressors  could  be 
used  in  the  main  regression  equation. 

4.3 Crosssectional studies 
Even  though  the  emphasis in these  studies is not  the  pattern in fatalities (or 
fatality  rates)  over  time,  they  still  offer  interesting  suggestions for the choice of 
explanatory  variables. 

Peltzmann’s (1975)  model used the following variables to  explain  fatality 
rates  for 1970 in different  states of the US. The  per  capita  death  rate,  adjusted 
for the effects of interstate  highway  travel was related to: . the  fraction of all cars, of which  had  been  subjected  to  the  new  motor 

vehicle regulations,  or  younger 

per  capita  fuel  consumption 

e speed  limit on main  rural  roads 

ratio of urban  to  rural  driving 

e vehicle mile in urban  and  rural  context 

alcohol,  youth,  accident  cost  variables as described  above 

disposable  income  per  capita 

ratio of earned  income  per  adult  to  unearned  income  per  capita 
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4.4 Problems with regression models 
Hautzinger (198G) outlined a number  ofpoints  to  be  careful  ofwhen  performing 
a lineal  regression: 

A high value of R2 does  not  necessarily  indicate a good  model. 

A  sound  theoretical basis is required  for  the  structure  of  the  model  and 
the choice of the  explanatory  variables. 

Multicollinearity  between  variables  should  be checked. 

Autocorrelation of errors,  and  instability of error  variance  should also be 
checked. 

High level aggregation  should be avoided  wherever  possible as this  reduces 
the  sample  size, oCten to  less than  twenty. 

Standard  linear  regression  models  should  not  be  applied  to  data  disaggre- 

section  models  should be used since  they allow for decomposition of error 
gated by geographical  location;  instead  multiregression  or  temporal  cross- 

terms  into  components.  Otherwise,  estimation,  inference  and  forecasting 
may  become  inefficient. 

In  longitudinal  studies  over  time,  the  significance of terms  must  be  main- 
tained  even for different  base  periods. 

Some  other  criticisms of models,  presented by Mahalel (1986) and  An- 
dreassen (1991) among  others: 

The  risk to  an  individual  driver 01 passenger is often  characteriscd  by 
a simple  number of  accidents IO the  amount of exposure  ratio.  However, 
this  requires a linear  relationship  between  the  numerator  and  denominator, 
which  may  cause  some  problems if risk varies  with  exposure level. . Some  systems  function  more  effectively at certain levels of exposure  and 
less effectively at others. For example,  traffic  light  reduce  accidents  in 
high  traffic  volume  arras  bnt  often  increase  the  number of accidents  in 
low traffic  volume  arras. 

e Spurious  correlations may be  introduced  into  the  model if any two vari- 
ables  are  related to  x third  variable. 

The  number of fatal  crashes  should  be used  in preference to the number 
of  fatalitles,  since  the  latter is a function of the  former,  and  most of the 
explanatory  variables used by reseacchers  actually  affect  the  number  of 
fatal  crashes, n o t  the  number  offatalities. 

The  number of crashes  should  be  disaggregated by road  user  type.  Pedes- 
trian  and  motor/pedal cyclist deaths  have  been  shown  to  behave differ- 
ently  to  motor vehicle deaths. 
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5 Economic relationships 
The  s ta te  of the  economy is known to affect  many  different  phenomena. A 

for  road  safety. 
number of researchers  have  included  economic  variables  in  explanatory  models 

Foldvary  et a1 (1971)  found a relationship  between  economic  trends  and  road 
accident  trends in the  Australian  context. He stated  that  ‘slump  conditions d i c  
couraged  inexperienced  drivers  from  entering  the  driving  population,  and  these 
were the  drivers  with  the  worst  driving  record ... the  total  milage  travelled  during 
a slump would be less.’ So, he  suggested  that a n  ideal  covariate  for  measuring 
the  extent  of a slump would be  the  number of teenagers  becoming eligible to 
drive  in a particular  year.  However, as this  was  difficult  to  obtain  in  practice, 
Foldvary  used  the  urbanisation  rate,  and  the  number of car  registrations,  to 
explain  the  number of fatalities in a given year.  Here, the  urbanisation  rate was 
simply  the  percentage of the  population which reside in urban  areas. He found 
that  the  log of the log of the  fatality  rate  (per vehicle) varied  linearly  with  the 
percentage of urbanisation. 

Aldman (1980)  showed that ‘a curve  representing  business cycle variations 
also  fits  the  accident  curve  quite well’, when  looking at monthly  data. 

Hedlund  et nl (1984)  coulpiled  results  from  other  studies  and FARS data  for 

concluded  that  econonk  clfrcts,  rrflected by VMT, were the  main  contributing 
1980 and 1982 to  explain a 14% decrease in fatalities in the US. The  authors 

factors,  with  driver-rducation,  increased RDU and  decrease in number of youths 
having  little effect. 

5.1  Recession  impact 

rate in the US. The  work of Joksch & Wuerdemann (1973)  was  cited,  among 
A paper by Eshler (1977)  related  the  state of the  economy  to  the  fatal  accident 

others, as an  example  where a strong  relationship  between  the  economy  and 
fatalities  was  found. 

The  general  econonlic  measure  considered  was  the  delineation  of recession 
and  non-recession  periods  as  defined by the  National  Bureau of Economic Re- 
search  (NBER). Briefly, a recession period may be  indicated by: 

duration a decrease in the  real  Gross  National  Product  (GNP)  for  two consec- 
utive  quarters,  and a decrease in industrial  production  over s i x  months 

depth a 1.5% decrease in real  GNP, a 1.5% decrease  in  nonagricultural em- 
ployment,  and a 2 point rise  in unemployment  to a level of at least 6% 

diffusion a decrease in nonagricultural  employment  in  more  than 75% of in- 
dustries as measured over six  monthly  periods,  observed  for s ix  months or 
longer 
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cession periods  coincided w i t h  a 'levelling out '  of the  fatality  rate.  The  author 
When  graphed  against  the  annual  fatality  rate,  it was noticed  that  the re- 

also  noted  that  the  energy crisis of 1974 and  the  lowering of the  speed  limit at 
approximately  the  same  time would have  affected  the  fatality  rate. 

sen as more  direct  measures of the  impact of the  economy  on  drivers. 
The  unenlployment  rate  and  the  average  number  of  hours  worked were  cho- 

gression  model wit11 a nonlinear  long-term  trend, which accounted for 8 9 R o f t h c  
The  resulting  model was fitted in steps,  but was equivalent  to  fitting a re- 

variation; a linear  unenlployn~ent  term, which was significant;  and  the  average 
number 01 hours  worked, which wasn't  significant. 

5.2 Indirect  economic  effects 
Many  authors  have  found  that  the  energy  crisis  in 1974 affected  many  differtnt 
variables which may  have  affected  road  safety.  For  instance,  Godwin (1984)  
found  that  gasoline  prices  increased,  reduced  speed  limits  legislation  was  intro- 
duced,  and  even  patriotic  fervour  may  have  altered  the  behaviour of drivers. 

5.3 Unemployment 
Cooper (1984)  and  Partyka (1984)  found  that  unemployment w a s  a strong pre- 
dictor for the  frequency of accidents.  Mercer (1985) took  this  one  step  further 
and  incorporated  several  other  variables as well as unemployment  into a model 
for  the  number  offatalities.  The  predictor  variables used were: 

monthly  unemploynlent  figures: for the  percentage  males  and  iemales, 
aged 15-24 and over 24. 

monthly  average  percentage of passenger vehicle casualty  accidents  that 
were  alcohol-related. This was claimed  to  be  more  stable  and  therefore a 
superior  predictor than  just  the  prevalence of Driving  under  the  Influence 
(DUI).  

monthly  average  monthly  percentage of occupants  in  passenger vehicle 
casualty  accidents  who were using  restraint devices. This w a s  claimed  to 
be  underestimating the actual  rate of restraint  device  usage (RDU) by 
12-15%. 

monthly  average  age of drivers in passenger vehicle casualty  accidents. 
This  average  reflected  the  changes in age of the  driving  population as a 
whole, but was considered  to  be of questionable  validity. . monthly  average  percentage  males as drivers  in  passenger vehicle casualty 
accidents. 

time  (linear  variable) 
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tionships  among the  predictor  variables  and  the response  variable  (the number 
Mercer  then calculated  Penrson's  correlation coefficient  for  each of the rela- 

of fatalities  or  the  number of casualties.) Also calculated were the  partial  corre- 
lation  matrices,  designed  to  control for the  effects  ofthe  unemployment  variables 
and for the  effects  of  unemployment  and  driver  demographics. 

The  findings were that as unemployment  rose,  the  average  age of drivers 
in  casualty  accidents  rose,  and  the  percentage of males BS drivers fell. This 

young  male  drivers  from t h e  driving  population. The  same  change in driver 
was  easily  explained by hypothesising  that  unemployment  increases  removed 

demographics was observed as RDU and DUI rose. 
Mercer's  conclusions w e r e  that  

I . . .  changes in  uuettlployment levels arguably  produce  changes  in 
driver  demographics, whirl1 then  appear  to  be  related  more  strongly 

drinking  drivlng  and  restraint  device  use ... changes in traffic  ac- 
to  changes In acctdent  frequency  and  severity  than  are  changer  in 

cident  figures m u 3 1  be considered  within  the  context of economic 
trends  and  driver  dznlographics tn addition to  driver-related be- 
haviour  such  as  restraint  device use and  drinking  driving.' 

unemployment  may  concrlvnbly affect road  safety: 
Wagenaar (1984)  suggested  that  there  seem  to be two  different  ways  in  which 

1.  High  unemploymcnt :rnd the  associated  reduction  in  disposable  income 
could  lead  to decrrawd travel  by  private vehicle, and  thus  reduce  the 
number of road crashes, since  the  exposure  to risk is reduced. 

2. Alternatively, h i g h  unemployment  could  lead  to  more  stress  in  the  driving 
population, which could 111 turn  cause  more  aggressive  driving,  leading  to 
an  increase in ruad ~ 1 x 1 1  rates. 

by  monthly  data  from  Janusry l 9 i 2  to January 1982 in Michigan,  on  the  number 
Wagenaar  aimed to  cstat~811ih which of the  above hypotheses were supported 

of drivers  injured  and k i l l r r l  i n  road  crashes. A Box-Jenkins  time-series  model 
was  employed;  details a t ~ J  mnclusions  are  presented in the  section  on  Time 
Series  analysis. 

Partyka (1984)  regressed thr annual  number of fatalities in the US on  the 
number of unemployed wotkcrs.  the  number of employed  workers,  the size of 
the  the  nonlabor  workforce w i t h  an  intervention  variable for the 1974 fuel  crisis 
and  the lowering of the US national  speed  limit. 

warned us of the following liniitations of the model: 
The  value  of RZ for this  model  was very high, 98%. Nevertheless,  Partyka 

1. The  effect  of  omitted  variables was not  predictable.  Some  variables  that 
were omitted,  such  as  improvements in roadway  and vehicle design,  and 
driving  habits, were difficult  to  distinguish  from  the  long-term  trend. 
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2. The  model  only  showed  where a relationship  existed  between  variables, 
and  did  not  imply  any  cause  and  effect  relationship. 

3. Predictions  beyond  the  range of the  data  would be  unreliable. 

4 .  The  model  assumed  independent  errors. 

1989  affected  previous  results. The  value of R’ was virtually  the  same;  and  the 
In  a follow-up  paper,  Partyka (1991) explored  how  the  extra  data  from 1983- 

coefficient  estimates  varied  only  slightly  and were still  significant a t   the  1% level. 
However,  the  actual  fatalities  for 1983-1989  were very  different  to  those 

predicted by the  model  based on the 1960-1982 data.  Omitting  the  variable for 
the  number  olemployed  workers  gave  slightly  better  results,  but  the  predictive 
power of the  lnodel  was  still  not  good  enough.  The  additional  data  suggested 
that  ‘something  new’  happmcd in 1983, which could  possibly  be  explained  by 
the  increase in seatbrlt use and  the  decrease  in DUI. 

Reinfurt e l  ul (1991)  also  extended  Partyka’s 1984 model in several ways. 
They  considered  suicides  and  homocides as well. They  stratified  the  fatality 
da ta  by age  (16-24, 25-44,  45-64 and 65+), race  (white v5  non-white),  and  sex. 
Two  types of models were investigated:  regression  models  based on Partyka’s 
1984  model;  and  structural time series  models  bssed on Harvey  and  Durbin 
(1986). 

of R2 for a full regression  model  including  Partyka’s  unemployment variables. 
The  authors reported  parameter  estimates  and  standard  errors,  and the  value 

These  values  were not reported for a model which did not include  the non- 
significant  variables.  They  found  that  the  best fits were obtained (0.70 < R* < 
0.95) for the  models for the  youngest  and  oldest  agegroups, for both  races  and 
both  genders. 

They  found  that   an ARIMA model  based on  Harvey  and  Durbin’s  (1986) 
structural  time  series  model w a s  better at predicting  short-term  variation.  Two 

speed  limit,  had a significant  effect  on  fatalities.  The only unemployment vari- 
intervention  variables, for the oil embargo  and  the  introduction of the  55mph 

able  included  in  this  model was  the level of employment. 

nificantly  to  motor vehicle deaths,  but  not  to  suicides  and  homocidcs. 
It was interesting to note  that  the  unemployment  variables  contributed sig- 

5.4 Availability of medical  facilities 
The  definition  of a road  fatality differs from  country to country. It can  range 
from  death at the scene of the  accident  (in  Spain)  to  death  within 30 days of 
the  accident  (in  Australia.)  In  the  intervening  period  between  the  accident  and 
death,  the  casualty is highly likely to  be  hospitalised,  or at least  examined  by 
a physician.  Thus,  the  availability of medical  facilities  could affect whether a 
serious  injury  becomes a fztality. 
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cluding  the USA,  were correlated  with  the level of  medical facilities available, 
Jacobs & Hards ( 1 9 i i )  found  that  fatality  rates for several  countries, in- 

expressed in terms of population  per  physician  and  population  per  hospital  bed. 
This  model  failed  for a few developing  countries. 

density  increased,  the  fatality  and  casualty  rates  decreased. As the  population 
The  findings were as follows. As the  number of vehicles or the vehicular 

per  hospital  bed  increased  or  the  per  capita  Gross  National  Product  (GNP) 

affected  by  the  population  per  physician,  and  to a lesser extent  by  the  number 
decreased,  the  fatality  rate  increased.  The  fatality  index w a s  most  significantly 

of vehicles and  the  per  capita  GNP. 

ent  countries, for three  separate  years,  they  modelled  log  fatality  and  casualty 
Jacobs k Cutting (1986) extended  Smeed's (1949) paper.  For  several  differ- 

rates  per  registered vehicle, and  the log fatality  index,  the  gravity  index,  the 
proportion of all persons  injured  who  are killed. The  explanatory  variables con- 
sidered were:  vehicles per k n l  road,  road  density  (km  road  per  km'), vehicles 
per  person,  GNP  per  capita,  population  per  hospital  bed,  and  population  per 
physician.  Three  different  response  variables were investigated:  the log fatality 
rate  (per million vehicles),  the log casualty  rate  (per million  vehicles) and  the 
log  fatality  index. 

the  three  ditierent  response accident indicators. In  addition, GNP per  capita, 
Vehicles per  person were highly significant contributors to  the increase in 

vehicle  density, and population  per  hospital  bed, were found  to  be  significant 
contributors  to  the  fatality  rate.  Population  per  hospital  bed was also the  most 
significant  contributing  factor  to  the  increase in fatality  index. 

gency  medical  facilities on road  fatalities,  when  accounting for other  variables. 
Lave (1985) found a negative,  sometimes  significant, effect for  access t o  emer- 

See  section 6 . 3  for Inore  details on the  model used. 

5.5 Investment  into traffic safety  facilities 
The  model used by Murata (1989) accounted for the  stock of traffic  safety 
facilities, the  annual  budget  norrnalised  by  the  Gross  National  Product  (GNP) 
and  the  total  trip  length  (VMT). 

N 

where S.r = stock  of  trafic  safety  facilities  after IV years  from  the  initial  year; 
SO = stock  existing in the  initial  year; B1 = yearly  budget; X is a parameter  to 
be  estimated.  Both  stock  and  budget were expressed as the  proportion to the 
GNP.  Then,  to  relate  this  relationship  to  the  number of accidents  every  year, , 
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where i was the  year; Et was the  estimated  number of accidents; Tr war the 
total trip  length  (VMT); St w a s  the  safety  stock as estimated  from  the  equation 
above;  and k was a constant. 

Hence. 

where i o  was ihe Initio1 year,  and k then  represented  the  effectiveness of the  
traffic  safety f a d t i e s  in prrvention of accidents. 

Frigstrmn & Ingebriglsrn (1991) calculated  monthly  indices  describing  the 

length in Norwegian  countries.  Investments  in  county  roads  increased  safety,  but 
relative  increase in road capital by country  and  national  authorities  per  km  road 

decreased for tratiollally-conlrolled  roads. The  authors  did  not  expect  to  obtain 
this  type  of  result,  and suggested tha t  classification  error  between  county  and 
national  roads  may have  inllurnced  the  results. 

5.6 Socioeconomic variables 

5.6.1 GNP 

Road  fatalities  are  generally  expected  to rise BS GNP increarer  according  to 
Havard (1979) and  Hnigllt (1960),  for example.  Wintcmute (1965) used an 

opment,  nations  experience: a demographic  transition,  when  infant  mortality 
epidemiological  argumrnt  to  explain  this.  At  specific levels of economic devel- 

rates  and  fertility  ratcs  decrease;  and a n  epidemiological  transition,  when in- 
fectious  and  nutritional  diseases  are less common  than  chronic,  degenerative 
conditions.  Thus,  as  nations  achieve  this level of socioeconomic  development, 
their  use of motor vehicles increases. 

Since  the  per  capita G S P  is a'widely relied upon  indicator  ofdevelopment', 
appropriate  indicators of t h e  socioeconomic  development level were taken  to 
be: the  per  capita  gross  national  product  (PCGNP);  income  distribution, which 
could  be  measured  by t h e  Gini  Indicator;  and  the  population.  The  Giniindicator 
is a number  between 0 and 1. where  higher  values  indicate a large  deviation  from 
a uniform  income  distribution. 

as measured by the P C G N P  and motor-vehicle  mortality.  The  relationship 
A direct but weak corrrlatian was found  between  economic  development, 

was  strongest  for low development (low PCGNP).  Thus  poor  and  intermediate 
countries  had  rapidly  increasing  Inotor vehicle mortality  ratcs. It w a s  also found 
tha t  lor  the  poorer  countrips,  the  income  indicator  accounted  for  much of the 
variation  in  fatality  rates.  Wintenlute  suggested  that  the  income  distribution 
may  be  related  to  the level o i  urbanisation. 

The  author  cited  Jacobs Pr Sayer (1963)  who  suggested  that  the  model  may 
be  extended by considering  geography,  climate, level of urbanisation,  traffic  mix 
and  flow, mfrastructure  and  development,  availability of medical  services, and  
cultural  trends. 
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5.6.2 N e w   c a r   r e g i s t r a t i o n s  

Hautzinger (1986)  looked a t  how the  general  socio-economic  climate  could  affect 
the  annual  rate  ofaccidents  amongst  insured  people covered by a large  insurance 
company.  It was considered  appropriate  to  use  general  population  measures 
since  the  company's  marketshare was relatively  large. The  authors considered 
a number of socio-economic  measures: 

e total  annual  car  mileage 

e aggregate  income  variates 

the  number of new car  registrations 

consumption of private  households 

price  indices 

labor  forcr  data 

year t as a loglinear  rrgression  model  incorporating  the  effects of time  and  the 
Finally,  two  models were chosen. The  first  modelled the  accident  rate  in 

seasonal effect of the  time  series of car  registrations  (ratio of the  number  ofnew 
car  registrations in year t to  the  corresponding  trend  value,) 

used: 1961-1982 and 1970-1982. The coefficient  for the  time  trend was signifi- 
Two  diffrrent  base  periods  far  estimating  the  regression  coefficients were 

cant in both  cases,  but  the  corfficient for the  seasonal effect of new  car  registra- 

from 0.84 t o  0.54 as the  base  period was shortened.  The  Durbin-Watson  statis- 
tions  was  significant  only for the  shorter  base  period.  The R' value  decreased 

of autocorrelation.  This  prompted  the  use of growth  rates. 
tic for the  shorter  base  period was significant,  indicating  the  possible  existence 

The  growth  rate of the  accident  rate was regressed  on  the  growth  rate of 
the  seasonal effect of new car  registrations.  (The  growth  rate of Yt is Ayt = 
( y t  - Y l - l ) / Y l - l , )  An R' value of 0.17 was obtained  for  the  longer  base  period. 
However,  the  coefficent for the  change  in  new  motor vehicle registrations was 
significant over both  base  periods.  Furthermore,  the  Durbin-Watson  statistic 
indicated  that  the  autocorrelation  had  been  reasonably  accounted for. 

This  model  for  accident  rates was then  used  in a supermodel for accident 
damage  costs. 

Fridstrem PC Ingebriglsen (1991) found  that  the  proportion of new  drivers 
adversely  affected  safety,  yet  unexpectedly  favourably  affected  the  severity of 
crashes.  This  could  be  dur to the  reduced  speeds of inexperienced  drivers, which 
would  lead  to  decreased  severity  of  crashes  yet  possibly  cause  more  crashes. 
However,  previous  studies,  such  as  Wasielewski (1984) ,  found  that  speed was 
inversely  related  to  age  and/or  experience. 
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5.7 Discontent 

aggressiveness in society rise, t h e  number of injuries in road  crashes  increases. 
Sivak (1983)  found  evidencf to  support  the  hypothesis  that as violence and 

The  author  measured  the level of violence by the  number of violent and  property 
crimes,  the  number of  police c d l s  for domestic  disputes,  suicide  rates,  and  the 
number of worker  strikes. 

5.8 Youth 

with lower fatalities  amongst  young  drivers  in  various US states. 
Wagenaar ( 1 9 8 3 )  finds that a higher  minimum legal drinking  age  is  associated 
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6 Other  explanatory variables 

Apart  from  economic  considerations  there  are a number of other  explanatory 
variables which have  been  investigated by various  researchers. 

6.1 Level of vehicle  inspection 
A nuntber of studies  have  considered  whether  the level of vehicle inspection 
has  affected t h e  numbers of road  fatalities, in varying  degrees of sophistication. 
One of the  first  studies in this  area,  Mayer & Hoult (1963) ,  looked at  whether 
four  different  categorirs of inspection  in  different  states affected fatalities  over 
a period of twelve years.  Buxbaum & Colton (1966) based  their  analysis on 
Mayer & Hoult,  but  includzd  extra  variables,  namely  gasoline  consumption  per 
vehicle, and  the  nuntber of vehicles. 

Fuchs Rr Leveson (1967) included  many  more  econometric  variables:  age 
of driver,  education,  median  income, fuel consumption  per  capita,  population 
density,  alcohol  consumption  per  capita,  socio-economic  variables  and a binary 
variable for inspection.  The  result w a s  a non-significant  contribution  from  the 
level of inspection. 

regression  on  among  others, the  annual  number  ofdeaths,  and  the death  rate  per 
A  more  recent  study  by Loeb & Gilad (1984) used an  even more  complex 

VMT:  time  variable as an  indicator of technological  change,  maximum  highway 
speed,  gasoline  consumption  the  number  oflicences  revoked  for DUI, per  capita 
personal  income,  population,  the  number of motor vehicle registrations,  the 
number of licenced drivers, vehicle mileage GNP price deflator,  inspection level, 
dummy  variable for World  War I1 and  the  great  depression.  They  found  that 

the  most  significant  contributions  to  the regression. 
time,  personal  income,  population, level of inspection  and  World  War I1 made 

Garbacz & Kelly (1987) investigated  the  impact of compulsory  motor vehicle 
inspection  with  the  inclusion  of  three  explanatory  variables  representing  three 
levels or  inspection:  biannual,  annual  and  spot.  The  basic  model  was  taken 
fi;m Garbacz (1985), where a double-log  functional  form  was  used  for all of 
the  variables.  Fatality  rates  for  three  categories of road  user were modelled: 
total,  occupant  and  non-occupant.  The  explanatory  variables  used were: the 

repair  services indexes of the  CPI; Peltzmann’s  youth  indicator; per  capita con- 
real  disposable income per  driver; weighted  sum of the  medical care  and auto 

sunlption of spirits, wine and beer adjusted for alcohol  content;  ratio of vehicles 
equipped  with  regulated  safety  equipment;  dummy  variable for 55mph  speed 
limit  legislation;  miles of interstate  highways. 

level,  one  ntodel  including  all  inspection level variables, and  one  model  including 
Five  models were investigated:  three  separate  models  for  each  inspection 

the  ratio of the vehicles subjected  to  any  inspection level to  the  total  number 
of registered vehicles. 

The  authors  found  that  income,  alcohol  and  youth  had a positive  effect  on 
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the  fatdity  rate,  whilst  accident-cost,  'safe' vehicles, speed  limit  legislation,  and 
interstate  highway varilrbles had a negative  effect.  Apart  from  the  alcohol  and 
income  variables,  all  regression coefficients were significant at the 10% level or 
less. However,  inspection level did  not  appear  to affect the  fatality  rate. 

since vehicle was  last  inspected  to  explain  fatalities.  Conflicting  results  were 
White (1986) used  local  variables  such as the  age of the  driver  and  time 

obtained. 
Fridstrml & Ingebrigtsen (1991) found  that less roadside  technical  controls 

were associated  wlrh  increasing  occupant  injuries  and  decreasing  nonoccupant 
injuries.  This  supported  the  hypothesis  that  increased  perceived  safety  ofdrivers 
results in  lowered safety for other  road  users. 

(1.2 Rural and  urban  speed  limits 
Godwin (1984) showed  that a change  in  fatality  rate  varied  linearly  with a 
change in the  posted  rural spred lilnit. 

sidered  the  relationship  betwern  the  number of fatalities  and  the  number of 
This was followed  with a study by Fieldwick & Brown (1987)  which con- 

casualties  and  several  regression  variables:  population,  the  number of vehicles, 

into  three  catcgorles:  motorways,  roads  and  others. 
and  the  general  urban  and  rural  speed  limits.  The  urban  limits were divided 

to  population  and  both of thrse  variables were highly  correlated  to  the  number 
The  results were as follows. The  number of vehicles was  highly  correlated 

of fatalities  and  the  number  of  casualties.  The  three  rural  speed  limits  were 
moderately  correlated  (froln 0.52-0.55). Surprisingly,  rural  and  urban  speed 
limits were almost  independent,  and  both were independent of population  and 
vehicle numbers.  The  final  regression  equation,  based on the  log of fatalities, 
included  coefficients  lor  population,  the  urban  speed  limit,  and a combined  rural 
speed  limit. 

6.3 Variability of speeds 
Hauer (1971) found  that it was the  variability  in  the  speeds of different vehicles 
on the  highway  which  incrrasrd  the  probability of a n  accident, as opposed to 
absolute  speed.  However, as sprcd  increased,  driver  reaction  times  decreased 

Thus  Godwin (1984) proposrd a model of the change in the  fatality  rate, as 
and  the  force of impact  increased,  also contributing to higher  accident risk. 

a linear  function of the c h a n g e  In posted  speed  limits. A significant  positive 
contribution f r o ~ n  the  change in posted  speeds t o  the  change in faLality rates 
was  found. 

term to model  the  monthly  number of  accidents  and  deaths  in  France.  The 
Lassarre (1886) used a  loglinear regression model  with  an ARIMA error 

model  used is described below in section 7.1.  The  study  found  that  as  the 
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variability in spccds  rose, so did  the  number of fatalities,  in  accordance  with a 
study  mentioned  earlier,  Godwin (1984) .  

seatbelt  wearing  variables were found  to  be  insignificant,  although  the  traffic 
This led to  the  conclusion  that  homogeneous  speeds  increase  road  safety.  The 

volume  index was found  to  be  slgnificant.  A  large  residual was attributed  to 
other  factors which had  not been taken  into  account:  the  improvement of roads 
and  vehicles and enlergency  hospital  services  over  time. 

Another  study  investigating  the  effect of the  magnitude  and  the  variability 
of speed of fatality  data was Lave (1985).  The  fatality  rate  per VMT, for six 
different  types  of  road, was linearly  regressed  on:  average  speed;  speed  variance 

t o  emergency  medical  care. 
(85th  percentile  minus  the  average);  speeding  citations  per  driver;  and access 

fatality  rate,  although speed variance  had a positive and  significant effect. Hor- 
This  author  also  found that average  speed  had  no  significant effect on  the 

pita1  access  had a negative etl'ect which  was significant for only a small  number 
of road  types. 

speed  variability still nerds to  be resolved,  after  citing  the  literature following 
Hakim e t  d ( 1 9 9 1 )  cuncludccl that  the  independent  effects  ofspeed  limits  and 

Lave's controversial  findings 

6.4 Public transport fares 

It seems  srnsiblc  to suppose that if the  public  transport  fares were fairly  rea- 
sonable in coulparison to llbotorization  costs,  then  people would be  more likely 
t o  use  this  form of  transport i n  preference  to  private  means. If not,  they  may 
have  to  resort  to  driving  their  own  car,  walking,  riding a bicycle,  or  hitching a 
ride  with a friend. TIIS would then  transfer  some of the  potential  car  drivers 
to  other  types  of  road U S C I S  (pedestrians,  bicyclists,  passengers)  and  may  then 
affect  the  overall  fatality  rat?.  Alternatively,  public  transport  fares  are  loosely 
connected  to  the  emnonlic  clinlate, which may also have an  effect on  fatalities. 

system was Oldfield (1977) .  In  another  study, Allsop & Turner (1986) modelled 
One of the  first  papers to  look at   the effect of fares  in  the  British  transport 

the  monthly  number of  casualties,  fatal & serious  and  slight,  from  January 1978 
t o  April 1983.  The  explanatory  variables used were: 

t h e   r e d  level of  London  transport (LT) fares  (after  adjusting  for  general 
inflation  using  the  Retail  Price  Index) 

trend  over  time (a proxy for  all other  time-varying  effects) 

month of yrar (sr:LsonaI eflects) 

lying  snow2  (since  this  changed  from  year  to  year) 

'the numbcr days i n  the  month when mom than B trace of s n w  was lying in St James' 
Park at gam 
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real level of British (BR)  rail  fares ( a s  distinct  to LT) 

e real level of  pump  prices of petrol 

number of working  days  per  month  on which there w a s  a large  scale  strike 
in   the  BR service 

dummy variable for the  change of  fare in April 1982 onwards.  This  fare 
change was siguificant:  double  the  previous  fare levels. 

A log-linear  regression was used to  incorporate  all  of  these  explanatory vari- 
ables  as wkll as B constant,  and a severity and  monthly  effect,  since  the  effects 
were  deemed  multiplicative. 

Also considered were lagged  variables,  interaction  between  explanatory vari- 
ables  and  the  severity  or  month  effects,  interaction  between  severity  and  month 

several  different  types of road user. The  findings were as follows: 
effects. The  response  variables  considered were the  numbers of casualties  for 

1. LT fare  increase in general led to  an  increase in casualties  to  cyclists  and 
to  occupants of other vehicles and of cars  and  taxis. 

2. The  general  effect of LT fare  changes  on  pedestrian  casualties was  weak. 
There  was  strong  evidence of an  effect after  an  increase in the  number of 
casualties  alter  March 1982 .  

3. For users of  powerrd  two-wheeled vehicles and  occupants of PSVs,  there 

of fare  changes in general. 
was strong  evidence of a  change  after  hlarch 1982 that  contrasted effects 

These  findings  could  be  explained in part by two  factors:  the  walking a s  
sociated  with  use of public  transport was much  greater  than  the  extra  walking 
undertaken as an  alternativr t o  public  transport  together  with  the  increase in 
extra-vehicular  traffic;  and a shift  from  public  transport to  cars  and cycles. 

Some  extensions  to  the model that were suggested by the  authors were  allow- 
ing for the  effect of legislation  regarding  seatbelts,  use of powered two-wheeled 

in  the  Greater  London  district;  and  changes in levels of the LT series. 
vehicles by  learners;  nonsrasonal  variauon  in  wet  weather;  unemployment levels 

8.5 Airline deregulation 

Bylow and  Savage (1991) looked at the effects of deregulation on the  airline 
model  using  an  econometric  'structural'  models  based on the  assumption of 
profit  maximisation.  The  explanatory  variables  they Considered were: the  total 

of interstate  highway;  the  number of licensed  drivers;  the  average  speed of au- 
number of airline  departures  for  commuter  and jet aircraft;  the  number of miles 

tomobilc  travel;  the  real  per  capita  GNP;  the  cost  ratio of real  air  travel  price 
to real  gasoline  price. 
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lem. The  authors  obtained a high  value of R', although  there was a large 
The  Durbin-Watson  statistic indicated that  autocorrelation  was not a p r o b  

degree of multicollinearity  between  the  variables.  They  claimed  that  thir  mul- 
ticollinearity  did  not affect the  parameter  estimates,  and SO the  model  could  be 
used  for  prediction  purposes  only! 

An  earlier  paper,  Evans  et al (1990), compared  the  age  and  sex  profiles 
of airline  passengers  to  those of the  average  driver  and  suggested  that  airline 
passengers  have a 24.1% lower fatality  rate.  This was conservative if these 
people were more  predisposed  to  wearing a seatbelt,  refrain  from  drinking  and 
drive  larger  motor vehicles. 

6.6 Holiday  effects 
Intuitively,  it  seems  rrasonable to suppose  that on public  holidays  there is a 
marked  increase in  the  nu~nber  of people  travelling all over  Australia  to  meet 

in  people  travelling by road  there  should  be a corresponding  increse  in  the 
up  with  relatives,  or t o  go  to tourist  destinations.  Hence  with  the  increase 

number of road  crashes and  therefore  fatalities. 

increase  in  the  number o l  rood crash  fatalities in South  Africa  during  public 
The  paper  by  Arnold ,2. Csrrelli (1987)  showed that  there  was  indeed  an 

holidays,  particularly over Eas te r  and  at  Christmas.  Ensenberg (1984) modelled 

a log-linear  model. He round that the  variation  from  year  to  year was so great 
the  number of accidents for holiday  periods  and  normal  times  separately,  using 

tha t  no long-term  trends were  discernible. 

6.7 Using a number of explanatory variables 
Thomson (1982)  identified  various  factors  which  could  be  contributing  to  the 
annual  number of fatallties i n  N S W  and  Victoria.  These  factors  included: 

veh ic l e   cha rac t e r i s t i c s  V KT, in, freeways in the  road  network, vehicle density, 
private  vs  bus  travel,  passengers  per vehicle (total  population  divided 
by  the  total  number o l  registered  vehicles),  age of vehicle stock  (three 
year  cumulative new vchiclr  registrations  divided  by  the  total  number of 
vehicles registered), l l i x  of vehicle sizes,  rural  vs  urban  travel 

g o v e r n m e n t   p o l i c y  police activity,  roadwork  investment,  quality of hospital 
services,  average  speed  linllts,  number of traffic  lights  installed  annually 

d r i v e r   d e m o g r a p h i c s  alcohol consumption,  driver  age  structure,  the  number 
of migrant  drivers. seat belt  usage  and  motorcycle  helmet  usage (u de- 
termined by surveys  conducted by ABS) 

economic  variables  average  household  income,  annual  percent  change in real 
s ta te   GDP 
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other variables  annual  rainfall 

Several  data  sources were suggested. 

first is the  real  per  capita  spending  on  beer, wine and  spirits  deflated by the 
The  alcohol  consumption  could  be  measured in several  different ways. The  

alcoholic  beverages  delator, which is provided  annually by the  ABS,  Alternk 
tively,  the sales of  beer, wine and  spirits  could  be  obtained  from  the  Licensing 
Board.  Finally,  the  estimated  absolute  alcohol  content of alcoholic  beverages 
consumed  may also be  obtained  from  the ABS. 

usage,  with an  interpolation for between survey  years  based  on fuel  (petrol  and 
Vehicle kilometres  travelled could  be obtained  from  surveys of motor vehicle 

diesel)  consumption. The  NRhlA Data Book is cited as a reference  here.  This 
would  only  be  useful for modelling  annual  data,  otherwise  the  interpolations 
would be  based  on a very s n l d   a m o u n t  of data, and  thus be  unreliable. 

of fatalities were obtained for VKT, freeway  effects,  seat  belt  usage,  rainfall 
Preliminary  findings  showed  that  the  best  model fits for  annual  numbers 

patterns  and  the  mix  of vehicle sizes. 

6.8 Use of seatbelts 

seatbelt  legislation as a ‘political silver bullet’  because  of  the  ‘obviously’  drastic 
A  coverpage  story in the  Bulletin  (Nov 1 3 ,  1990)  described  the  introduction  of 

effect  that  it  had  on  the  number of fatalities  from  road  crashes. 
This  effect was not  restricted  to  Australia.  A  Norwegian,  Berard-Anderscn 

found  that  ’srrious  and  fatal  injuries  are  [educed by 65470%’. 
(1978)  investigated  the use and effects of seatbelts  in  twenty  one  countries  and 

Johnson  et a l .  (1980)  modelled US monthly  fatality  data  for 1970-79 with 
changes in VMT,  introduction of safety  improvements  and  the  implementation 
of the  55mph  law. 

the  number of fatal  crashes  and  fatalities  amongst  motor vehicles, although  it 
Fridstram & Ingebrigtsen (1391) found  that  scatbelt use significantly  affected 

did  not  significantly affect fatalities  amongst  pedestrians  and  cyclists,  suggesting 
a lack of risk compensation  behaviour. 

6.9 Blood alcohol concentration (BAC) levels 
This  topic  has  been a major  focus in  highway safety  research  over  the  last  two 
decades,  with well over 100  papers  in  the  area which have  mostly  concentrated 
on  local effects models,  not  macro effects models.  In the US, Fell (1982)  stated 
tha t  ’ . . .  alcohol  may  be  involved in 50-55% of fatal  accidents, 1 8 ~ 2 5 %  of injury 
accidents . . . I  . In  fact, in the CS, there is an  entire  publication  devoted  to  the 
discussion of ‘Alcohol,  Drugs  and  Driving.’  A  paper by Moskowitz  et al (1986), 
published in this  journal, is a collection of abstracts  and reviews of papers in 
this  area. 
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of alcohol-related traffic  safety  problems  was  addressed in a study by Mann 
The  question of whether  alcohol  consumption  per  capita is a good index 

& Anglin (1988) .  They  considered  the  impact of the  availability of alcohol, 
indicated by increased  hours of sale Cor example;  on-premise  availability,  places 
where  people  would  drink and  then  drive  home. 

They  found a strong  relationship  between  alcohol  availability  and  per  capita 
consumption  and  the  numbers of alcohol  related  crashes. 

In  the  longitudinal  model used by Fridstram & Ingebrigtsen (1991) ,  the 
monthly  series of fatal  crashes  and  fatalities  significantly  increased  with  increas- 
ing  convictions not  due  to D U I ,  yet  was not  significantly  affected  by  convictions 
due   t o  DUI. 

liquor  consumption, but nrgatively correlated  with wine consumption. They 
They  also  found tha t  the  nnnlber of accidents  was positively  correlated with 

cited  two  other  technical  reports  from  Canada  and New Zealand,  which  showed 
similar  results  and  suggested  that  the  age  composition of liquor  consumers  and 
wine-drinkers was probably  different. 

Walsh (1987)  found  that in Ireland,  the  per  capita  alcohol  consumption 
increased  with  increasing  annual  fatalities  per  registered vehicle. He noted, 
however,  that  other  economic  variables  such as real  total  personal  consumption 
expenditure  and  unemployment  provided a marginally  worse  fit  for  fatality  rate. 

Joksch (1991)  improved  Wdsh’s  model by lagging  the  alcohol  consumption 
variable  by  two  years  and  retaining a dummy  variable for the  fuel crises  in 1979. 

incomplete,  and  even  after  making  allowances for these  problems,  concluded 
The  author  found  that  Walsh’s  computations were incorrect  and  the  model 

that  no  causal  rdationship  existed  between  alcohol  consumption  and  the  fatality 
rate. 

6.10 Urban  planning 
Henning-Hager (1986) used a nlultiplicative  regression  model  to  explain  the 

explanatory  variables were a combination  oflocal  and  global  variables,  mostly 
number of accidents in different  residential  areas  within  German  cities.  The 

concerned  with  the  different  road  characteristics  in  each  region. 

of the  roadwork;  the  number of four-or-more  directional  junctions; a through 
The  most  significant local explanatory  variables were found to be: the  length 

traffic  indicator-the  number of possible  through  routes  per  thousand  inhabi- 
tants ( p t i ) ;  lengths of tangential  roads pti;  and  the  number of vehicles parked 
on  public  roads p t t .  

The  most  significant  global  variables were found  to be: the  relationship of 
overall  motorization  to  urban  motorization;  and  the  overall  area  pti. 

Fridstrsm & Ingebrigtsen (1991)  investigated  several  aspects of road n e e  
works  in  their  compound  Poisson-Gamma  model of monthly  accidents  in Nor- 
wegian  counties.  (See  section 8.3 . )  They  found  that as congestion-as measured 
by  ratio of length of road  network in km  to  gasoline  sales  from  gas  stations- 
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increased,  the  number of crashes  decreased.  Fatalities  decreased  more  than 
injuries,  and  non-occupant  injuries  more  than  occupant  injuires, which could  be 
due  to  the  reduction in speed  caused by congestion, 

Broughton (1988)  regressed the  logarithm of the  number of annual  fatalities 
per  total  traffic  volume in Great  Britain on a constant  trend,  the  year,  and 
a dummy  variable  indicating  the  onset of seat  belt use. The  value of R’ for 
this  model was very high (99.5%). The  coefficient for  year  was  rmall,  negative 

fatalities  weighted by trafic  volume.  The  author  noted  that  the  model  only 
and  highly  significant,  indicating a long term  gradual decline in the  number of 

allowed for a linear  increase I n  fatality  rate  over  time. 

interaction  term  belween  year  and  whether  the  year was after 1983 or  not. 
In a later  paper,  Broughton (1991), added a quadratic  term in year,  and  an 

transport  system. T h e  traffic system was viewed as a production  system,  with 
Oppe (1’391) studied r raRic  safety in the  Nctherlands,  in  relation  to  the  entire 

V , ,  the  VKT  being  the  production  units,  and R, = F f / V , ,  the  fatality  rate  per 
VKT  providing  an  estimatc or  the  probability of failure per  unit of production. 
The  output of the systmn was thus  the  total  VKT,  and  the  total loss on safety 
was F t .  

the  theory of  social  adaptation to  traffic  put forward by Oppe (1989). (Minter 
Oppe’s model was bnsrd on the  negative learning model, which  supported 

(1987) also  investigated learnmg theory  models.)  Oppe  found  that  the  number 
of fatalities w a s  a functlon  of  the  derivative of VKT  with a shift  in  time,  and 
tha t  95% of the variability i n  farlaities could be  ‘explained’  by  VKT.  The  model 
was used to  predict  future  accident  rates. 
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6.11 Weather as an explanatory  variable 
6.11.1 Local   eKects  studies 

A  number of researchers  have  investigated  the  relationship  between  the  weather 
conditions for  specific acctdents, as recorded  in  accident  reports of many  coun- 
tries. 

Foldvary & Ashton  (1962)  mentioned  that, for their  purposes,  the  ideal 
weather  information  would  be  the  maximum  and  minimum  temperature  read- 
ings for the  period  in  question,  humidity,  wind,  pressure,  visibility  (foginess), 
cloudiness,  weather  type,  existence of other  weather  phenomena,  and  rain. Un- 
fortunately,  such  specific  information  may  only  be  available for isolated  locations 
within a region,  such  as  large cities. So it is difficult to generalise  readings for 
specific  locations  to regions. 

Johnson & McQuigg (1974)  used a principal  component  technique  to  model 
the  contribution of rainfall  and  temperature  to  average  county  land prices3  in 
the  US. Also considered was a linear  regression  model,  with a logit  link  func- 

The  climatic  explanatory  variables used  were 4- and  7-day  precipitation aver- 
tion,  using  various  explanatory  variables  to  describe  the  number of fatalities. 

functions  of  these  variables, 
ages,  temperature, log temperature,  various  combinations  ofthese,  or  quadratic 

They  cited a paper by Brnson & Johnson  (1970) which considered the  prob- 
lem  of  measuring  economic  rplntionships which include  climatic  variables,  using 
the  method of principal  components. 

1952b,  1967). 
In  general,  the  findings  confirmed  some  early  findings  by  Tanner  (1952a, 

accidents  and  casualties,  with  the resultant effect of increasing  the 
Wet  weather  decreased  traffic flow but  increased the  number of 

accident  and  casualty  rates  per  unit of travel  (veh.km). All kinds of 
traffic were affected,  with  the  greatest  reductions  in flow  in the  case 
of two-wheeled vehicles. 

Snow  and ice also  reduced  traffic  appreciably,  the  greatest IC- 

ductions  again  occurring in the  numbers of two-wheeled  vehicles. 
For  accidents,  however,  the effect depended  on  the  extent of ice 
and snow:  moderate  proportions  led  to  more  accidents, while larger 
amounts  led  to fewer accidents  than  expected  under  dry  conditions. 

weekends.  Accidents  overall  increased in number,  but  one  class of 
Fog reduced  traffic  appreciably,  with  much  greater  reductions at 

injury,  namely  pedestrian, was reduced  in  number. 

lThis i p  r e l cvm~ because or the  W R Y  in which generalised climatic variabler aye used to 
model something. 
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8.11.2 Global eA'ects   models  

Foldvary Rr Ashton (1962)  found  that  the  mean  sunset  time,  the  number  ofrainy 
days,  the  number of holidays,  and a long  term  trend  adequately  explained  some 
fortnightly  fatality  rates from 1960. 

Fridstrml Rr Ingebrigtren (1991) were surprised to  find  that  snowfall  had a 
negative effect on monthly  crashes in Norwegian  counties,  and  suggested  that 
these  results  could  be explained by any a t  the iollowing: . People  drive  more  rarefully  under  adverse  conditions. . Roadside  snow  drilts would cushion  the  impact  from  single vehicle crashes. 

Less people  drive ln adverse  conditions,  reducing  the  exposure to risk of 
those  people who do  drlve. 

All environmental  factors  could  have a worse effect  on  crashes  when  unusual 
or  unexpected.  The  authors  measured  this  'surprise effect' with a dummy vari- 
able  indicating  whether  there  had  been a snowfall  in  one  month  but  not  in  the 
preceding  one.  This eiFect seemed  to be offset by  the  negative  effect of total 
snowfall. 

not  appreciate t h e  incrcaslng r ~ s k  ( c i  snowfall.) 
Rainfall was associated ,with lngher  crash  rates,  suggesting  that  drivers  did 

rush  hours  increased, t h r  : ~ u l ~ l l > e r  of accidents  decreased.  Note  that in Norway, 
In  addition,  the  autliurs iuund that as the  number of daylight  hours  during 

the  number of dayli%ht !lo<m.rs niay range  from 0 t o  24 hours  during  the  year. 

8.11.3 Genernlised  cli lnlntic variables 

There  are  drawbacks I n  t i l t  5tructurc of information  available  from a Bureau of 
Meteotology. T h e  Bureau Jocs not provide a means  to  gcneralise  the  weather 
conditions for many p o ~ n r s  U L L L I ~  a  region,  such as as t a t e .  Nor do  they  provide 
a method for generalislng I! ,< weather  conditions  for a particular  point  over a 
period  oftime. The l a t t e r  p r u b l r w  may  be  summarised by two  types  ofstatistics: 

variability  (range,  upper and Iuwer quanrilcs,  or  histogram.)  Maunder (1974)  
the  measure oE central tc:l?cncy inlean,  median  or  mode);  and a measure of 

considered  the  problem 111 Jepth. 

such as rainfall  and  temperature.  The weighting5  were based  on  the  contribution 
He formulated  periodic (say monthly)  weighted  indices for climatic  variables 

of a region to  the  national total population  or  area.  Other  variables  suitable 
for  our  application  to  road  safety would be the  number of registered vehicles, 
vehicle kilometres  travelled,  and  the  kilometres of road in a particular  region, 
such as a state.  

of stations  within a region,  where  long-term  (say  twenty  year)  average Values 
In  this  study,  climatic  variables,  such as rainfall, were measured at a number 

were known for each stahon.  The rainfall  for  station i ,  expressed as a percentage 
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of the  long-term  average for that  station,  was  denoted Cs, and  the  percentage of 
the  regional  road  safety  parameter  (such as population,  land  area,  road  length) 
in  area i ,  was denoted E i .  The  regional  Climatic  Index, I ,  was  defined as: 

argued  that a weather  index  for a nation as large  as  the US has  little  physical 
In  answer to  skeptical  meteorologists, he  stated  that  ‘it  could of course  be 

or  practical  meaning.  Nevertheless,  it is strongly believed that if some  measure 
of  nation-wide  wrather  can  be  computed,  and  that it can  be of use to decision- 
makers.’ 

6.11.4 More r e c e u t   a p p l i c a t i o n s  of gene ra l i r ed   i nd ices  

Scott (1986)  used weather  variables in regression and  Box-Jenkins  models  of 
monthly  accident  data in Great  Britain.  The  author  stated  that  ‘monthly  data 
are  available,  sununarising  temperature  and  rainfall  throughout  Great  Britain.’ 
Unfortunately, we are given no  indication of how the  summaries were obtained. 

In   the regression  analysis,  including  several  variables,  the  authors  found  that 
high  rainfall  and  warmer  temperature were related  to  high  accident  frequencies, 
as was  expected.  Similar  results were obtained  when  an  ARIMA  error  term was 
used in  the  model. 

6.12 Fuel prices 
Several  authors  have  studied how fuel  prices  have  affected  road  crashes.  Allsop 
& Turner (1986)  used  the  real level of pump prices for petrol  to  model  monthly 
fatalities  from 1978 to 1983 in Great  Britain,  disaggregated  by  road  user  type. 
MacLean (1983)  found  that a fast  increase  in fuel prices  had  ashort  term ‘shock 
effect’ as well as a long  term cRect which  could  not  have  been  due  to  gradual 
increase  in  prices,  and  snggested  that  catastrophe  theory  should  be  investigated. 

ARIMA  and  structural  time  series  models were used by Harvey &L Durbin (1986) 
Scott (1983)  found a strong  relationship  between  crashes  and  petrol prices. 

index,  and  the  real price of petrol in their  final  explanatory  model. 
to  model  fatal  crashes.  They used just  two  explanatory  variables: a car  traffic 

6.12.1 P r e d i c t i n g   F u e l   P r i c e s  

Fuel  prices were often used in models used to  predict  future levels of traffic 
safety, so the  problem of predicting fuel prices  hecame  important. 

rates  in  Australia were estimated as a function  offleet size and  average vehicle 
In  the  paper of Donaldson,  Gillan k Jones (1990) ,  future  annual  consumption 

fuel  consumption.  Fleet size is predicted  using a regression of population  on 
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time.  Average vehicle fuel  consumption is determined  'econometrically'  from 
fuel price. 

sumption  from  variables  such as average  fuel efficiency,  fleet  size and VMT. 
Wheaton (1982) used  component  estimation  to  predict  future  gasoline con- 

However,  Cervero (1985) pointed  out  that  although  econometric  models  such M 

the  above  model  major  structural  features  and  turning-points well, short-term 
estimation is difficult  since  the  explanatory  variables  are  themselves  difficult  to 
predict. 

Thus,  in  order to  forecast  monthly  highway  energy  consumption  in  the US, 

ables.  Monthly  and  biannual  seasonal  factors were useful in short-term fore- 
Cervero (1985) used  ARIMA  models  to avoid including  more  explanatory vari- 

impact  on  results.  Disaggregated  data was also  considered. 
casting.  The  oil  crises of 1979 wcre considered  but  found to have  no  significant 
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7 Time series analysis 
The  number of fatal  crashes or fatalities  measured over time  may  be  correlated, 
as many  variables  measured  aver  time  often  are.  ARIMA  models  take  into 
account  this  autocorrelation of the  series,  and  are  specially  designed  to  model 
seasonal  and  long-term  trends.  The classic volume  by  Box & Jenkins (1976) 
introduced  and  popularised  this  particular  approach  to  modelling  time series. 
Bhattacharrya  et a1 (19701, an Australian  study, was one of the  first  road  safety 
studies to  utilize the  Box-Jenkins  models. 

mon  method employed in the  road safety literature is a regression  analysis, 
To  analyse the  evolution o i a  road safety indicator over time,  the  more  com- 

using  dummy  variables to  indicate a trend over time,  and  perhaps a seasonality 
factor.  See  the  introductory  section  on  Regression  Analyses, $4, for some  exam- 
ples.  However,  note  that  regrcssion  models  assume  independence  between  error 
terms. 

7.1 Comparison of uncorrelated  normal  and ARIMA er- 
ror structures 

number of fatalities 011 roads  covered  by  the  Gendarmerie  Nationale in France 
Lassarre (1986) conducted a study of the  monthly  number of accidents  and 

(mostly  nonurban  roads)  between 1970 and 1977, as related to the  introduction 

collection was obtaining rx t r rna l  variables  measured  during  the  same  time pe- 
of speed  limits  and  co~npdsory  sratbelt  wearing.  A  major  problem  with  data 

riod,  with  the  same  periodicity,  and  for  the  same  location.  The  explanatory 
variables  considered  wcrr: thr nlonthly  traffic  volume  index,  an  annual  series of 
speeds for light vehicles : , I I ~  a11 annual  seatbelt  wearing  index.  Annual  series 
were converted  to 111ont1lly irries by fitting  curves  and  interpolating. 

7.1.1 The regress ion   Inode1  

The  model  used was a log-linear  regression  with an ARIMA  error  term.  Assume 
that all variables,  apart  fronl t h e  error  structure  are logged in  the following 
model  equation. 

D, = ua V, + a1.5=: + a2se(St) + asB: 
+ ( , w o ~ I B ) E ~ z . :  + w z t a , t  

where 
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D, = nunlber of deaths in month i 
V, = traffic  volunre  index 
St = average  speed in month i 

se(Sl)  = standard  error of speed in  month L 
Et = ratio of searbelt  wearing 

2nd  part = sulu or  two  dunlmy  variables  indicating  beginning of 
safcty  measures in  June,  July  and Dec 1973 

3rd  part = autoregressive  structure  ofremaining  error 

Another  similar  study,  Scott j1986) examined a monthly  accident  series  in 
Great  Britain.  A  basic  regression  model  with log terms w a s  fitted  first: 

I n A = v l l n V ~ + u ~ I n V 2 + p l ~ ~ P + t T + d D + r R + w W + f 6 F + s 6 S + k + e  

where 
A 

Vl.  Vl 
P 

T 
D 
R 
W 
6 F  

6 5  

the  number of accidents 
traffic  volume  indicators 
the  petrol  price  index,  the  ratio of average  monthly  retail 
price to  the  overall  retail  price  index 
offset in Inonths  from  the  beginning  of  the  time  period 
temperature  (deg C )  
rainfall ( m m )  
the  number of working  days  in a month 
a  dummy  representing  prescence of the  fuel crisis (Dec 
73-Apr 74) 
a dumtuy  representing  prescence of legislation for  lower 
speed  limits  outside  built-up  areas  (Dec 74-May 7 7 )  

k = a seasonal  iactor  and 
e = an  error  terlll 

7.1.2 R e g r e s s i o n  results 

The  main  results  are  describrd In more  detail in Scott (1983): 

There  was  strong  evidence  against a simple  linear  relationship  existing 
between  accident  frequencies  and  traffic  volumes. 

Petrol  price  was  highly  related  to  accident  frequencies,  except for twc- 
wheeled  vehicles (as  to  be  expected.) 

High  rainfall  and  warm  Leuperatures were associated  with  higher  accident 
frequencies. 

T h e  series ofmosr  explanatory  variables  exhibited  trends,  generally  down- 
ward  and  steady  over  the  period. 
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An  analysis of residuals  indicated  that a good fit had  been  obtained. A few 
series  had  autocorrelated  residuals.  suggesting  that  time-series  models  might 
perform  better. 

7.1.3 Model with ARIMA error term 

Secondly, an  ARIMA  model of the  error  term was considered. AU ofthe  variables 

incorporated  into  the  error  structure: 
remained  in  the new model,  except  the  time  and  seasonal  factors,  which were 

I n A = v l n V + v l I n V 2 + p l n P + d D + r R + w W + f 6 F + s 6 S + e  

where e = ARIMA(f),  and e IS white noise or normal  error. 

7.1.4 C o m p a r i s o u  

Similar  estimates for carliicirnts were obtained for both  types of model. Al- 
though  the  Box-Jenkins moclrl performed  slightly  better,  the  simplicity of the 
ordinary  regression I I L O ~ ~ I  overc’olnes this  slight  disadvantage. 

7.2 Intervention  analysis 
Votey (1986) discussed the advantages  and  disadvantages for using  various  mod- 
els for  road  accident frcqurorlrs.  Intervention,  ARIMA  and  simultaneous re- 
gression  techniques arc tlrxrlbed in broad  detail,  with a particular  model  being 
favoured  for  its  ability L O  r c l a ~ e  to the  underlying  theories  and  characteristics 
of road  safety.  The madcls w e r e :  

D D  = d ( A L C ,  P.4,  SV,  K D  ,...) P A  = p ( D D , R Q ,  ...) 

where D D  is  the level of  d r u n k e n  driving, ALC is alcohol  consumption, P A  is 
the  probability of apprrhenzlun  and  sanctioning, SV is the  severity of sentence, 
K D  is  the  distance  drivrn, K Q  IS  road  quality,  for  some  structural  models p and 
d .  Undoing  the recursion y ~ r l d s  t h e  following relation: 

.ALC = a ( D D , K D , V M , R Q ,  ...) 

where V M  is vehicle mix 

7.3 Identification of unknown  intervention  times  in  time 
series 

The  paper by  Helfenstein ( 1 9 9 0 )  is a continuation of other  papers which Use 
traditional  time  series  analysis  Inethods,  such as Box-Jenkins  and  structural 
time  series  models.  These  ~)relirninary  papers  are:  Bhattachwya  et a1 (1979)j 
Box Rr Tiao (19751, Harvey k Durbin (1986), and  Lassarre & Tan (1982).  
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Helfenstein's  paper was sligl~tly  dilferent in that  the  intervention  time was 
assumed  unknown. In the  statistical  literature,  this is known as the  change- 
point  problem  The  change-point  may be deduced  from  the  data by using ,, 
number of both  graphical  and  numerical  techniques. If the  actual  time  of  an 
intervention is close to  that  identified  by  the  above  techniques,  then  this  may 
provide  more  evidence for the  efficiency of the  countermeasure. 

Zurich  from 19iG to 1985. 
The  example da t a  used were quarterly  numbers of accidents  with  injury  in 

The  different techniques  are  outlined below. 

vations  from  each  season.  Thus,  four  curves will be prodcued  for  quarterly 
Plot of seasonal subseries This is constructed by joining  together  obser- 

data, twelve  for  nlontllly data,  etc.  The  first  and  last  dates  that  an  decrcase or 
increase  occurred will be  indicated  where  each  curve  begins to  'drop  or  bounce'. 

first  differences, Vy,  = y, - yc- l  should  contain a spike at the  time  ofinterven- 
Series of seasona l   d i f f e rences  For  annual  or  nonseasonal  data,  the  series of 

tion.  For  seasonal  data 
Yt = Ott  + St T et 

where & = I [ !  2 TI. T is the  'unknown'  moment of intervention, 0 is the  height 
of the  step, s t  is a periodic  function  with  seasonal  fluctuations (st = d l - , )  for 
quarterly  data,  and C, is 'ullexplained'  variation. 

Or  alternatively, 
v)4Yl = Pvkh + V,et 

where V,( = I[T 5 1 5 T + 31 

fitting a simple ARIMA model (also called Box-Jenkins  models)  to  account for 
Cross -co r re l a t ion  fnnctiau The  more  statistical  methods  are  based  on  first 

the  long-term  trend  and  any  seasonal effects. For  example 

Vryt = 80 + ( 1  - 81E - & B * ) ( l  - E)B')at 

takes  account of a quarterly  seasonal effect, and  an  autocorrelation of values. 
After  fitting  the A R I M A  model,  Helfenstein  suggested the  calculation of the 

cross-correlation  function  between  the  fitted  values  (reference  signal)  and  the 
series of residuals. If the  fitted  values were: 

0 i < intervention  time 
-1 i >=intervention  time Pt = { 

then  the  cross-corrclation fGnction r p . ( k )  between  the  fitted  values  and  the 
residuals at would be: 

rpa(k) = correlation(p,, a t + b )  
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The  cross-correlation  function  should  be  calculated for all possible  times of 
intervention.  The  maximum  correlation  between pt and at will give an  estimate 
of the  intervention. 

Residual va r i ances  of soccess ive   i n t e rven t iona l  models The  interven- 
tion  analysis  presented by Box & Tiao (1975)  is of the  form yt = PCt +rt ,  where 
E t  = I [ i  2 TI, p is the  unknown  impact of the  intervention,  and zt is an  ARIMA 
process. 

formed  and  the  resulting  residual  variances  plotted  against  the  intervention 
For  each  possible  intervention  time T ,  an intervention  analysis  may  be  per- 

time. 
If, for example,  the  number of accidents  decreases before the  actual  inter- 

vention  time,  then  an  anticipatory  (pre-intervention)  effect  may  be  fitted  in 
addition  to  an  intervention efl'ect, involving  one  more P z E Z t  term in the  model, 
corresponding  to  the  second  important  timepoint. 

7.4 ARIMA model,  with  explanatory  variables 
Wagenaar (1984)  used an  ARIMA  model,  unemployment  and  VMT  to  model 
monthly  numbers of crash  involvement in the  state of Michigan. 

were found  to  be  significant, a lagged  relationship was also  found  to  be signifi- 
First,  negative  correlations  between  unemployment  and  crash  involvement 

cant.  Then  the  author  fitted  the  unemployment  series  with  an  ARIMA  model, 
incorporating  first  and  seasonal  differences.  This  model  was  then  applied to the 
crash  involvement data,  and  the  residuals  from  the  unemployment  and  crash in- 
volvement  series  cross-correlated. The  first and  second  lag of unemployment  and 
the  seasonal  and  first  differrnce  component of crash  involvement were retained 
in  the  resulting  model. 

The  same  procedure was followed to  analyse  the  relationship  between VMT 
and  CI  (crash  involvement.)  Although a strong  relationship  was  expected be- 
tween the  two  variables,  the  extent of the  lag  required for this  to  be  evidenced 
was not  expected  by t h e  author. The  final  model  included  an  AR(2),  AR(3) 
term for VMT,  and a srnson;rl component  and  first difference  for CI. 

Since  unemployrnent  and  VMT were independent of each  other, as indicated 
by  cross-correlation  calculations,  the  next  step was to  include  them  both in the 
model. The  final  nlodel  included  first  differences  and  seasonal differences for 
CI,  trend  and first lag  of  unrnlployment,  and  first  and  second  lag of VMT. 

7.5 Structural  time  series  models 
Harvey & Durbin (1986)  considered  the  use of structural  error  terms.  In a 
structural  time-series  model,  the  trend,  moving  average  and  autoregressive POI- 

tions of the  model  may all involve a stochastic  random  walk  component.  Thus 
the  parameters of the  model  could  vary  with  time,  instead of being  fixed, as is 

47 



generally  the  case.  Time-varying  parameters  enhance  the  explanatory power of 
the  model,  although  they  decrease  the  predictive power of the  model,  due  to 
the  added  'randonlness'  introduced.  This is discussed  in  more  detail  in  Volume 
2 of this  report. 

numbers killed and seriously  injured (KSI) each  month in the UK for different 
The  paper's  primary  concern was the  effect of seat  belt  legislation  on  the 

types of road  users.  The  authors  compared  structural  time  series  models  to 
ARIMA models. 

The  form of their final madel was  
k 

w = + -rt + 1 6 j z j t  + Aut + C t  

;=1 

where  the level and slope 01' t h e  general  trend pt were determined by random 
walks: 

Pt = Pr-1 - .&1  + 71, f i t  = $ 3 - 1  + ( 1  

The  seasonality wa5 ~ ~ ~ u J ( ~ l l r d  by 

. I ,  
Yt = 7 j l  

;=1 

where for 5 even nud hj = +, j = 1 ,  . .  . ,  f - 1 ,  

[ 'J,' ] = i c o s 4  
' J  f 

I - sm A, sin cos x j  A, ] [ p?; ] + [ E;: ] 
where 

7,1 = (cos Aj )Yj , t -1  + wjr ,  J = - . s  
2 

and  the {wjt} and {w;~} were t l d  N(0 ,  u:). 
It w a s  also  possible to allow and {w;~} to vary  with j, which perrnit- 

ted  the  seasonal  pattrrn 10 v:uy with  time.  The  value of the  j th   explanatory 
variable a t   t ime t was zI! ; ~ n d  6; w a s  its coefficient (not  time-dependent).  The 
intervention  variable, = !, t 1; 0 otherwise. 

The  evaluation  sratistics used by the  authors  were: ?', the  estimated  one 
step  prediction  error  variance;  the  usual R';  R:, which is RZ adjusted for s e s o n -  
ality; H ,  the  heterogrnrity  test  statistic; Q ( P ) ,  the  Box-Ljung  Statistic on the 
first P autocorrelotions of t h e  standardised  residuals; a Normality  test  statistic 
for  the  residuals; a Post-sunple predictive  test  statistic used to  test  goodness- 
of-fit; CUSUhI, a test which detects  model  breakdown;  and  the  Recursive  t-test, 
which may  be used if it  is ~ x p e c t e d  that the  residuals  after  the  intervention  may 
all be of the  same  sign. 

The  authors decided  to use a log transformation  since  they were using  count 
data;  they  also  considcred  the  square  root  transformation.  They  considered  just 
two  explanatory  variables: f u e l  prices and  a traffic  index. 
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seatbelt  legislation,  the number of deaths decreased: there was an  estimated 
Finally,  they  found that for road  users who would be directly  affected  by 

18% reduction  in  deaths for drivers,  and a 25% reduction in deaths  for  front 
seat  passengers. For those  not  directly  affected by the  legislation,  there was a 
highly  significant 27% increase  in  deaths  for  rear-seat  passengers,  and  not very 
significant  increases in deaths for passengers ( 8 % )  and cyclists (13%).  

line’  model  was  adequate for prediction  purposes,  although  not  for  explanatory 
It  is interesting  to  note,  however,  that  the  authors  found  that a simple  ‘air- 

purposes.  They  found  that a version of the airline  ARIMA  model  fitted  the 
da t a  well:. 

( 1  - B ) ( 1  - B”)yl = (1  - . 6 8 4 8 ) ( 1  - . 995B”)&,  r? = 0.075 

resents, we brlieve, a more  direct  and  transparent  technique for time  series 
However,  they  stated  that  “The  structural  approach  that we have  adopted r e p  

modelling.” 

little  difference  between  it  and a ‘structural’  model.  Wilson  preferred  the  struc- 
Another  paper,  Wilson (198G), used an  airline  ARIMA  model,  and  found 

tural  model  since i t  used explanatory  variables  to  predict  the  response  variable, 
to  support any cause-effect  hypolheses,  whereas  the  ARIMA  model  merely  used 
the  past  history or the  response  variable  to  predict  its  future values. Regression 
models  with  an  ARIMA  nlodel  term were not  considered  by  this  author. 

Martinez-Schnell k Zairli (1989) investigated  the  daily, weekly and  monthly 

cides,  homocides,  falls,  drownings,  and  residential fires. Motor vehicle deaths, 
time  series of deaths  due  to six different  types of injuries:  motor  vehicles, sui- 

the  major  class of deaths, were investigated in more  detail,  using  transfer  func- 
tions  and  intervention  analysis. 

They  investigated  several  calendar effects variables: d l v  the  number of days 
in the  month; w l ,  the  number of Saturdays  and  Sundays in the  month; hl,  the 
number of holidays in the  nlonth.  Other  explanatory  variables  considered were 
zt, the   VMT in the  month; I,,  an  indicator  variable  for  the oil crisis, 1, = 1 for 
the  months in 1974-1983, and is 0 otherwise. 

for zl  was used in a tranfer  function to model y1, the  number of deaths  due to 
An  ARIMA  model  similar  to  an  airline  model  was  fitted  to  VMT.  This  model 

road  crashes  in a month. 
The  best  model Cor yl included a transfer  function  for zt, the  intervention 

variable  for  the  oil  crisis, 11, and  two of the  calendar effects variables, YI and 
ht. 

i ts  coefficient was significant ( t  > 1 1 ) ,  implying  that for every 100,000 mile in- 
The  inclnsion  of zt in the  model  reduced  the  residual  variation by 32%, and 

crease in VMT per  month,  there w a s  a corresponding  increase of approximately 

This  can  be  explained by corrrlation  between VMT  and  the  number of days 
3 deaths.  The  variable d ,  was dropped  from  the  model  after zt was  included. 

in  the  month-the  more  dxys  there were in the  month,  the  more miles  were 
travelled  on  the  roads. 
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after 21 was added,  and was significant ( t  = -2 .23) .  The  model  suggested 
The intervention  variable  accounted  for a 33% drop in the  residual  variance 

that  there was a significant drop of 3 5 2  deaths during the  oil crisis, even alter 
accounting for VMT  and  calendar effeccs. 

mean  square  error, R‘, t h e  Box-Ljung x’ statistic,  and  the Aikeke Inforrna- 
Seasonal  variables were not found  to be significant.  The  authors used the 

tion  Criterion l o  evaluate t!le goodness-of-fit of the various  models.  They  also 

started on  Wednesday  and rndrd an  Tuesday so tha t  weekends and  Fridays  and 
constructed weekly and dally ti lue series of the  number of deaths.  Their week 

Mondays, which wcre o f t e n  public  holidays,  were  not  split  up. The  weekly and 
daily  time series supported the results from the  monthly  time  series. 



8 Other statistical models 
So far,  various  regression  and  time  series  models  have  been  suggested for the  road 

below. 
crash  data.  Some  alternative  models  that  have  been  presented  are  described 

8.1 Learning-theory  models 

according  to  Minter (1987). Two  different  models for learning  processes were 
Road  safety  may be viewed as  a  ‘learning  process’ which society is undergoing 

by  society.  This  task is repeated a number of times,  and  becomes  easier BS 

discussed in this  paper,  where in learning  theory, a certain  ‘task’ is to  be  learned 

experience  incrrases. 
Wright’s n~odrl is 

1 ,  = tn-b 

where i ,  is the time Cor the  nth  task  performed; n is the  cumulative  number 

reduction of time  per  repetition,  usually 0.7 5 b 5 1 .  
of repetitions so far ,  tllr  nlrasure of experience; b is a measure of the  rate of 

Torwill’s  model is 

~ n = y o ( l - e x p ( l - - ) ) + c  
n 
i 

where y, is the  measure of performance at time n periods  after  the  start; yo 
and c are  constants;  and t is time. 

formance w a s  the  casualty  rate,  expressed as casualties  per  dEtance  travelled 
When  these  models were applied  to  road  safety  data,  the  measure of pcr- 

for  Wright’s  model,  and  its  inverse  in  Torwill’s  model. Torwill’s time  parameter 
and  Wright’s  number of repetitions were the  measures of experience.  Minter 
suggested  that vehicles per  head of population was a good  meacure of accumu- 
lated  experience.  Note  that  Wright’s  model is analogous  to  Smeed’s  formula, 
where  the  nleasure of perfornlance is deaths  per vehicle. 

Finally,  Minter  found that both  learning  curves fit the data well, concluding 
‘that  things will improve  anyway,  and  that left t o  themselves  they  might  even 
improve  better  than  wlth  Irgislation  intervention.’ 

fatalities in the Netherlands. See  section  6.10. 
Oppe (1991) also used a model  based  on  learning-theory to explain  road 

8.2 A systems-based  model 
Blomquist (1986) employed  ‘consumer  utility  theory‘  to  model  motor vehicle 
accidents,  The  thoery is described in more  detail  in  the  paper  referenced, u 
well as Hakim e t  al (1991) but is described  briefly below. 

individual  driver, who may trade  off’between reduced risk (more  safety)  and 
The  theory is based on the  application of the  benefit-cost  approach  to  the 
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increased  utility  (more  cost or effort). However, since  not all drivers  aim  to 
reduce  the risk to  every driver, a system  ofpenalties,  such as Pigorian  prescrip 
tion,  may  be  used.  This  systenl  aims  to  alters  the  individual  utility  function  to 
account for the  safety  ofsocirty  in  general. 

such as accessibility  (or  mobility) which affects  utility.  For  example,  increasing 
However,  utility is difficult  to  measure, so an  indirect  measure  may be used, 

the price of alcohol, would reduce  its  availability,  or  increase  the  penalties  for 

would  therefore  increase  the  utility of DUI. 
DUI, and  thus  make  it  more difficult  for the  driver  to  drink  and  drive, which 

Accessibility is affected by both  society  and  the  individual.  Society  may 
affect accessibility by changing  the  transport  infrastructure,  and level of police 
enforcement.  Individuals’  behaviour  may  affect  the level of gasoline consump 
lion,  investment in vehicles,  number of drivers  on  the  road,  and  the  time  spent 
driving.  Alternatively,  Hakini  et a1 (1991)  note  that a demand  model  for acces- 
sibility  might be based on income  (GXP),  travel  price  (price of gasoline) and 

Turner (1986) also for a discussion of this. 
relative pricrs of alternarive ~ n o d r s  (price of public  transport.)  See Allsop and 

Finally,  Ilakinl  et a1 (lS91)  conclude  that  the  aim of society is to rnax- 
imise  accessibility  whilst  lnaxlluising  safety, by minimising  the  number of acci- 
dents.  Accidents in turn nlny be  rxplained by levels of exposure (VMT, gasoline 
consumption), social n o r ~ l ~ s  dud behavlour  (rates of crime,  suicide),  legislation 
(speed  limits, vehicle insprction.  seatbelt  laws, police traffic  enforcement,  pun- 
ishment  for  offences.)  Henre, i n  order  to work out how to  minimise  accidents, 
the whole  systcnl  surroundlng  the  production of accidents  and  the  environment 
in which  they  occur wust be wodelled. 

8.3 Poisson distribution 
Although it is fairly  conunon L O  model  the  number of accidents  per  time  period 
as a Poisson  process (see Weed  (1986),  Jadaan & Salter (1982) for example), 
the  number of fatalities  or  cuualties is much  harder  to  model.  Maclean k 
T e a k  (1982) partially  investigated a compound  model  based  on  the  Poisson 
distribution of the  number of accidents.  They  defined X to  be  the  number of 
accidents  and  assume  that  it w a s  distributed as Poisson(X). The  conclusions 
deduced  by  the  authors were that  the  possible  values  for Y comprised  the non- 

distribution. 
negative  integers,  and  that  the  variance of Y was larger  than  that  for a Poisson 

Fridstraln t.! Ingebrigtsen (1991)  applied  acompound  Poisson-Gammamodel, 
a special  case o f t h e  Generalisrd  Linear  Models of McCullagh & Nelder (1983) L O  
several  cross-sectional  and  longitudinal  measures of traffic safety. The  number 
of crashes was nlodclled  as a nrgative  binomial  distribution  with  an  expected 

a Gamma  random  variable.  Thus,  the  variance was  larger  than the  expected 
value  whose  logarithm was a linrar  function of the  explanatory variables  and 

value, which seelns to  be rlle property  required by MacLean k Teale (1982) .  
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The  Corm of the  rxplanatory  variables was first  suggested  by  Gourieroux  et a1 
(1984). 

8.4 Poisson  regression 
Jovanis & Chang (1986) rrvirw  some  techniques used to  model  the  number of 
accidents  according  to  a Po~sson distribution  and  found  that: 

If accident  frequrncy is regressed on VMT,  and if accident  frequency  really 
is Poisson,  then thr varimc.e of accident  frequency will increase as VMT 
increases. 

e If a square  root  transformation is performed  on  the  accident  frequencies, 
a common  antidote for Poisson data,  then  the  variance  problem will be 
addressed,  but  this is accompanied  by a bias in the  estimates. 

Because  accident  frequmcies  are  nonnegative  by  nature,  this  can  create 
problems  with  unconstrained  least  squares  analysis.  Constrained  least 
squares can owrcolue  this  problem,  but  also  results  in  biased  estimates. 
Transformation of the  accident  frequencies  to a non-linear  form  may  solve 

log 0 is undefined. 
the  nonnegativity, bu t  generally  introduces  discontinuities;  for  example, 

8.5 Other  distributions 
Weed (1986) referred to the method  described  in  the  Highway  Safety  Evalua- 
tion  Procedural G o ~ r l r  for roulparing  the  accident  count  before  and  after some 
countermeasure 1 1 s  brrn : ~ p p l ~ e d .  The  author used a Poisson,  ChiSquare, Bino- 
mial  and a modified Binolld  statistics  based  on  these  before  and  after  accident 
counts. 

The  number of acrirlrnts which occur  after  the  countermeasure  has  been 
applied, 01, and  the  number "I accidents  occurring  before  the  countermeasure, 
O,, can  be  compared u s ~ n g  the x' goodness-of-fit  statistic. The  authors  set  the 
expected  values of O1 and O1 to be their  average, I . 0 

Alternatively,  the nuuhbcr of accidents  before  the  countermeasure is applied 
may  be  modelled as a binomial  distribution,  with  parameter N ,  the  total  num- 
ber of accidents  sampled  being  the  number of accidents  before  and  after  the 
countermeasure.  Under  the nu!l hyothesis that  the  number  of  accidents  before 
and  after  are  similarly  distributed,  the  parameter  pis 0.5. A  modified  binomial 
method  ensures  that,  with  discrete  data,  the  more  conservative  estimators  are 
always  used. 

the  standard  process  suggested by the  HSE  procedural  guide,  using  regression, 
Weed  performed  a  thousand  simulations of one  Poisson ~ I O C C S S  t o  show  that 

produced  highly  optimistic  estimates of whether  the  before  and  after  counts 



were equal. The  modified  binomlal  was  the  most  accurate  and  both  the x 2  and 
the  binomial  n~rthods  produced  slightly  conservative  estimates. 

eUed with  Poisson,  Chisquare,  Binomial  and  modified  Binomial  statistics  by 
The  number of accidents  before  and  after  some  intervention  was  also  mod- 

Jadaan  & Salter  (1982).  Jovanis X r  Chang  (1986)  modelled  the  number  ofac- 
cidents by a Nornlal  distribution,  and  noted  that  the  usual  regression by least 
squares  assumes  Normal  errors  as  justification for this.  They  also  considered 
the use of Bernoulli  trials (success if a person  completed a trip  without  injury) 
and  survival  theory as a11 cxtension o i  this. 

8.6 Epidemiological approach 

One way to look at  road crash Falalities is to call them a ‘disease’, like any  other 
which kills a lot of people.  Rrsearchrrs  have  utilized  methods,  or  ideas,  from 
conventional  epidrnliological  research,  and  applied  them  in  this  context. An 
overall view of Australian  mortality is provided in Spencer  (1980). 

Many  national  government  bodies  are  interested in the  mortality  rates  due  to 
different  causes,  including road crashes.  Comparisons of death  rates  in  various 
countries  attempt  to  place a particular  country’s  safety  rating  within  context. 

8.6.1 I n t e r n a t i o n a l   a g g r e g a t e s  

indicators  such as road user type,  age  and  sex of driver,  etc.  Japan,  Amtr- 
Periodically,  countries  overseas  publish  these  aggregates,  stratified by several 

ica,  Australia,  African  countries,  and  the  European  countries  are  among  those 
countries  who  publish  these  yearly  statistics.  World  Statistics  quoted  only  the 
most  extreme  values  for  percentage  increase in the  number of accidents,  ca- 
sualties  and  fatalities.  Hutchinson  (1987) is a very thorough  compilation of 
international  road  accldent  statistics, which also  described  both  the  official  and 
alternative  sources,  whrnce  thrse  statistics  may  be  obtained. 

8.8.2 C o m p a r i n g   i n t e r n n t i o u d   s t a t i s t i c s  

Another  use  for  international  data is lo  provide a ‘benchmark’  to  compare  the 
safety  standards in Aust1:di:L to  various other  countries.  Several  studies  have 
already  attempted to colnpare t h e  fatality  rates of different  countries.  For ex- 
ample, a study by Berard-Xndersen  (1978)  compared  the  use  and  effects of 
seat-belts in twenty-one  countrirs. 

A method which has b e m  used to  compare  traffic  safety  between  countries 
was  first  introduced by Snleed  (1949).  This will be discussed in more  detail in 
the  following  section. 
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8.6.3 Risk and exposure 

The  use of hazard  models,  and  the  ideas of risk and  exposure  are  relatively 
well-developed  within  the fizld of epidemiology. 

8.7 Discriminant analysis 

Neuman (1984) applied  discriluinant  analysis  tu pick out  variables  which con- 
tributed  to  high  accident  sites, as compared  to low accident  sites.  This  technique 
could  conceivably be applied t u  differences in fatality  rates  between  states, or 
regions  within states. 
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9 List of explanatory  variables 
This  list  indicates which variables  have  becn  considered in models for fatalities 
(or  fatality  ratrs) by Y ~ I I O L I S  authors.  It is noted  whether  the  variables con- 
tributed  significantly t o  the final  model  proposed  by  the  author. However, i t  
is necessary to  inspect  the  variables  in  context,  within  the  framework of the 
model  together  with  companion  explanatory  variables, to  fully  understand  their 
significance. 
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Variable  Ref  Response Sig  effect? 

LegiJlotton 
seat  belts 
seatbrlt  legislation 
d u n m y  var. 
change in 

limits. 
urban/rural  speed 

change in  posted 
speeds 
speed  limit  dnmmy 
variable 
maximum  speed 
limit 
ratio  inprcted vehi- 
cles 
inspection  dummy 
variable 
vehicle inspection 
introduction of 
breathalyser 
dummy  var. 
police  activity 
minimum  driving 
age 
driving  age 
drinking  age 
drinking  age 
liquor  taxes 

local  acc  in Vic. 1963 
fat.  rate  per  registered 
veh. 
fat.  per  veh. 1984, coun- 
try 

fat.  rate  per  population 

annual  fat.  for 
cars  /trucks 
1970 state  fat.  per  VMT, 
per  popn,  per veh. 
annual  fat. 
cars/trucks 

for 

annual  fat. New Jersey 

annual  fat. 
fat.  rate  per  registered 
veh. 

annual 
1970 state  fat.  per  VMT, 
per  popn,  per  veh. 
annual 
annual 
annual 
annual fat. 

negative 
no  

negative 

negative 

negative 

varying 

no 

Yes 

inconclusive 
no 

no 
varying 

negative 
conflicting 
conflicting 
indirect neg- 
ative 
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Variable Ref Response Sig  effect? 

Economic  factor3 
fares 

pump  petrol  prices 

fuel prices 
recession 

cost of  an accident 

accident  cost 
real dis- 

driver ( % 1 9 i ? )  
porable i n r o u ~ r  per 

income 
real PC  annual  in- 
come 
real  average weakly 
earnings 
Gini  index of i I l -  

come 
income 

inconle 

Federal  Reserve 

dustrial  Productiou 
Board  Index of In- 

annual % change In 
real   state  GDP 
PCGNP 

per  capita G N P  

[ 4  fatal-serious  accidents 
per  month 
fatal-serious  accidents 
per  month 

[83j fatalities 
I291 fatal  accidents  per reg. negative 

[38] annual  fat. 
vrh. 

cors/trucks 
for negative 

j102.3ij  annual  negative 
[38! annual  fat. 

cars/trucks 
for no 

I681 annual  fat.  not  best 
(SO] annual  fat. New Jersey yes 

i l l71 annual  Aust. some 

,:13Oj motor  veh.  related mor- some 
tolity,  different  countries 

110?,134,130] 
annual 

longitudinal 
positive  in 

[102,134,130]  
annual  negative in 

crossscc- 

[d8] 
tional 

annual fat. best 

; , I I T j  annual Aust. some 

j13Oj motor  veh.  related mor- some 
tality,  different  countries 

[:30] annual  positive 
up  to a point, 
and  then 
negative 



Variable Ref Resnonse Sie effect? 

Economtc factors ,  CorlllTlUed 

unemployment  rate [G8] annual  fat.  not  best 
unemployment [101,120] annual  positive 
automobile produc- [68] annual  fat. not  best 
tion  rate 
motqrization  rate [9O] fat. for one year for dif- yes 

WWII dummy vari- [SO] annual  fat. New Jersey yes 
able 
hospital  access [7G] annual few rds 

ferent  countries 
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Variable Ref Response Sig effect? 

strike  days 
Driver demograplrlcn 

change  in  indusrrisl I681 annual 
activity 
holiday [32] local  lortnightly  acc 1960  yes 
alcohol [3@l  annual  fat. 
consumption 

for n o  

PC ako-  annual  fat.  Ontario 
hol  consunlption for 

Yes 

persons over 11 krs 

beer consuluption ;1?1] serious  injuries yes, also  lag 1 
alcohol 
consumption PC rot 
perrons  over 14 yrs 
alcohol ~10?,103,67,25,132,134,37,80]  
consun~ption 

i$ fatal-serious  accidents 
per  month 

negative 

carsjtrucks 

:I '??j fat.  rate  per  registered yes 
veh. 

annual  positive 
ratio  youths ':a! annual  fat.  for  positive 

cars/trucks 
%young  drivers ; 2 I ]  moderate  injuries yes 

youth l,32,Gi,25,8,38] 
annual  fat.  rate  positive 

male 
%male  drivers 

-. 
1 ? .  
" 

, I , .  

seatbelt  wearing 7 4 ,  

drivers DUI :J .5  
involved in fat.  acc. 
% and ["i] 
alcohol-related  acc. 
DUI  charges  per PI] 
month 
citations  per  driver p u !  ,_ ". 

annual  positive 
1970 state  fat .  per VMT, 
per  popn,  per veh.  vary- 
ing 
monthly  fat. 1970-77 yes 
France 
annual  acc  Ontario Yes 

monthly fat. Canada no  

monthly  fat.  Canada no 

annual, by roadtype yes most 
roads 



Variable Ref Response Sig effect? 

Vehicle demoyraphicr 
urbanisation [33] fat.  per  person  Aust  positive 

urbanisation [70] 1970  state  fat.  per VMT,  varying 

ratio  auto- [38] annual  fat. for negative 
mobiles  with sakty  care/trucks 
equipment 
automobile  safety [102,25,41,132,134.37,38] 
regulation 

states 1957-65 

per  popn,  per  veh. 

negative 

France 

France 

traffic  volume  index [74] monthly  fat. 1970-77 yes 

mean  speed [74] monthly  fat. 1970-77 yes 

mean  speed [ i 6 ]  annual  not  some 

average  speed [10~,67,i07,8,8o,i32,134,37,38] 
roads 

annual  not  really 
se(speed) [74] monthly  fat. 1970-77 yes 

se(speed) [ T O ]  annual 
France 

speed  variability 1761 annual  positive 
vehicle mix [130] annual 
motor veh. registra- [ B O ]  annual  fat. New jersey yes 
tions 
acc. involving  sin- [85] annual  acc  Ontario yes 
gle vehicles 
veh. stopped by [9 l ]  lnonthly  fat.  Canada  no 

highway  capacity [TO] 1970 state  fat.  per VMT, 
BATnlohiles 

per  popn,  per veh. vary- 

yes 



Variable Ref ResDonse Sie effect? 

Erpoaure 
number of vehicles [2] 
population [2,801 
annual %A VMT (1581 annual fat. 
miles highway !3 81 

VXT ill?] 
V M T  3211 
car  registrations !51] 
length  road  network [55] 

possible  routrs  prr [55 ]  
population 
area in hectares [55] 

drunk-driving (9 1; 
related 
paper/magazine  ar- 

news- 

cars/trucks 
annual  fat.  for  negative 

annual 
property-related  crashes yes 
annual  accident  rate yes 
annual  accident  per  pop- yes 
ulntion 
annual  accident  per  pop- yes 
ulation 
annual  accident  per p o p  yes 
ulation 
nlonthly fat. Canada no 

ticles 



Variable Ref ltesvonse Sie   effect?  

Weather 
temperature 
annual  average  ten- 
perature 

tenlperaturr 
rainfall 
rain 
rain 

[ G  51 
[70] state 1070 fat.  per VMT, 

111 g 
per  popn,  per veh. vary- 

[73,134] annual  positive 

(871 
[22] local effects yes 
[32 ]  local  hourly  acc in 1960 positive 

rainy  days [32 ]  local  fortnightly  acc 1960 yes 
days  snow [41 Fatal-serious  accidents 

snow [ E 2 1  local effects Yes 

per  month 

fog [ E 2 1  local effects no 
wet road  conditions [22] local effects Yes 
wet weather indrx, [57] local  effects on fat. Yes 
based on skid I&- 

icy road conditions 1421 
tance 

local effects no 
nighttime Fat. ~ C C .  [85]  annual  acc.  Ontario yes 
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Glossary 

NCF 

NFRC 

FC 

AUSACCM 

AUSACCQ 

NSWACCM 

NSWACCQ 

QLDACCM 

QIDACCQ 

SAACCM 

TASACCM 

WCACCM 

VICACCQ 

WAACCM 

Number  of  crash  fatalities. 

Number  of fatal road crashes. 

NCF divided by  NFRC. 

NFRC  monthly  series for Australia standardised by days in the 
month, i.e. average  daily NFRC for a given month for 
Australii. 

NFRC  quarterly  series for Australia standardised by estimated 
population of Australia. 

NFRC  monthly series for New South Wales standardised by 
days in the  month, i.e. average  daily  NFRC for a  given  month 
for New South  Wales. 

NFRC quarterly series for New  South Wales standardised by 
estimated  population of  New  South  Wales. 

NFRC  monthly series for Queensland  standardised by days in 
the month, i.e. average daily NFRC for a  given  month for 
Queensland. 

NFRC quarterly  series  for  Queensland  standardised by 
estimated  population of Queensland. 

NFRC  monthly series for South  Australia  standardised by days 
in the month, i.e. average daily  NFRC for a  given  month for 
South  Australia. 

NFRC  monthly  series  for  Tasmania  standardised  by days in the 
month, i.e. average  daily NFRC for a given month for 
Tasmania. 

NFRC  monthly  series for Victoria  standardised by days in  the 
month,  i.e.  average  daily  NFRC for a  given  month for Victoria. 

NFRC quarterly series for Victoria standardised by estimated 
population of  Victoria. 

NFRC  monthly series for Western Australia standardised by 
days in the  month,  i.e. average daily  NFRC for a  given  month 
for Western  Australia. 
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Glossary of Symbols 

B 

B4 

B 12 

V 

backshift  operator, By, = y, . 

annual  backshift  operator for quarterly data, B4yt = yt 

annual  backshift  operator for monthly  data, B ' 3 ,  = yt 

first difference  operator, Vy, = yt - yt V = 1 - B 

annual  difference  operator for annual  data, V4yt = yt - y,. 

annual  difference  opeator, V12yt = yt - yt - 12 

level  parameter for trend 

regression  parameter  for  independent  variable 

slope parameter  for  trend 

trend  parameter 

seasonal  parameter 

noise  parameter 

independent  explanatory  variable 

dependent  response,  time  series  data 

4 V4 = 1 - B 4  

5 
ANI 199lIFORS 
17.e3.92 



PART 1 

Time Series Analysis 
Overview 

ARIMA  time  series  models  are  fitted to the  monthly  number of fatal  road crashes series 
for Australia and  the  states. For all series, it is found  that  the swcalled 'airline' model 
provides a good fit to  the data. For Australia and NSW, the data for  the  period  March 
1983 to December 1990 is used, whereas for other  states,  the  period  January 1976 until 
December 1990 is used. For the Australia and NSW series there is an apparent 
discontinuity in average values around February 1983. There is a large amount of 
similarity between estimated parameter values for the 'airline' models fitted to  the 
Australia  and  states  series.  The  models are used  to  predict  values for January 1991 to 
June 1991 using data up  to December 1990 as a base.  Predictions are compard with 
actual  values. hediction errors are consistent  with  the  inherent  variability  which  is to 
be expected to be found in monthly counts such  as  the  number of fatal  accidents.  That 
is, the  prediction  model is performing  as  well as any  prediction  model  could  perform. 
However,  there is a consistent  overestimate  of fatal road  crashes for June  1991  across 
all  states  except Tasmania. 
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1 .  INTRODUCTION 

1.1 Background 

In developing  a  time  series  model for NFRC  series,  there are two basic  approaches: 

. a  model with explicit wnd and  seasonal  components; 

. a  model  with implicit trend  and  seasonal components defined by autoregressive 

Jenkins ARIMA  approach  (Box  and  Jenkins,  1970). 
linear models and correlated error structures,  an example of  which is the  Box- 

The Box-Jenkins  approach is adopted in this part of the study while the explicit trend 
and seasonal components approach is applied in  the section on explanatory variable 
modelling.  The  Box-Jenkins  approach  has been used extensively in previous  studies on 
accident data.  Section  7  of volume 1 of this report mentions  the  Australian study by 

recently  Harvey  and  Durbin  (1986) use structural  modes for UK data but for prediction 
Bhattachanya et a1 (1979), an early study using  the Box-Jenkins approach. More 

purposes  use  a  Box-Jenkins type model. 

1.2 Standardisation 

A characteristic of  ARIMA modelling is that after applying varying amounts of 
differencing the resultant series is assumed  to  have  a constant mean. For monthly 
NFRC  series, we can assume that 

mean = number  days  in  month x daily  rate 

WY,)  = nt X,. 

Suggesting that monthly  count  data  should  be  standardised  by  the  number  of  days in the 
month,  giving 

To ensure that known  monthly effects are  removed  from  the  series, we have  conducted 

month) series. For both additive and  multiplicative models, the effect of the varying 
the time series analysis of the NFRC series using  the standardised (by  days in the 

believe it is  wiser  to  remove  this  calendar  effect fmt 
number of days in the  month  would be accommodated by seasonal effects but  we 

variance  of  the  daily  rate for a  month is given by 
If the daily number of accidents is assumed to follow  a  Poisson disaibution, then  the 

whereas 

For  the  models  fitted  here  we  assume  that  var(y,/nt) is well  approximated by a  constant, 
that is fitting procedures  assume  constant  variance. 
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Standardisation by a variable dependent on the calendar is standard practice in 
economics for example,  where  trading  days per calendar  month  would  be  an  appropriate 
divisor.  Dividing by a variable such  as  days  in  the  month,  which are known  precisely, 
is not  problematic;  dividing by a  variable  which  is  mepsured  with error is problematic. 

1.3 Additive or Multiplicative  Models 

With  the NFRC series there is a choice between  modelling  the series on the original 
scale or on the log scale. The former  leads to an  additive  model,  whilst  the latter leads 
to a  multiplicative  model. If the  signal to noise ratio is small,  then,  typically,  there  will 
be little difference  between  the  two  approaches.  Additionally, if the  range of the  values 

between fitted and predicted  values  for  additive  and  multiplicative  models. 
of  the series is small, say madmin < 2, then there will be little difference,  generally, 

Generally, studies undertaken  and reported in  Volume 1 tend  to  model  the variation 

predictions on the  original  scale  there are. problems of unbiasedness,  etc.  We  prefer  to 
although  on  the log scale.  Certainly  when  converting  predictions  on  the log scale to 

model  on the original  scale  and  avoid  these  problems  but  alternative  analyses on the log 
scale have  been  undertaken for comparative purposes. There is little difference as 
suggested  above. 

1.4  ARIMA  Models  with  Accident  Data 

Typically for ARIMA  modelling of series showing  trend  and  seasonal  patterns  the so- 
called  'airline'  model  (for  monthly  data) 

12 
(1 - B)(1 - B ) y, = (1 - OB)(1 - OB )e, 

12 

provides the  best  model  amongst the class of ARIMA  models; see Box  and Jenkins 
(1976,s 9). Here  yt is the  (standardised - that is the  average  number  of crashes per day 
in a  given  month)  monthly  series, B is the backshift  operator. By, = yt- 1, B12y, = 
y, . 12, 0 ,  8 are parameters  to  be  estimated,  and et is white  noise.  Harvey  and Durbin 
(1986) fitted the  'airline'  model to accident  data  (car  drivers  killed  and  seriously  injured) 
from the U.K. for the  period  1969 - 1985  and  estimated 

h e = + 0.684, 6 = + 0.995 

using the subseries  1969 - 1982  (note  change of sign from their non-standard 
formulation to ours). The operator '1 - B' removes trend from the series and  the 
operator '1 - B12' removes  the  seasonal  component. 

With 8 = 1, the  operator (1 - B12) cancels  on  both  sides  leaving  a  simpler  model 

(1 - B) y, = yt + (1 - OB) e, 

involving only first differences, an autocorrelated error structure and fixed monthly 
effects, yt = y, - 12 . 

For quarterly data the operator B12 is replaced by B4  with  B4yt = yt -4. 

27.03.92 
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The statistical software  package  STATGRAPHICS (Statistical Graphics Corporation, 
1989) was used for fitting  ARIMA  models  to  the data. The  package  provides  estimated 
values of the  parameters e and 8, denoted by  MA (1) and  SMA (12), respectively, in 
the package and in what  follows.  Diagnostic statistics for the  adequacy of the fitted 
model  include  the  following 

- a  portmanteau  goodness-of-fit  statistic  being  the  weighted  sum of squares of the 
terms  of  the  residual  (one-step  ahead  prediction error) autocorrelation function 
(acf) and  having  an  asymptotic  chi-squared  distribution  given  white  noise for the 
residual error series (see Box  and  Pierce,  1970). A modified  Box-Pierce  statistic 
(Ljung  and  Box,  1978)  has its distribution  approximated  better  by  the  chi-squared 
distribution for small  samples. For the  sample size n = 180 used  mainly  in  these 

for sample sizes less than 100 (also used in the study) the values of the chi- 
studies, the correction suggested by Ljung and Box has  only  a small effect but 

squared statistic printed by STATGRAPHICS  should be inflated by 10 percent 
for a reasonable correction.  The statistic given in the Tables is the  Box-Pierce 

The statistic is based  on  the  first  20  autocorrelations. 
statistic for n = 180 and  the  Box  Pierce  statistic  inflated by 10 percent  for  n < 100. 

- measures of skewness  and kurtosis for the  residuals. 

These are supplemented by plots of  the  acf  and partial acf  against lag, and plots of 
ordered  residuals  against  expected n o d  percentiles (Q - Q plots).  These  plots are not 
given  in this report. 

2 .  RESULTS FOR  AUSTRALIAN  MONTHLY SERIES 

2 . 1  Estimated Model 

A  plot of the daily  average  NFRC for the  monthly  series  for Ausualia (AUSACCM)  for 
1976 until 1 9 9 0  is given in Appendix A, Figure A.l and  shows  a  steady decline overall 
with a  relatively  sharp d d i n e  in  early  1983. 

An ARTMA model  was fitted to three series  of  the  AUSACCM data to investigate the 
stability of parameters  over time: 

Jan 1976 - Dec 1990 (n = 180) 
Jan 1976 - Feb 1983 (n = 86) 
March 1983 - Dec 1990 (n = 94) 

Summaries of estimates and diagnostic statistics are  given in Tables 2.la,  2.lb and 
2.lc. 

In  each case the 'airline'  model gave a  good fit to  the data with estimates in  the range 
0.74 to  0.84 for MA(1) and 0.66 to 0.73 for SMA(12) for the three series. Residual 
analyses  showed  no  unusual features. The  noise  standard  deviation  was  smaller for the 
later series, March 1983 - December 1990 than  the earlier series, by about 20 percent. 
Typically,  a  value of AUSACCM in 1990 is  about 5.7 fatal accidents per day, so that  a 

percent. If the parameters were  known  precisely  this  would be the one step ahead 
noise standard deviation of about 0.7 gives a relative error of about 0.7/5.7 or 12 

relative ermr of prediction  for  the fitted model. 
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2 .2  Predictions for 1991 

In Table 2.ld we give predictions  and  confidence intervals for values of  the  Series for 
1991  based on the  model  fitted  to  the  March  1983 -December 1990 series. 

Predictions for the lirst months of 1991  from data up to  December 1990 are reasonable 
except  that  the June value is overestimated by 0.98 accidents per day. All actual  values 
are within  the  95%  confidence  limits.  The  95%  confidence  intervals  are  wide;  typically 
the  upper value is almost  twice  the lower value. The six errors of prediction, actual 
value minus predicted value, are both  negative  and  positive  with  an average value of - 
0.04 accidents per day,  indicating  little  bias of prediction. 

Multiplicative  models  were fitted to  the data by taking logarithms  of  the  standardised 

model  and  a  multiplicative  model.  On  the  grounds  of  simplicity,  an  additive  model  was 
series. Little difference  was  found  between fitted values  and  predictions for an  additive 

used. 

In Table 2.le we  give  prediction errors for data obtained in January 1992 from FORS. 
For  the  year 1991 there are six  positive and six negative emrs and  the  average  absolute 
error is  0.39. 

Table 2.la 

AUSACCM : Estimates for 'airline' ARIMA model 

Jan 1976 - Dee 1990 
estimate std error t value 

MA (1) 0.804 0.046 
SMA  (12) 0.734 0.057 12.8 

17.4 

Noise srd dev 0.72 

Residuals 

SlreWnesS -0.079 
kurtosis 
chi squared statistic = 18.12 (p = 0.45) 

-0.63 
-0.42 
-1.65 

Table 2.lb 

AUSACCM : Estimates for 'airline' ARIMA model 

estimate std error t value 

MA(1) 0.84 
SMA (12) 0.66 

0.066 
0.099 

12.8 
6.66 

Noise std &vn 0.83 

Residuals 

Jan 1976 - Feb 1983 

kurtosis 
skewness -0.093 

chisquaredstatistic = 13.00@ = 0.79) 
-0.89 
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Table 2.lc 

hf.4 (1) 
SMA (12) 
Noise sld dcvn 

Residuals 

AUSACCM : Estimates for ‘airline’ ARIMA  model 

estimate std  error t value 

0.74 0.075 
0.68 0.098 

9.95 
6.89 

0.67 

March 1983 - Dec 1990 

kunosis 
skewness 

chi squared statistics = 20.6 @I = 0.30) 
-0.59 
0.19 

-1.09 
0.70 

Table 2.ld 

AUSACCM : Predicted values & 95% confidence limits for  1991 using 
model in Table 2.lc 

predicted 

4.63 
4.87 

4.63 
5.70 

4.91 
5.31 
5.02 
4.77 
5.92 
4.91 
5.03 
5.76 

confidence limits  actual error 

3.29  5.97  158/31 = 5.10 0.47 
3.50 
4.21 

6.21 139m = 4.% 0.09 

3.16 
7.11 171/31 = 5.52 
6.10 152/30 = 5.07 

- 0.18 
0.44 

3.40 
3.77 

6.41 154i31 = 4.97 
6.85 130/30 = 4.33 

0.06 

3.44 
- 0.98 

3.15 
6.60 

4.27 
6.38 
7.57 

3.23 6.60 
3.31  6.75 
4.01 7.52 

Table 2.le 

AUSACCM : Predicted values & 95% confidence limits for  1991 using 
model  in Table 2.lc 

month predicted confidence limits  actual. error 

January 
February 
March 
April 

JUne 
J ~ Y  
August 
September 
October 
November 
Decanter 

4.63 
4.87 

4.63 
5.70 

4.91 
5.31 

4.77 
5.02 

4.91 
5.92 

5.03 
5.76 

3.29 
3.50 

5.97 157/31 = 5.06 
6.27 137m = 4.89 

4.27 7.11 170/31 = 5.48 
3.16 6.10 156130 = 5.20 
3.40 
3.77 

6.41 lSOf31 = 4.84 
6.85 138/30 = 4.60 

3.44 6.60 163f31 = 5.26 
3.15 
4.27 7.57 161/30 = 5.37 

6.38 171.31 = 5.52 

3.23 6.60 166f31 = S:35 

4.01 
3.31 6.75 148f30 = 4.93 

7.52 159/31 = 5.13 

~ ~.~ ~ 

0.43 
0.02 - 0.22 
0.53 
0.07 

- 0.71 

0.75 
0.24 

- 0.55 
0.44 

- 0.10 
- 0.67 

~~ 

averageletrod = 0.34 

* obtained January 1992 from FORS 
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3 .  RESULTS  FOR STATE MONTHLY SERIES 

3.1 Introduction 

The  ARIMA  modelling  approach was used to investigate  the  NFRC  monthly series for 
each  state.  The  territories  were omined because  monthly  rates are too small for analysis 
by the  ARIMA  models  used  here;  similar  comments  hold for Tasmania.  In each case 
the  'airline'  model  was  found  to  be  a  good  model  with  parameter estimates similar to 
those for the Australian series.  Again, the period 1976 - 1990 was considered for 

but are all well  modelled by very  similar ARIMA 'airline'  models. 
splitting into two periods. The disaggregated state series have distinctive differences 

3.2 NSW Monthly  Data 

Appendix A Figure A.3 gives the NSWACCM data plotted, and the plot shows  a 
distinct  change  in  level  near  February  1983.  Results for the  three  series,  the full period 

MA (1) and SMA (12) are similar, close to 0.8 and 0.7 respectively, to those for the 
1976 - 1990,  before  and after 1983 are given in Tables 3.la,  3,lb, 3.1~. Estimates of 

AUSACCM  series. For the  period 1976 - 1990, the  noise  standard deviation is 0.43, 
whereas for March 1983 - December  1990,  the  noise  standard deviation is 0.38. This 
indicates  better prdctions for  the  model fitted to  1983 - 1990 data. The  average  for  the 

percent. 
values in 1990 is about 2.0 fatal crashes per day, giving  a relative error of  about 20 

Predictions are given in Table 3.ld based on the  model fitted to the  March 1983 - 
December 1990 data. 
The  predictions for the first months  of 1991  are reasonable  except for the over estimate 
for March. The errors  of  prediction  have an average  value of - 0.10 accidents per day. 
All actual  values are within  the  95%  confidence  intervals. 

3.3 Queensland Monthly Data 

A plot of  the Queensland series, QLDACCM, in Appendix A Figure A.8,  shows  no 
abrupt drop in values which  the  series for NSW shows in 1983.  Consequently,  only 
the complete series, 1976 - 1990, was analysed. Parameter estimates were not 
significantly  different from 0.8, for MA (1) and  not  significantly  different from 0.7 for 
SMA (12); Table  3.2a.  The  noise  standard deviation is 0.25 whilst  the 1990 value of 
the series is typically  close to 1.0 giving  a 25 percent  relative  error. 

Predictions for 1991 based on the model fitted to the  January 1976 to  December 1990 
values of the  series are given in Table 3.2b.  Predictions are reasonable  with June 1991 

prediction is 0.08 accidents per day  while  3 of the errors of prediction  are  negative  and 
being under estimated by  an amount 0.38 accidents per day. The average error of 

3  positive. All actual  values are within  the  95%  confidence  intervals,  which  are  wide. 

3.4  South Australia Monthly  Data 

Like the QLD series  there was no abrupt  change  in  values  about 1983 for the  SA  series 
and  the level is relatively constant over the  period  of  the  series  (Appendix  A, Figure 
A.lO). From Table 3.3a,  the parameter estimate, 0.67, for MA (l), is significantly 

just; the estimate for SMA (12) is not  significantly  different from the  value 0.7 obtained 
different (t value = 2.2) from the value 0.8 obtained for the  Australian series but only 

for the  Australian  series.  The  noise  standard  deviation is 0.21 compared with a  typical 
value of about 0.4 for value in  1990,  giving  a 50 percent  relative  (prediction)  error. 
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Predictions for 1991  based  on  the  model fitted to the  January 1976 to December 1990 
values of the  series are given in Table 3.3b. There  appears  to be some under  estimate of 
values  with  the  average  error  of  prediction  being 0.06 accidents  per  day.  Both  February 
and  March  1991 are under  estimated so that  predictions are about 64% of actual values. 
The lower values of  the  confidence  intervals for predictions are in each  case negative 

about  the  predicted  value  and do not  take  into  account  the  necessary  non-negativeness of 
and this has been replaced by zero.  The original confidence intervals are symmetric 

this later. 
the  predictions.  For  SA,  the  predictions are not  particularly good but we comment on 

3.5 Tasmania  Monthly  Data 

The TASACCM series shows  no abrupt change in values in 1983 and  only one series 
(Jan 1976 - Dec 1990) was  analysed  (Appendix  A,  Figure  A.lO). From Table 3.4a  the 
MA (1) parameter  estimate  of  0.92 is  sigdicantly different from the value 0.8 (t value = 
3.75);  the SMA (12) estimate is not significantly different from the value 0.7.  The 

0.17,  giving  a  relative  error  of  almost 60 percent. 
noise standard deviation is 0.10 and  the average value of the  series for 1990 is about 

The kurtosis of  the residuals is a little large and  positive  but  a Q - Q plot of residuals is 
close to being  linear  required for normally  distributed  errors. 

Predictions for 1991  based  on  the  model fitted to  the January 1976 to December 1990 
data are given  in Table 3.4b.  Conficence  intervals are wide,  the  upper  limit  being  about 
twice  the  predicted  value.  Values  for  Tasmania are generally  between 5 and 10 accidents 
per month and so the appropriateness of the  ARIMA  approach  can  be questioned. 
Nevertheless,  the  'airline'  model  gives  predictions and  these  tend to be too  small,  giving 
underestimates.  Results are included  for  completeness. 

3.6 Victoria  Monthly  Data 

The Victorian series, VICACCM  (Appendix A, Figure AS, Figure A.10), shows a 
substantial change in level  at the end  of 1979 and  beginning of 1980. The full series 
Jan 1976 - Dec 1990 was  analysed  and  subseries  were  considered  with little difference 
between results, so that the full series was used to estimate parameters. From Table 

'airline'  model  appears to fit well. The noise  standard  deviation is 0.29  compared  with 
3.5a the values of the parameters are very close to the values 0.8 and 0.7 and the 

an  average 1990 value  close to 1.4 giving  a  relative  error  of  about 20 percent. 

Predictions for 1991, based  on  the  model fitted to the  January  1976 to December 1990 
data, are given in Table 3.5b.  Predictions,  actual  values  and  errors  of  prediction give an 
interesting  pattern.  The  values for the  first three months,  January,  February and  March 
are underestimated by  a small amount, about 0.10 accidents per day, whereas 
predictions for the  next  three  months,  April,  May  and June are overestimates by about 
0.43 accidents per day or, in relative terms, by about 50 percent. This suggests that 
there has  been  a  dramatic  change  in  the  underlying  process from April 1991 onwards, 

from April 199 1 onwards. 
and  that the database up to  December 1990 is not  adequate to predict  the changes seen 

3.7 Western  Australia  Monthly  Data 

The series for WA appears to be somewhat different from that for the eastern states 
(Appendix A, Figure A.lO). There is no reduction in values towards  the  end of 1979 

increase. There is no  abrupt  reduction  in  level in early  1983  as  seen in the NSW series; 
and beginning of 1980 as experienced in Victoria; in  fact  the  general  level appears to 
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in  fact  again  the level appears to increase.  However,  from  Table 3.6a, the MA (1) and 
SMA (12) estimates  are  not  significantly  different  from  the  values 0.8 and 0.7. The 

0.5 giving  a  relative error of 34 percent.  The  chi-squared  statistic,  computed  from  the 
noise standard deviation is 0.17 while  the  average  value of the  series  for  1990 is about 

first  terms of the  residual  autocorrelation  function (acf), has a  p-value of 0.06. 
However, on inspection of the  residual acf, there is no  single  value  significantly 
different  from 0 at  the 5 percent level. Hence, no alternative  model is suggested by  the 
residual  acf. 

Predictions  for 1991, based  on  the  model  fitted to the  January 1976 to December  1990 
data, are given in Table 3.6b. It should  be  noted  first  that  predictions for the  early 
months of 1991 are very  similar  at 0.50 accidents per day.  There is a small deviation 
from  this  value  for  the  predictions  for  May  and  June 1991.  A large  underestimate, 
equal to 0.25 accidents  per day, or, in  relative  terms,  about  30  percent,  occurs  for 
January 1991. For  the  remaining  months  there  tends to be  an overestimate.  The 
average  error of prediction  for the six months is - 0.03 accidents  per day, that is an 
overestimate on average.  All  actual  values lie in  the 95 percent  confidence  intervals 
which  tend to be  wide. 

Table 3.la 

NSWACCM : Estimates for 'airline' model 

January 1976 - Dee 1990 
estimate std  error t value 

MA (1) 

Noise std dev 
SMA (12) 

Residuals 

0.84 
0.74 

0.043 
0.056 13.3 

19.4 

0.43 

skewness 
kurtosis 
chi squared statistic = 24.7 (p = 0.13) 

-0.094 
-0.49 

MA (1) 

Noise  std &v 
SMA (12) 

Residuals 

-1.29 
-0.49 

Table 3.lb 

NSWACCM : Estimates for 'airline' model 

estimate std error t value 
January  1976 - 

0.78 
0.70 
0.51 

skewness 
kurtosis 
chi squared statistic = 17.4 (p = 0.50) 

-0.12 
-0.89 

0.089 
0.097 

8.8 
7.2 

-1.56 
-0.42 

14 



Table 3.lc 

NSWACCM : Estimates for 'airline' model 

March 1983 - Dee 1990 
estimate std error t value 

MA (1) 
SMA (12) 

0.84 
0.67 

0.06 13.5 

Noise std dew 0.38 
0.10 6.5 

Residuals 

kurtosis 
slrewness 4.34 

-0.56 
chi squared statistic = 23.3 (p = 0.18) 

-1.02 
-1.25 

Table 3.ld 

NSWACCM : Predicted values & 95% confidence intervals for 1991 
using Model of Table 3.lc 

month 

January 
February 
March 
April 

JUne 
&Y 

July 
August 
September 

Novmber 
October 

December 

MA (1) 
SMA (12) 
Noise std devn 

Residuals 

predicted confidence limits  actual error 

1 . 4 6  
1.76 
2.06 

1.66 
1.49 

1.83 
1.87 
1.55 
2.11 
1.89 

1.98 
1.68 

0.99 
0.69 2.21 58/31 = 1.87  0.41 

2.53 44/28 = 1.57 - 0.19 

0.70 
1.28  2.84  42/31 = 1.35 

2.29  50/30 = 1.67 
- 0.71 

0.86 2.46 53/31 = 1.71 
0.18 

1.02 
0.05 

1.05 
2.64 45/30 = 1.50 
2.69 

- 0.33 

0.72 
1.27 2.94 

2.38 

1.04 
0.83 

2.73 
2.53 

1.12  2.84 

Table 3.2a 

QLDACCM : Estimates for 'airline' ARIMA model 

estimate std  error t value 

0.72 0.052 13.9 
0.73 0.056 13.1 
0.25 

Jan 1976 - Dee 1990 

skewness 
kurtosis -0.26 
chisquaredstatistic = 16.07@ = 0.59) 

-0.021 -0.11 
-0.70 
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Table 3.2b 

QLDACCM : Predicted values & 95% confidence intervals for 1991 
values using model in Table 3.2a 

month 

February 
March 
April 
MaY 
June 
July 
August 

October 
SepWnber 

November 
December 

(1) 
SMA (12) 
Noise std devn 

Residuals 

skewness 

predicted confidence  limits  actual error 

0.69 0.19 1.20 20/31 = 0.65 - 0.04 
0.80 
0.89 

0.28  1.32 19/28 = 0.68 
0.35 1.43  34/31 = 1.10 

- 0.12 

0.76 
0.21 

0.20 
0.81 0.24 

1.32 28/30 = 0.93  0.17 

0.92 
1.38 37/31 = 1.19 0.38 

0.91 
0.33 1.51 25/30 = 0.83 - 0.09 

1.02 
0.30 
0.40 

1.51 
1.64 

1 .os 
0.97 

0.45 1.72 
0.32 1.62 

0.9s 
1.04 0.38 

0.30 
1.71 
1.66 

Table 3.3a 

SAACCM : Estimates for 'airline' model 

Jaa 1976 - Dee 1990 
estimate sM error t value 

0.67 
0.63 

0.059 11.5 
0.063 

0.25 
10.1 

0.39 2.07 
kurtosis 
chi quared statistic = 19.3 (p = 0.37) 

0.61  1.61 

Table 3.3b 

SAACCM : Predicted values & 95% confidence intervals for  1991  usine 

month 

January 
February 
March 
April 

June 
MaY 

July 
August 

October 
September 

November 
DecemLxx 

predicted 

0.41 
0.37 
0.38 
0.39 
0.31 
0.33 

0.37 
0.27 

0.48 
0.49 

0.53 
0.39 

model  in Table 3.3a 

confidence  limits  actual errnr 

- 

0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0.83 lO/3l = 0.32 * 0.09 
0.82 17/28 = 0.61 0.24 
0.85 19/31 = 0.61 0.23 
0.88  15/30 = 0.50 0.11 
0.81 11/31 = 0.35 0.04 
0.85 9/30 = 0.30 - 0.03 

0.93 
0.81 

1.05 
1.07 
0.99 
1.15 
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Table 3.4a 

TASACCM : Estimates for 'airline' model 

estimate std error t value 

0.92  0.033  28.2 
0.71 0.055 
0.10 

13.0 

Jan 1916 - Dec  1990 

MA (1) 

Noise std &v 
SMA (12) 

Residuals 

kurtosis 
skewness -0.06 

chi squared statistic = 10.9 (p = 0.89) 
1 .a5 

-0.32 
4.87 

Table 3.4b 

TASACCM : Predicted values & 95% confidence intervals for 1991 
using the model in Table 3.4a 

month predicted confidence limits  actual error 

MA (1) 
SMA (12) 
Noise std &v 

Residuals 

0.20 
0.17 
0.18 
0.16 
0.12 
0.16 
0.11 
0.15 
0.16 
0.13 
0.21 
0.19 

0 
0 

0.41 4/31 = 0.13 - 0.07 
0.38 5RS = 0.18 0.01 

0 
0 

0.40  8/31 = 0.26 0.08 

0 
0.37  6/30 = 0.20 
0.32  7/31 = 0.23 

0.04 

0 0.37 7/30 = 0.23 
0.09 
0.07 

0 0.32 
0 
0 0.77 

0.36 
." . 0 0.33 

0 
0 0.4 1 

0.40 

Table 3.5a 

VICACCM : Estimates for 'airline' model 

kurtosis 
SLewness 0.05 

0.14 
chi squared statistic = 16.5 (p = 0.56) 

estimate std  error t value 

0.80 0.047 
0.70 

17.0 
0.058 12.0 

0.29 

Jan  1976 - Dec  1990 

-0.38 
0.27 
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VICACCn 

MA (1) 
SMA (12) 
Noise std dev 

Residuals 

SlreWneSS 

d : Predicted values & 95% confidence intervals  for  1991 using 
the Model in Table 3.5a 

predicted confidence limits  actual error 

1.20 
1.26 

0.63 1.77 40/31 = 1.29 
0.69 

0.09 

1.52 0.93 
1.84  37128 = 1.32 
2.11 54/31 = 1.74 

0.06 
0.22 

1.19 
1.45 

0.58 
0.84 2.07 31/31 = 1.00 

1.79  25/30 = 0.83 - 0.36 - 0.45 

1.07 
1.36 0.73 1.98 G O  = 0.87 

0.44 
- 0.49 

1.71 
1 .os 0.4 1 
1.33 

1.70 
0.68 

0.99 
1.98 

0.32 1.65 
0.99  0.32 
1.29 

1.69 
0.60 1.97 

Table 3.6a 

WAACCM : Estimates for 'airline' model 

estimate std error t value 

0.86 0.038 22.5 
0.77 
0.17 

0.053 14.5 

Jan 1976 - Dee 1990 

kurtosis 
chi squared statistic = 27.9 (p = 0.06) 

0.28 
0.061 0.16 

1.47 

Table 3.6b 

WAACCM : Predicted values & 95% confidence  intervals  for 1991 using 
the  Model in Table 3.6a. 

month predicted confidence limits  actual error 

JauarY 
Febru;ny 
March 
April 
%Y 
June 
July 
August 

October 
September 

November 
December 

0.49 
0.50 
0.51 

0.44 
0.51 

0.50 
0.54 

0.48 
0.57 
0.38 
0.52 
0.60 

0.16 
0.17 
0.17 
0.17 
0.09 
0.19 
0.15 
0.13 
0.21 
0.02 
0.16 
0.24 

0.82 23/31 = 0.74 0.25 
0.83 1 0 D  = 0.36 
0.84 12j31 = 0.39 

- 0.14 - 0.12 
0.85 17/30 = 0.57 0.06 
0.78 11/31 = 0.35 
0.88 11/30 = 0.37 

- 0.09 - 0.17 
0.85 
0.83 
0.92 
0.73 
0.89 
0.97 
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4 .  COMPARISON OF STATES AND  AUSTRALIA 

4 . 1  ARIMA Models  Fitted to Data up to December 1990 

The  'airline'  model  appears to fit all states  well  and  parameter  estimates are close to the 

individual states have  substantially  different patterns with 
estimates for the  national  series; see Table  4.1 for a summary of estimates.  However, 

- NSW having an abrupt  change  in  level  occurring  in  1983; 

- Victoria having a  change  in level occurring at the end of 1979 and  beginning of 
1980; 

- WA  shows  increases  when NSW and  Victoria are showing decreases (1979). 

Thus in  terms of explanation, the pure time series  model  has no merit since the same 
model fits all states  well.  The  series  ARIMA for the  six  states  could  be  interpreted as 
being realisations of  the  same stochastic process, showing a degree of independence 
which needs to be investigated in further work. From Table 4.1 it is seen  there 

Australia has an estimate MA (1) different from a common value. 
is a similarity of estimates for states. A formal significance test  shows  that South 

4 . 2  Aggregated Prediction Equations 

In general,  predictions for the ARIMA model are of the  form 

't+k - j = l  f, a. ~ , k ' t - j  
- 

where 9 t + k  
is the prediction  of yt + given yL, yt ~ 1, ..., y,, and  the  aj. depend on 

the values  of  the MA (1) and SMA (12)  estimates. Since there is no  reason  to consider 
the MA (1)  and SMA (12)  estimates to be different for different  states  (except,  perhaps, 
South Australia),  the predictions for  each  state will be the same linear combinations of 

are different  from state to state. That is 
the lagged values for that  state. These will, of course, be different, because  the  series 

A S - - 2 a. S 
' t +k  j = l  ] , k Y t - j  

A A 
- - f a. A 

' t+k , = I  ~ , k ' t - j  

= aggregated  predictions  from  individual  states, 
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where  superscript  A refers to predictions  and  values for Australia  and superscript S to 
those for the states. Thus the  airline  model with either 

or 11983 - 1990datal MA (1) = 0.74, SMA (12) = 0.68 
[I976 - 1990 data] MA (1) = 0.80, SMA (12) = 0.73 

can be used to estimate future values for each state individually and  the aggregated 
pmhctions are the same as those for the Austrdla series. This has  not been investigated 
but  could be the  basis for futher  work. 

4 . 3  Models for Jurisdictions with Small Counts 

Northern Territory  and  ACT,  should be developed.  The  type of problem  that  needs to 
Time series models for series having small  values,  such  as  the series for Tasmania, 

be addressed includes  making propa allowance for the  positive semidefmiteness of  the 
observed values (so obtaining confidence intervals, for example, which are bounded 

distribution  of  a  small  value. 
below  by 0), and the inappropriateness of a  normal dishbution approximation for the 

4 .4  How Good are Predictions for 1991 Accident Data? 

the period  January to June 1991 are given  in Table 4.3. The ARIMA  models fitted to 
The  prediction errors for the ARIMA  models  fitted  to  the  Australian  and  state data for 

each state are very  similar as we  noted  above. What we note is that for the  states,  the 
pattern  of  errors is more or less  random for the  months  January  to  March.  All errors for 
June, except Tasmania which  has  a small accident  occurrence, are negative, that is the 
prediction is an overestimate, suggesting some structural change in the mechanism 
generating  the  data. Predictions for Victoria for April to June 1991 are all too large, 
indicating a structural change  taking  place. 

To obtain  some  external  assessment  of how  good  the  predictions are and  how  small the 
predictions errors, we can consider the NFRC in a Poisson model presented in 
Standardisation,  section 1.2. If y is the  number of accidents  occurring in a  month,  the 
daily rate is h and y follows a  Poisson  distribution,  then the daily observed rate (y/n), 
where  n is the  number  of  days  in  the  month,  has  mean h and variance (h/n). In Table 
4.3,  we give for each of the jurisdictions, the  average  daily fatal accident rate based on 
the first six months data of  1991,  i.e. an estimate of h. Based on this value of the 

average  daily rate, we  give  the value of Jhno , the  standard deviation of (y/30),  the 
daily rate for a 30 day  month, assuming the mean  of  (y/30) is h. We see that these 
values are of similar sizes to the average absolute errors of prediction based on the 
errors of prediction for the first six months of 1991. What this suggests is that the 
errors of prediction are consistent  with  accurately estimated means for the daily rates 
and that the size of  the error reflects the intrinsic Poisson variability in the monthly 
counts. That is, the ARIMA  prediction  model is obtaining as much  accuracy  as one 
could  expect  given  the  Poisson-like  variability. 
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.Table 4.1 

Summary of model estimates for states for 'airline' model, 
Jan 1976 - Dec 1990 

State MA (1) parameter 

New South Wales 0.84 (0.04) 

" 0.72 (0.05) 

South Australia 0.67 (0.06) 

Tasnania 0.92 (0.03) 

Victoria 0.80 (0.05) 

W e s m  Australia 0.86 (0.04) 

SMA (12) parameter 

0.74 (0.06) 

0.73 (0.06) 

0.63 (0.06) 

0.71 (0.06) 

0.70 (0.06) 

0.77 (0.05) 

AUSTRALIA 0.804 (0.05) 0.734 (0.06) 

Table 4.2 

Summary of model estimates for NSW & Australia for 'airline' model, 
1983 - DW 1990 

State M A  (1) parameter SMA (12) parameter 

New~South Wales 0.84 (0.06) 0.67 (0.10 

AUS& 0.74 (0.075) 0.68 (0.098) 
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Table 4.3 

Summary of prediction errors (aclual - prediction) for the 
first six months of 1991. 

Errorsareexuactedfrom TablesZ.ld, 3.ld. 3.2b.  3.3b, 3.4b, 3Sb, 3.6d. 
Table also gives theoretical standard  deviations based on Poison model. 

AUS  NSW QLD S A  TAS VIC WA 

0.47  0.41 ~ 0.04 -0.09 - 0.07 0.09 0.25 

-0.18 - 0.71  0.21 0.23 0.08 
0.06 - 0.14 

0.44 0.18 0.17  0.11 0.04 -0.36 0.06 
0.22 - 0.12 

0.06 0.05 0.38 0.04 0.09 - 0.45 -0.09 
- 0.98 -0.33 - 0.19 -0.03 0.07 - 0.49 - 0.17 

0.09 - 0.19 - 0.12 0.24 0.01 

avmgeema - 0.02 - 0.10  0.07 0.08  0.03 -0.16 -0.04 
average absolute enur 
average accident per day 

0.37  0.31  0.19 0.12 0.06 
4.99 1.61 0.90 0.45 0.20 

0.28 0.14 

Poissonmodelstandarddeviation 0.41  0.24  0.17  0.12  0.08 0.20 0.12 
1.18 0.46 
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PART 2 

Models Involving Explanatory Variables 
Overview 

A twwstage  approach  is  taken to the  development  of  explanatory  models for the  number 
of fatal road crashes (NFRC). A data analytic  technique using the  Bayesian  Analysis of 
Time Series (BATS) is initially used to find explanatory variables which  have some 
explanatory  power.  Having  found  these variables, reduced structural models  are  then 

Both monthly  and quarterly series  were  considered for both Australia and  the states. 
fitted to selected  models  based on the  explanatory  variables  found  from the first stage. 

For Australia  and  monthly data, a model  with cwent month's fuel sales and fuel sales 
lagged by a month gave statistically significant results.  The  model  with  new  motor 
vehicle registrations gave marginally statistically significant results. For the  larger 
states, NSW, Victoria  and  Queensland, a weather  index,  based  on a weighted  average 
of rain  days per month,  gave  marginally  statistically  significant results and, in the case 
of Queensland, statistically significant results. For quarterly data,  the total sales of 
automotive  fuel  gave a statistically  significant  result  for both the  Australia  and  Victoria 
series.  Additionally, a model involving both  fuel sales and  the percentage change  in 
petrol prices gave statistically significant results for both  Australia  and  Victoria.  For 
other states with quarterly data, no  model involving an explanatory variable gave 

model for the quarterly Australian series was investigated further and prediction 
statistically  significant  results  which  improved upon a pure  time  series  model.  The  fuel 

equations  developed  which  additionally  involved  forecasts for fuel. 

Quarterly Redictions for 1991 based  on  an  explanatory  model  with  fuel  using  quarterly 
data  were  no  better  than  predictions  based on a pure time  series  model for monthly  data. 
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5 .  GENERAL METHODOLOGY 

5 .1  Introduction 

The primary  objective of this part of the  project  is  to develop equations to  explain and 
predict the numbers  of  fatal road crashes (NFRC). Currently there are two general 
methodologies for analysing  time series data such as NFRC. The first is based on the 
standard  regression  model  but  the noise has a  time  series  structure,  that  is 

where yt  is the dependent variable at time t, t = 1, ..., T, pj is the regression 
coefficient  for  the jm explanatory  variable  which  has  value x. at  time t, and nt follows  a 
time series  model  such as an ARIMA (Box and  Jenkins, 1978). The  second is based  on 
a regression model  which allows for a stochastic time-varying evolution of trend, 
seasonal and  regression parameters, which  are sometimes called 'structural models'; 

comparison  with ARLMA model. To summarise  Harvey and Durbin, the statistician 
see, for example, Harvey and  Durbin (1986) for a  brief review of these models  and 

should  seek to identify  the main observable features of the  phenomena  under  study  and 
should  then  attempt to incorporate  in  his  model  an  explicit  allowance for each  of  these 
main features. Visual inspection of graphs of time series usually reveal trends and 
seasonals as important  observable  features of the  data,  and it seems  desirable to model 
these  features  explicitly. By analogy with  usage in economemcs  this  procedure  is  called 
structural modelling.  In  a  structural  model of an economic  system each component or 
equation is intended to represent  a  specific feature or relationship  in  the system under 
study. Sometimes it is convenient to transform the structural model into a particular 

form of the  model. In the  time  series case it is possible  to  transform  a linear structural 
alternative form for specific  purposes,  such as forecasting,  and  this  is  called  the  reduced 

model into an ARIMA model  and this may  then be referred to as the reduced f m  of  the 
structural  model. 

The  structural  model  takes  the fonn 

y = 1 + y  + E  t t t t  

where h, yt and Q are the  trend, seasonal and irregular components  respectively. The 
terms 4 and yt are allowed to evolve  stochastically with time. For example, F~ might be 
modelled by a linear trend a, + 8, t but  where 

a1-at-1 = independent  white noise, 
4 - 6 , - 1  = independent  white  noise, 

and  the terms q also follow  an  independent  white noise series. 

The tenn 7, represents seasonal effects and  can also be modelled to allow for time 
varying effects. Methodology follows Harvey and Durbin (1986, 82) and  West  and 
Harrison (1989, Chapter 8). Instead of, say, representing  seasonal  monthly effects by 
individual terms  for  each month (a fully specified model), monthly effects are 
represented by trigonometric  terms,  sinusoids  with  wave lengths 12 months, 6 months, 
4 months, 3 months, 2.4 months  and  a  cosine  of  wavelength 2 months. This approach 
gives  an  opportunity for parsimonious  modelling in terms of the harmonics of the  basic 
12 month  sinusoid. 
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Explanatory  variables  can  be added to the  model  to  give 

In econometric modelling, the  xs would be  exogenous variables. A further 
development of this  model is to allow  the  regression  coefficients pj to evolve  with time 
also. 

We  have  the  model 

with 

pjt - pjt - 1 
= independent  white  noise 

comelation  structure. 
for j = 1, ..., k. The noise across j = 1,  ..., k for given t would have some 

Generally,  the  model  with  time  varying pjt can be used for exploratory  purposes  finding 
those explanatory variables for which  the  regression coefficient takes  statistically  and 

explanatory purposes.  However, for predictive purposes one would  not  want to use a 
scientifically significant values.  Models  of this form can, of course, also be used for 

model  with  time varying ps but  use one with  time constant ps, as, obviously, in the 
first case, the regression relationship is stochastic and therefore increases, generally 
speaking,  the  variability of forecasts. 

Our general  method of investigating  regression  models  is  as  follows. 

1. For a  given explanatory variable or set of variables, first fit a model  with  time 

package  BATS as explained  below). 
varying trend, seasonal and regression coefficients. (This is done using the 

2. Inspect  a  plot of the  estimate of the  regression  coefficient, p. , and 95% confidence 
limits against  t  and  determine  whether  the  estimated  value IS slgmficantly  different 
from zero and relatively constant. Calculate various diagnostic statistics to 
determine  the  adequacies of the  model. (Part of  the  standard  BATS  output). 

.J t  . . 

3. For models with significant explanatory variables, estimate time constant 
regression effects by using  a  reduced  form  structural  model. W i s  is done using 
the  Genstat  program,  Payne et al, 1987 as  explained  below). 

In order  to determine sets of explanatory variables which would be likely to give 
reasonable models, a forward selection procedure was  used, investigating sets of 
explanatory  variables  which  individually  give  significant results. 
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5.2 Fitting Procedures and Diagnostics 

The  time  varying  regression  parameter smctural model (5.4) was fitted to data using the 
package BATS (Bayesian Analysis of Time Series, see West, Harrison and Pole, 
1987).  A feature of the  fitting  process is that  various statistics are calculated 'on-line'. 
That is, for example, the  mean  parameter, 4. is  estimated using data yl, ..., yt, to the 
current time  t  although,  of  course,  an  estimate of p, based on all the data yl, ... yT  can 
be found. Similar comments  hold for other parameters and especially the regression 
parameters pjr, Thus inspecting the  values of estimated parameters for the entirety of 
the series is an unportant pan of  the  analysis.  The PC based  package BATS provides  a 
number  of  numerical  summaries of the fitted models as well as various plots. These 
include  estimates of time varying  parameters  (trend, seasonal and regression 
paramem) and forecast  mean square errors and  one-step-ahead  predictions. 

The analyses  are  based on a  Bayesian  paradigm so that  posterior  means  and  standard 
deviations are found for parameters. Prior distributions  need to be specified  and  these 
can be chosen in a  'neutral' way so as to  allow  the data to 'speak for themselves'. 

The BATS program does  not  allow  for  the  regression  parameter p to be time constant so 
that an alternative program was  used in this case. The Genstat program ( s e e  Payne er 
al, 1987) can be used to fit reduced form structural models as follows. If the level 
parameter, a,. the slope parameter, 6,, and the seasonal parameter, yL, follow the 
evolutionary  models  outlined  earlier: 

at-at-1 = independent  white  noise, 
6, - 6, = independent  white  noise, 
y, - yt - = independent  white  noise, 

where s is the  seasonal  period (s  = 4 for  quarterly  data, s = 12 for  monthly data) then 
models  involving  time constant regression  parameters p can be fitted  using  the  'recipe' 
outlined in Table 5.1. There  are  five  basic  models  which are fitted which  allow for 
combinations of fixed or random level, slope and seasonal parameters.  By fixed it is 
meant  that  the parameter is time  constant, that is,  formally,  the  noise increment in the 
evolutionary  model  specification  has zero variance. If the  parameter  is fixed then  a  term 
for it has to be included in the  set of explanatory  variables.  The models allow for a full] 

Genstat axle is given  in  Appendix C. 
specified  set of ( s  - 1) seasonal  parameters  with  no  reduction in model  generality. The 

5 .3  Diagnostics 

As a  check on model  adequacy  various  diagnostics  can be c a n i d  out. For the  models 
fitted using  the BATS  package,  graphical  checks  were  made to investigate  the  constancy 
of  regression  parameter  estimates  with  time. Other checks  include patterns of residuals 
and autocomlations. Residuals for these models can be defined  in terms of one  step- 
ahead prediction errors. Thus as a measure of the goodness-of-fit of the model, the 
estimated variance of the one step-ahead prediction error can be used,  which  we will 

denote by S . For the  models  fitted by BATS,  the  parameters are fitted using data up 
to and including the current value (i.e.  'on-line'), so that one step-ahead  predictions are 
auly based on historical data, and are in themselves an independent check on the 
adequacy of the model. There is no need to check  the models on independent data 
because future (relative to the current) values  have  not been used in the fitting process. 

2 
pe 
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Other  fitting  procedures,  such as ARIMA, use all  the  data  to fit the  parameters  and  then 
use this fitted  model  to  predict  'future'  values  retrospectively from a  'current'  value  and 
past data. 
The  diagnostic  statistics we provide  include  the  following 

(i) S , the one step-ahead  prediction  error. 
2 
Pe 

(ii) R i  calculated as 

where q is the  number of degrees of freedom on which S; is based. Note  that 

because S 1s calculated 'on-line', that is, using past data to predict a future 
value, it is quite possible for 

2 .  
PC 

This would occur if there were  a spurious relationship between dependent and 
explanatory  variables  and  the  overall  mean  were  a  reasonable  predictor of values. 

Thus this R i  can be negative!  It  would  indicate  a  poorly  specified model. 

( ~ o t e  the usual ~2 is calculated  as 

1 -  sum of squares of residuals 

C(Y, - 712 

and is necessarily  non-negative). 
J 

(ii) RS calculated as 
2 

2 
Pe 

1 - (ny S / sum of squares of first differences around the 
seasonal  means of first  differences). 

~ 

This is a  modification  of  a statistic introduced by Harvey (1990, Chapter 5.5.5). 

This statistic refers S to a sum of squares which  has made allowance for a 

means) and  thus is a measure of the explanatory power of the model over and 
changing stochastic level  (first differences) and fixed seasonal effect (seasonal 

above that given purely by a  trend + seasonal components time series model. 

2 
Pe 
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Thus the  value of RS 1s particularly  important for our study. The larger the value 2 .  

of RS the better. Large positive values of RS indicate  models which are 
2 2 

considerably better  than  pure  time series models. The value of RS is zero if  the 

model fitted is Vy, = seasonal  mean + independent  error. 

2 

Again it is possible for R, < 0 and for R, R,. Models for which R, < 0 
2 2 2  2 
Y Y 

should be discarded because they  give  worse  explanation  than  a  simple  time  series 
model. 

~~~ I 

5 .4  Choice of Explanatory Variables 

Traffic  accident  studies  are  obviously  multidisciplinary and  can  benefit  from  the  best of 
engineering, social and statistical sciences or suffer from the worst. One aspect of 
social science studies is that of 'data mining' or data dredging' to find statistically 
signifcant explanatory  models.  Given  a  sufficiently  rich  set of explanatoIy  variables, 
serendipity  should  eventually  throw up a significant  explanatory effect where in reality 
there is none. In this study  we  have included explanatory variables which, u priori, 
were  believed to have  some  effect  on  accident  rates.  Relationships  found  from  data  then 
have to have  characteristics  consistent with theory, whether i t  is economic, 
psychological or engineering, that is, for example,  coefficients  have to have  the correct 
sign. Thus  our modelling process has been to let the 'data speak for themselves', 

been found  to  provide  statistically  and  scientifically  significant  results,  been  simplified 
allowing for very  flexible  models in the first step,  These  models  have,  when  they  have 

to provide  parsimonious  models by taking time  dependent  regression  coefficients  to be 
time constant. 

5.5 Transformations of Data 

On empirical and statistical grounds, rather than perhaps theoretical road traffic 
grounds, many studies have transformed the dependent variables, NFRC and NCF 
(number  of crash fatalities), using  logarithms or squke roots. From  a  statistical  point- 
of-view,  a fmt approximation to the  distribution of NFRC would  be  Poisson ( s e e  VoI. 
1, 58) leading to  the relationship (mean = variance) for the distribution and  a square 
Toot transformation of  the dependent variable would be used to obtain a constant 
variance. S e e  also Vo. 1, $4.5 for a discussion of 'Poisson regression' and  associated 
difficulties.  The other transformation  frequently used in the  literature is the  logarithmic 
transformation. Here the  basic  idea  generally is to obtain  a  multiplicative  model  for  the 
mean of  the  original  dependent variable because standard linear  models are fitted to the 
logged  dependent  variable. 

The recent statistical methodology Generalised Linear Models (see McCullagh and 
Nelder, 1989) allows for the  separation of the  relationship  between  mean  and  variance 
of the  response (as in  the case of Poisson  data) and the  relationship  between the mean of 
the response and  the linear predictor, that is p1 x1 + ... + p, x p - ,  Advanced software 

Models (see, also,  West & Harrison, $10.6.4, 1589). 
such as BATS also  allows for Stochastic  evolution of parameters  In  Generalised  Linear 
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In this study, we feel that  the  signal to noise ratio is sufficiently  small (we deal with 
NFRC on a  monthly  basis for states at the  most  disaggregated level) that from the data 
analysis  point-of-view  there is little evidence  to  prefer  multiplicative  models to additive 
models,  that is 

to 

Also because  the  relative  ranges (mdmin) of  the values  in  the  series  over  the periods of 
study do not generally  exceed  two,  there is little to be lost by using statistical methods 
which  assume  that the variance of the  response is constant,  independent  of  the  mean. 
For these reasons we have used additive models fitted by standard normal  theory 
techniques to the  original  (or  rescaled)  responses  throughout  this  study.  Sometimes  we 
have used logarithmic transformations to confirm our views put above about the 
insensitivity of  the  analysis  to  the  choice of additive or multiplicative  model. 

5.6 Degree of Aggregation for Explanatory Variables 

Values of series are available at different  levels  of  aggregation.  For  example,  the period 
of the series  can be monthly,  quarterly,  annual or longer. The spatial aggregation  of  a 

periods  were  used  and state and national  spatial  aggregations  used.  We  have  analysed 
series can be regional, state or national. For this  study,  monthly  and quarterly time 

collected at three  yearly  intervals  and  interpolated  values to obtain an annual series. Our 
series using the highest level of aggregation.  We  have  not  taken,  say,  a series which is 

would  be aliased to a large extent with the  stochastic  trend.  Thus there would  be little 
models all include trend terms and  when these are stochastic, the interpolated values 

explanatory  power to be derived  from  such  a  variable. 

5.7 Variables used in  the Study 

The dependent  variables for the study,  the  number of fatal  accidents  and  the  number of 
fatal road traffic  accidents  in  each  State  and  territory, are available  from  July 1976 until 

Details  of  the  sources are given in the  Appendix B. 
June 1991 in the fust case, from  January 1970 until December 1990 in the  second case.. 

For monthly analyses we consider the  dependent variable to  be the monthly count of 
fatal crashes divided by the  number of days in the  month,  giving  the  same  dependent 
variable as used earlier. For quarterly data we have standardised by population 
estimates so as to facilitate comparisons between states (a cross sectional approach). 
Where significant regression effects have  been found we have carried out analyses 
using the  raw quarterly count.  Dividing by population  tends to increase  the  downward 
trend of  the series. Dividing by population is mentioned in $2.4,  $4.2,  $4.3 (cross 
sectional studies), $6.9 (through routes per thousand inhabitants) of Volume 1. In 

considered in the Legislation (references [32], [58]), Driver  demographics 
Section 9 of Volume 1, a summary table is given.  Fatality rate per head of population  is 

(reference [SS]), Vehicle  demographics (references [27], [SS]), Exposure 
(reference [45]),  Weather (reference [58]). 

As a summary, Section 9 of Volume 1 gives a list of explanatory variables and 
corresponding response variables. The fust group is Legislation. When considering 

However, the effects of legislation can be 'smeared' in  various  ways. Publicity about 
individual states then effects of legislation can be included as explanatory variables. 

the  political  debate  over  legislation  can be effective both  on a  national  basis  and  prior to 
the  time of actual  enforcement of the  legislation. So effects  can be smeared  across  time 

ANP 199UWRS 
27.43.92 

29 



and  space. For this  reason, in our analyses of both  national  and state data  we  have not 
included  variables in the  Legislation  group. 

The second group is Economic factors. Of this group some are appropriate for 
single  time cross sectional studies  rather  than  longitudinal  studies,  and  some for annual 
rather  than  monthly or quarterly data. We  decided to obtain data on the  following 

fuel prices, consumer price index 
cost of transport (proxy for cost of  an accident) 

gross domestic product 
(income,  variation  too small, omitted) 

unemployment 
[hospital  access,  variation too small, omitted]. 

The third p u p  is Driver  demographics 

[strike days, effect in  London  study  only,  omitted] 

tried] 
[holiday,  confounded  with  seasonal effects, omitted,  although Easter effect was 

alcohol  consumption, investigated - see below 

[seatbelt  usage, no reliable  data  available]. 
[young  drivers;  information  on  licensed  drivers mt readily  available] 

The fourth group is Vehicle  demographics 

[urbanisation,  variation  too  small] 
[safety  equipment, data not  readily  available] 
[traffic  volume  index, no reliable data] 
[speed, no reliable data] 
[vehicle mix,  not  investigated] 
motor vehicle registrations 
[single  vehicle  accidents,  not used] 
[effect  of RBT, not  investigated] 
[highway  capacity,  not  used]. 

The fifth group is Exposure 

number of vehicles (new vehicle registrations used) 
population 
[VKT, no  reliable data] 
car registrations (investigated) 
[length  roads, not used] 
[routes, not used] 
[publicity, not  used]. 

The  sixth  group is Weather 

[temperature,  not used] 
rain (weather  index,  weighted rain days) 
[snow, not used] 
[fog, not used] 
[wet road, not  used] 
[wet  weather  index, see rain] 
[icy  roads,  not  used] 
[nightime,  not  used]. 

Variables  were  not  used  because  either  they  were  thought inappropriate for this  study, 
or no reliable data source is available. 
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Two additional  variables  were  used  to  those  given  above. These are sales  of fuel for 
motor  vehicles  and  the  relative  change  in  petrol  price. The f i t  variable  can  be  seen as 
both  a  proxy for VKT and an  economic  indicator. The second  variable  was  considered 

decade.  It  might be thought  that  some dismtional travel  might be  affected by short term 
because of the  increases and decreases  in  petrol  price  that  have taken place over the last 

changes in petrol  prices.  As far as we  know  changes  in  petrol  price  have  not  been  used 
in explanatory models before except in first differencing of  both response and 
explanatory  variables  i.e. 

Vy = Vx+error. 

considerations in addition to those given above to bear in mind  when assessing the 
Data for explanatory  variables were obtained from various  sources.  Extra 

possibility of using variables include length and continuity of available series; 
obtainability; frequency of measurements; jurisdiction for collection. The economic 
variables are 

- ~ O S S  domestic  product  (GDP); 
- unemployment  rate (UNEMF') ;  
- consmer price index  (CPI); 
- consumer  price  index for transportation  group (CPITRS); 
- retail price of  petrol  (PETROL); - r d  price  of  petrol,  that  is  PETROUCPI; - change  in  price of petrol  from  one  month to the  next,  calculated  for  month t as 

PETROLt - PETROL 
t -  1 

PETROL x 100 
t - 1  

(% CHGPET). 
" 

The  next  group  involves  vehicle  demographics. 

- new  motor  vehicle  registrations (MVR). 

The  next  group is exposure  involving  a  proxy for vehicle  kilometres  travelled (VKT). 

- sales of automotive  gasoline by state marketing  area (FUEL); 

- sales of inland  automotive diesel oil by state  marketing area (DIESEL); 

- sales  of LPG for automotive use by state  marketing area (LPG). 

The  next  group  involves  weather 

various locations within  each state or territory  giving  a  weather index for each state 
- the  weighted  average  by  population of the  number of  rain  days  per  month  found  at 

(RDAYS  and WI). 

Information on other variables which  were investigated but not used is given in the 
Appendix B. One important  omission from the above list of  variables is the level of 
alcohol consumption  since  alcohol is claimed as  a cause in  many accidents. Alcohol 
consumption  seems  constant  and inelastic to economic  conditions  and  therefore offers 
no power as an explanatory variable in this study; see additional comments in 
Appendix B. 
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The categories of variables considered here, economic, vehicle stock, weather and 
vehicle usage, cover the main types of factors found in the literature which are 
appropriate to the  study  here. 

Table 5.1 
ARIMA  model specifications for  fittinp: various time constant 

regression models  in Genstat 

Model level 
a 

2 
1 

random 
fued 

4 (monthly) random 
3 r;ndom 

4 (q-Y) random 
5 (monthly) r;mdan 
5 (q-Y) 

ARIMA parameters 
P d  9 P D Q S  

0 1  1 
0 0  1 

0 2  2 
0 2 2  

0 1 1 1 2  
0 2  2 
0 1  1 

0 1 1 4  

0 1  1 
0 1 1 1 2  
0 1 1  4 

6 .  RESULTS FOR MONTHLY  SERIES 

6.1 Australian Monthly Series 

The  dependent  variable  was  taken to be the  daily  average  fatal  accident rate Le. monthly 
NFRC divided by the  number  of days in the  month  giving  AUSACCM  in  units of fatal 
accidents per day; four explanatory variables were investigated, UNEMP, MVR, 
FLTEL and DIESEL. Additionally, variables lagged by one month  were  investigated. 
Values and plots of  AUSACCM are given in Appendix A (Table A.l, Figure A.1). 
Series for all variables were available from March 1981 until December 1990,  giving 
n = 105 data points. 

We consider periods for  fitting explanatory models which include early 1983 
although this includes an abrupt change in level. Here we are trying to develop 
explanatory models using independent variables so this abrupt change provides a 
good opportunity for an explanatory  variable  to  show  whether it has  explanatory  power 
or not. To some  extent,  the  AUSACCM  series  shows  similar  abrupt  changes in level at 
the  beginning  of 1983 and  at  the  beginning of 1990. 

FTJEL, DIESEL and lagger versions  of  these  variables as explanatoIy terms. The  only 
The preliminary data analysis using BATS was carried out using UNEMF', MVR, 

variable giving reasonable results was MVR. Various other combinations of the 
explanatory  variables  were  investigated  but no other  models  reduced MSE to any value 

close to that for MVR in the two periods  considered.  Also  values of RS were  small or 
negative. 

The  value  of  RS 1s also positive for  the two periods  considered for MVR. The lagged 
(by one month) value (LAGMVR) of  MVR was also investigated but  had  no effect. 
Similarly  the  lagged  value  of  UNEMP was also investigated. 

On the basis of this  evidence the  MVR  model  appeared to  be the  best  because  the MSE 

2 

2 .  

AN? IWUFOPS 
27.W.92 

32 



was  smallest, the coefficent was the correct sign, i.e. positive,  and  the estimate of Pt 
Appendix  A. 
was more or less constant over the period. A plot of  MVR is given in Figure A.2, 

The five reduced  structural  models for MVR  were  fitted  to  the same series.  Results are 
given in Table 6.2a. 

From Table 6.2a, for none of the reduced  structural  models is the estimated regression 
coefficient statistically significant. Structural model  4 gives the largest regression 
coefficient  but  not  the  smallest  innovation  variance. 

Models  involving  FUEL  were also investigated  further.  Given  that  FUEL is a proxy 
for VKT  there is obviously  some  delay in fuel sales by the retailer to the vehicle user 
and again  a delay by the user until  the fuel is used. Thus the term LAG FUEL was 
included in the model so that both the current month's fuel sales and  the previous 
month's are represented  in  the  model.  Although  the  BATS  analysis  was  not  promising, 

reduced structural models  were fitted to  the  monthly data involving FUEL  and LAG 
giving a large mean square error and  unsteady  coefficients for LAG FUEL and FUEL 

LAG FUEL (Z = 3.1)  and FUEL (Z = 2.1) for the  reduced  structural  model  2,  which 
FUEL. The results in Table 6.2b  show  statistically significant regression effects for 

is the best of  the  five. Some doubt must  be expressed about  the consistancy of the 
regression coefficient for LAG FUEL over time. This point is investigated later in 
68.5. 

Although  not  suggested as an  important  variable in the  literature,  some  suggestion  has 
been made in Australia (Queensland  Transport  Report, 14 May 1992) of  the  supposed 
importance  of  the  Consumer  Sentiment  Index  (CSI)  (IAESR,  University  of  Melbourne 
and  Westpac).  The  CSI is compiled  monthly by IAESR from a  survey  of 1200 people 
who are asked 5 questions  relating to sentiment The index  is an average  of  the  ratios of 
the  number  of favourable to unfavourable  replies. The reduced  structural  model 5 was 
fitted with  CSI  as an explanatory  variable  and  CSI  found  not to be  significant. 

6.2 NSW Monthly Series 

For NSW,  the  dependent variable, NSWACCM is the value of NFRC divided by the 
number of days in  the month. For NSW following explanatory variables were 
considered: UNEMF', MVR,  WI,  FUEL,  DIESEL. From the  BATS analysis three 
models  were  found to be promising, see Table 6.3. 

For  these results in Table  6.3, it is seen  that  the  model  with WI looks reasonable  giving 

a large value of R , the correct sign for the estimate and  the  BATS  analysis  gives an 
estimate approximately constant over time. The model  with DIESEL also appears 
promising  but  the  BATS  analysis  gives  coefficients  which  show vaiabiiity with  time. 

The five reduced structural models were fitted with WI as the explanatory variable. 

Figures A.3 and A.4. 
Results are given in Table 6.4. Plots  of  NSWACCM  and WI are given  in  Appendix A, 

Model 1 is a  particularly  simple  model  with fixed monthly  effects,  a fixed linear trend 
and MA(1) errors, and  should  be discounted. The other structural models all give 

weighted  average  of  'rain  days'  and  thus  having  an  expected negative effect on NFC. 
estimated regression coefficients of  the correct sign and similar size; WI being  a 

The regression estimate for model 3, random intercept and random trend, is most 
significant  and  has  the  equal  smallest  innovation  variance. 

2 
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6 . 3  Victorian Monthly Series 

As for NSW, the Victoria state standardised series, VICACCM, was taken as the 
dependent  variable. For Victoria  the  following  explanations  variables  were  considered: 
UNEMP, MVR, WI, FUEL, DIESEL. Promising models found from  the BATS 
analyses are given  in  Table 6.5. 

Consequent  upon these results, the five reduced  structural  models  were fined for MVR 
and WI individually. 

For the  MVR  model, Table 6.6, the  estimated coefficients for models 2 to 5 are of  the 
'correct'  sign, that is positive, but no regression coefficient is statistically significant. 
In terms  of  minimising  the  innovation  variance,  model 2 is the  best. For the WI model 
with results given in Table 6.7, the best models appear to be models 2 and 3. Both 

Plots of  VICACCM,  MVR  and WI are given in Appendix A, Figures AS, A.6 and 
have the 'correct' sign, negative,  but  the coefficients are not statistically significant. 

A.7. 

6 . 4  Queensland Monthly Series 

As for NSW and  Victoria,  the state standardised  series,  QLDACCM, was taken as the 
dependent variable. In Table 6.8 we give details of BATS models which were 
investigated. 

The model  given by WI looks promising  because  the  value of R, 1s reasonably large 
taking a value 0.15 in the first period  and 0.18 in the second  period  studied.  Recall  that 
this is a  measure of variability  which is explained after allowance  has  been made for 

2 .  

" 
both trend  and  seasonality.  Other  models are not  interesting  because R l  is close to 0 or 
negative. 

In Table 6.9, we give the results of fitting the five reduced  structured models with WI 
as the explanatory variable. It  is seen that the regression coefficient is almost 
statistically significant (z value = - 1.8) and  negative, indicating that  the  fatal accident 
rates decrease with the increase in  number  of  rain  days. This appears  to be a plausible 
relationship in Queensland  where rainfall tends  to be heavy.  The  smallest innovation 
variance is for model 1, but all innovation  variances are similar for the  five models as 
are the  estimated  regression  coefficients. 

This suggests  that the simple  model with fixed  trend  and  seasonal effects is adequate  to 
explain  the  variation in the  QLDACCM  series.  A  plot of  QLDACCM  and WI is given in 
Appendix  A,  Figures A.8 and A.9. 

The variable CSI (see 86.1) was additionally  used as an explanatory variable for the 
Queensland  series  and  found  not  to be significant. This is not  surprising as CSI is an 
Australia wide series and was not significant for the Australia series. However, 
Queensland Transport (Report, 14 May 1992) suggests  CSI is an  important variable, a 
finding  not  substantiated  here. 

6.5 Conclusions 

For Australia, the  best  reduced structural model is given by FUEL + LAG FUEL with 
both regression coefficients being  statistically  significant  and of the correct sign. The 
next  best  model is given by  MVR  and the  regression coefficient for MVR,  new  motor 
vehicle regisuations, by itself is found to be  the correct sign but statistically not 
significant. Typical values of monthly FUEL sales in 1990 are of  the order of 1.45 
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million kilo litres.  The  regression  coefficient  for  FUEL is 2.16 x lo4 and  that for LAG 
FUEL is 3.16 x Adding  these  two coefficients together gives 5.32  x  A 
change  in FUEL of the order of 10 percent of the typical value,  that is 0.135  million 
kilolitres, produces a  change in AUSACCM of the  size  5.32  x lo4 x 0.145 x lo6 or 
0.77 fatal accidents per  day.  The average rate for the first six months  of 1991 (see 
Table 4.3) is 4.99 fatal accidents per  day. Now  0.77 is  15 percent of 4.99 so that  a 
change  of 10 percent of the average  of FUEL produces  a change of  15 percent of the 
average of  AUSACCM. 

For  NSW, the regression coefficient for WI, the  weather  index  based on rain days, is 
negative but  statistically  not  significant. For Victoria, two promising models involve 
MVR, new motor  vehicle  registrations, and WI,  the weather index. Neither 
individually nor together did these variables give statistically significant estimated 
regression  coefficients. For Queensland,  the  regression  coefficient for WI was  found to 
be negative  and  almost  statistically  significant. Thus, on a state basis,  the  variable WI 
has some but  barely statistically significant explanatory power. It is interesting to 
compare the estimated regression coefficents for the  three  states  NSW, Victoria and 
Queensland for the WI reduced structural models. They are  given respectively by - 
11.1 (8.8), - 2.7 (6.5), - 10.7 (5.7) (values multiplied by lo3 and standard errors in 
parentheses). We note a similarity in the estimated coefficients for NSW and 

of 0.01 1 fatal accidents per day for each additional rain  day.  Given  that  the  average 
Queensland taking values close to - 11 x 10 - 3. This value  corresponds to a  reduction 

number  of accidents per day for NSW  and  Queensland are 1.61 and 0.90 for the first 
six months of 1991 (see Table 4.3) rain could have  a practically significant effect 
reducing accidents by as  much  as  about 30 per cent for Queensland  (0.9  to  0.6  for  a 30 
day rain month)  and  about 20 percent for NSW (1.6 to 1.3 for a 30 day  rain  month). 
On a  national  basis, WI has no real meaning (a weighted  average  of  rain  across  major 
cities  and  towns)  and  was  not  computed for Australia. 

Table 6.1 

Various BATS models which were fitted to AUSACCM 
Period July 1979 - December 1990 

X-variable(s) 

UNEMP 
MVR 
UNEMP 
UNEMP LAGUNEMP 

MVR 

LAGUNEMP 
MVR LAG MVR 

MSE R 2  

0.83 
0.71 

< O  < O  
0.1 1 

1.37 c o  
0.10 

1.30 
c o  

c o  
1.01 

c o  

1.09 
< O  < O  
< O  < O  

MVR 
FUEL 
DIESEL 
MVR 
UNEMP 
UNEMP 
FUEL 
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FUEL 

Period  March 1981 - December  1990 

0.54 < O  0.17 
0.56 < O  
0.55 

c o  

0.64 
< O   < O  
< O   < O  

FUEL 

LAG FUEL 
MVR FUEL 

0.62 . < 0 
0.75 < O  

c o  
c o  

0.88 < O   < O  
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Table 6.2a 

Reduced Structural models; Y = AUSACCM, X = MVR 
Period March 1981 - December 1990 

Model fi x lo6 se x 106 innovation 
variance 

- 6.4 
6.8 

10.4 
6.5 

8.2 

10.5 
12.9 
13.1 
13.2 
13.0 

0.4 1 
0.37 
0.38 
0.46 
0.44 

Table 6.2b 

Reduced Structural  models; Y = AUSACCM, X = FUEL + 
LAG FUEL 

Model 

1 

2 

3 

4 

5.  

Term x lo6 

FUEL 
LAG FUEL 

1.47 
2.45 

FUEL 2.16 
LAG FWEL 3.16 

FWEL 
LAG FUEL 

FUEL  2.20 
LAG FUEL 2.96 

FUEL  2.25 
LAG FUEL  3.02 

se x 106 innovation 
variance 

1.13 
1.14 

1.02 
1.02 

0.40 

0.33 

1.01 
1.01 

0.4 1 

1.01 0.39 
1.00 
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Table 6.3 

Details of various BATS models which were fitted to NSWACCM 
Period July 1979 to December 1990 

X-variable(s) 

MSE R2 
R: 

UNEMP 0.29 < O   < O  

WI 
MVR 0.23 0.06 

0.18 
0.12 

MVR 
0.29 0.27 

WI 0.23 0.06 
MVR LAGMVR 

0.12 

UNEMP 
0.27 

LAGUNEM 0.38 < O  
< O  < O  

< O  

UNEMP 
MVR 
WI 
FWEL 

WI 
DIESEL 

WI 
FWEL 
WI 
WI 

Model 

Period March 1981 - December 1990 

FUEL 
FUEL MVR 
UNEMP 
UNEMP 
MVR 

0.22 
0.21 

< O   < O  

0.15 
< O  < O  
0.02 

0.19 
0.26 

0.19 
< O  0.09 

0.19 
< O  0.23 

0.23 
< O  0.08 

0.22 
< O  0.10 

0.23 
< O  0.1 1 
< O  

0.21 
0.08 

< O  0.16 

Table 6.4 

Reduced Structural Models: Y = NSWACCM, X = WI 
Period March 1981 - December 1990 
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27.03.92 

^p x lo3 se x 103 innovation 
variance 

13.1 - 10.4 
- 11.1 - 9.3 - 9.0 

9.4 
8.7 
8.8 
8.6 
8.6 
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0.14 
0.14 
0.14 
0.17 
0.16 



Table 6.5 

Details of various BATS models which were fitted to VICACCM 
Period March 1981 to December 1990 

X-variable(s) 

UNEMP 

WI 
MVR 

FtkL 
DIESEL 
WI FUEL 
WI EUELMVR 
FUEL UNEMP 
WI UNEMP 
WI MVR 

MSE RZ 
0.103 < O  
0.079 

< O  

0.072 
< O  0.07 

0.103 
< O  0.15 
< O  

0.102 
< O  

< O  < O  
0.107 < O  
0.114 

< O  

0.112 
< O  < O  
< O  

0.108 < O  < O  
< O  

0.083 < O  0.10 

Table 6.6 

Reduced Structural Models: Y = VICACCM  Victoria, X = MVR 
Period March 1981  to December 1990 

Model fi x 10 se x 105 innovation 
variance 

5 

Model 

1 
2 
3 
4 
5 

- 0.28 
0.39 
0.41 
0.47 
0.44 

1.17 
1.22 
1.24 
1.24 
1.21 

0.063 
0.060 
0.061 
0.073 
0.070 

Table 6.7 

Reduced Structural Models: Y = VICACCM, X = WI 
Period March 1981 to December 1990 

fi x 10 
3 

se x io3 innovation 
variance 

- 0.19 
- 2.64 
- 2.77 
- 1.25 
- 1.40 

6.8 
6.5 
6.5 
6.5 
6.5 

0.063 
0.060 
0.061 
0.073 
0.070 
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Table 6.8 

Details of various BATS models which were fitted to QLDACCM 
Period July 1979 to December 1990 

X-variable(s) 

UNEMP 
MVR 
WI 
MVR WI 
MVR L4GMVR 
UNEMP LAGUNEMP 

MSE R2 
0.075 
0.067 

< O  < O  
< O  

0.056 
< O  

0.15 0.15 
0.066 0.00 0.01 
0.080 
0.105 

< O  
< O  

< O  
< O  

Period March 1981 to December 1990 

X-variable(s) 

UNEMP 
MVR 
WI 
FUEL 
DIESEL 
WI 
WI 
FUEL 
WI 
WI 

Model 

1 
2 

4 
3 

5 

FUEL 

MVR 

MSE R2 
0.078 < O  
0.071 
0.056 

< O  

0.079 
0.1 1 
< O  

0.083 < O  
0.078 < O  
0.076 < O  
0.080 < O  
0.089 < O  
0.067 < O  

Table  6.9 

Reduced Structural Models: Y = QLDACCM, X = WI 
Period March 1981 to December 1990 

< O  
0.18 
< O  
< O  
< O  
< O  
< O  

0.03 
< O  

fi x lo3 se x 103 innovation 
variance 

- 10.7 
- 9.8 

- 10.7 
- 10.8 - 10.7 

5.8 
5.7 
5.7 
5.8 
5.7 

0.043 
0.046 
0.047 
0.048 
0.047 
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7 .  RESULTS  FOR  QUARTERLY  SERIES 

7 .1  Introduction 

For the  quarterly  series,  the data were  standardised by the  number  of  days in the  quarter 
and by  an estimate of  the  population  of jurisdiction, giving accident rates per day per 
100,OOO population. Generally, all explanatory variables used are standardised by 
population, e.g. unemployment rate (UNEMP), or are dimensionless such as  the 
change in petrol price (% CHGPET). Standardisation by population also allows 

However,  standardisation by population or not  appears  to  have little effect on  statistical 
comparisons of estimated regression parameters amongst jurisdictions to  be made. 

significance  of  models. 

Because some variables are only  available on a  quarterly basis, the accident data were 

interpolate  quarterly  series to obtain  monthly  values  but  this  approach  was  not  pursued 
aggregated by quarters and  explanatory  models fitted. An alternative approach is to 

because of the inherent problems of confounding interpolated values with  stochastic 
trend  parameters. 

7 .2  Australia Quarterly Series 

For the Australia quarterly series,  both  monthly  and quarterly series could be used as 
explanatory  variables,  aggregating or averaging as appropriate  monthly  series to obtain 

price, FUEL sales (in volume) of automative fuel, DIESEL sales  (in volume) of 
quarterly series. The variables used  were  %CHGPET, percentage change in petrol 

UNEMP, the  unemployment  rate.  The variable WHGPET is present  to  reflect short 
automotive fuel, MVR,  new  motor  vehicle registrations standardised by population, 

term economic  and  behavioural  change to petrol  price  changes, FUEL and DIESEL are 
proxies for VKT, vehicle kilometers travelled, MVR is present to reflect short term 
economic  changes as reflected by renewals  of  the  vehicle  stock, UNEMP is an indicator 
of  general  economic activity. From  Table 7.1 we see  that  some  models  have  reasonably 

large RS values and these are FUEL, %CHGPET + FUEL, FUEL + MVR. These 
models  were  investigated further by fitting  the reduced structural  models and results are 
given in Table 7.2. The first model in Table 7.2 involves %CHGPET  and  gives  no 
significant  results.  From Table 7.2 we see that  statistically  significant  results are given 
by the FUEL model  with Z values in excess of 3 for models 2, 4 and 5. Note tha! 
model 1, a simple regression  model  with  fixed  trend  and  seasonal effects with MA(1) 
m r s ,  gives  an  insignificant  regression  estimate.  The  estimates and  standard errors for 
the estimated  regression  parameter for FUEL are very  similar  across  models 2.4 and 5. 
For model 3 the estimation procedure did not converge and results are therefore not 
given. The estimated  regression  coefficient is positive indicating the  correct  sign.  The 
next  model  involves  FUEL and M V R ,  and  the  Coefficient of FUEL is little changed for 
structural models 2 , 4  and 5, from the  model with FUEL by itself. This is reassuring. 
The  estimated  regression  coefficient  for MVR is not  statistically  significant  for  structural 
models 2, 4 and 5 (Z  value equals about - 0.4 to - 0.5). Additionally  the value of  the 
regression  coefficient for MVR is negative  which is the  wrong  sign. (It could be argued 
that  the  coefficient for MVR  should be negative if one  associates MVR  with the quality 
of  the vehicle stock - new vehicles replacing old). This model involving FUEL and 
MVR therefore  is  ambiguous  to  interpret and  is  not  recommended  although  statistically 
significant. 

The last  model  involves FUEL and  %CHGPET.  The structural models 1 and 5 have 
the smallest innovation variances,  however  model 5 gives consistency  with the model 
with FUEL by itself. Model 1 gives an almost zero and statistically insignificant 
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regression coefficient for FUEL  and almost significant regression coefficient for 
%CHGPET ( Z  = - 1.6) with  the correct sign, that is negative. Model 5 gives a 
statistically significant (Z = 3.1) regression coefficient for FUEL and statistically 
insignificant regression estimate for  %CHGPET ( Z  = - 0.40) which  has  the correct 
sign,  negative. 

Overall,  the  best  models,  in  terms of minimising  innovation variance and statistically 
significant  and  correctly  signed  regression  coefficients are given  below. 

X = FUEL, structural  model 2, fi = 18.0 x 10 , se = 5.2 x 10 , Z = 3.5 
- 9  - 9  

innovation  variance = 4.4 x 10 6 

n 

RL = 0.526 
S 

X = FUEL + %CHGPET,  structural  model 5 

FUEL 

%CHGPET 

fi = 1 8 . 0 ~  10 , se = 5 . 8 ~  10 , Z =3.10 - 9  - 9  

A 2 p = - 0.28 x 10 , se = 0.69 x 10 , Z = 0.40 

innovation  variance = 4.8 x 10 

R = 0.363. 

2 

- 6  

2 
S 

The FUEL only model is better than the FUEL + %CHGPET model in terms of 

FUEL  model,  involves  a  random  level  and fvted seasonal  (quarterly)  effects. 
innovation variance and  significance of FUEL. Structural  model 2, used  with the best 

In order to coniirm that the model  with  FUEL  in it gives a  satisfactory fit, we give in 
Figures 7.1,  7.2 and 7.3 confirmatory plots and diagnostics from the BATS output. 
Figure 7.1 gives the plot of  the  time  dependent  regression coefficient estimate against 
time and it is seen to  be very  steady. Figure 7.2 gives the plot of residual standard 
deviation which steadily decreases and Figure 7.3 gives the sample autoconelation 
function for residuals;  these latter two plots give  satisfactory  diagnostics  indicating an 
adequate  model. 

7.3  Victoria Quarterly Series 

For  Victoria  the  results  of  the BATS analyses are given in Table 7.3. For no model  was 
the  estimated  time  dependent  regression  coefficient  constant  over  time  suggesting  some 
lack  of  stability  of  relationship.  Reduced  structural  models  were  then fitted to the better 

models  (with  R > 0.2) of Table 7.3 and results for these  estimated  models are given in 
Table 7.4. In Table 7.4 we see that  the  model with FUEL as the explanatory variable 
gives  statistically  significant  and c o d y  signed  estimates  for  structural  models 2 and 3 
(2 = 2.4,2.3, respectively). Structural model 2 appears  best  overall. 

2 
S 
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The model  with  FUEL + %CHGPET  provides constrasting estimates when  grouping 
smctural models 1, 4  and 5 and  structural models 2  and  3  together. For models 1 ,4  
and 5, FUEL  has statistically insignificant values ( Z  - 0) of the regression parameter, 
and  %CHGPET is not  significant but with the correct sign ( Z  = - 0.9, - 0.4, - 0.6) 
whereas for groups 2, 3, FUEL is statistically significant (Z = 2.2, 2.1) but 

relationship between FUEL and 4bCHGPET but  we  have  not investigated this  further. 
%CHGPET statistically  insignificant (Z - 0). There is obviously  a  reasonably  complex 

In microeconomic terms, one would expect the variable %CHGPET to be causing 
changes in FUEL. In  terms  of minimising innovation variance and maximising 
significance of regression  coefficients,  models  2 and 3  are  the  best. 

The  model FUEL + MVR  gives  insignificant results for FUEL whereas  MVR  gives an 
insignificant (Z = 0.9) and  correctly  signed repession coefficient for structural  model 
3. 

The model 96CHGPET + DIESEL gives  results  similar to the model FUEL + 
%CHGPET except that  structural  models 2 and  3  give  correctly  signed  but  insignificant 
regression parameter estimates for both WCHGPET ( Z  = - 0.7, - 0.7)  and  DIESEL 
(Z = 1.2, 1.1). 

Overall the best models are 

R = 0.639 2 
S 

X = FUEL + %CHGPET  structural  model 2, 

FUEL fi = 7.8 x 10- 8, se = 3.5  x 10 - 
z = 2.2 

%CHGPET fi = 3 . 0 ~  se = 8 . 5 ~  
Z = - 0.35 
innovation  variance = 1.25 x 10 

R = 0.639. 2 
S 

7 . 4  NSW Quarterly Series 

For NSW the results of the  BATS  analysis are given in Table  7.5.  From  this  table  we 

see that  there are no models  which  are  satisfactory  as all values of R are negative.  A 
2 
s .  

positive  value of R would  indicate  some  explanatory  power of a  variable  after wend  and 
seasonality has  been  allowed for. No reduced smctural models  were fitted and  we 
conclude  that  there is no  better  explanatory  model  than a pure time series  model. 

2 
S 

A N I  199UFOPS 
27.e3.91 

42 



7.5 Queensland Quarterly Series 

For Queensland,  the results of the BATS analyses  are  given in Table 7.6. All values of 

R are  negative, like the  results for NSW. No satisfactory  explanatory  models  could be 
found and our conclusions are similar to those  for NSW. 

2 
S 

Table 7.1 

Details of various BATS models which were fitted to 

Period 2nd quarter 1981 until 4th quarter 1990 
AUSACCQ quarterly data 

X-variable(s) 

%CHGPET 
FUEL 
DIESEL 
MVR 
UNEMP 
%CHGPET 
%CHGPET 
FUEL 
UNEMP 
%CHGPET 

FUEL 
DIESEL 
MVR 
FUEL 
MVR 

%CHGPET r n L  MVR 
FVEL MVR LAGMVR 
%CHGPET FUEL UNEMP 
%CHGPET FUEL UNEMF' MVR 

MSE x lo6 R2 

11.7 
7.3 

21.1 
8.5 

11.6 
5.8 
8.5 
5.1 
8.4 

10.4 
21.2 
12.7 

15.3 
7.0 

0.32 
0.58 
0.51 

0.3 
< O  

0.63 
0.46 
0.64 
0.48 
0.30 
< O  
0.2 
0.59 
< O  

0.09 
< O  

< O  
< O  
< O  
0.3 1 
< O  
0.32 
0.0 1 
< O  
< O  
< O  
0.08 
< O  
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Table 7.2 

Australia Quarterly: Reduced structural models Y = AUSACCQ 

X variables 1 2 3 4 5 

1.  %CHGPET fi x 10 
2 - 1.30 - 0.98 - O.% - 1.02 - 0.99 

se x 102 0.94 0.80 0.81 0.82 0.81 
innovation 
variance  x 106 6.5  6.3 6.5 8.8 7.1 

2. FUEL 

3.  FUEL 

MVR 

f i x  10 
9 

18.0  18.0  18.0 
se x 109 5.2 5.3  5.2 
innovation 
variancex 106 - 4.4  5.2  4.6 

f i x  10 9 
0.1  19.0 20.0 19.0 

sex  109 6.7 5.8 5.9 5.9 

f i x  10 0.41 - 2.48 - 3.37 - 2.53 
sex 10 6.4 6.2 6.7 6.3 
innovation 
variance  x 106 5.5 4.6  5.3  4.8 

4. M L  f i x  10 0.0023 1.40 18.0 18.0 
sex 109  6.6  6.1 5.8 5.8 

9 

%CHGPET fi x 10 
2 - 1.4 - 0.92 - 0.25 - 0.28 

sex 1 0 2  0.9 0.79 0.72 0.69 
innovation 
variance  x 106 4.9 6.2 5.4 4.8 

Note: where no results are given  convergence of the fitting process did not  occur. 

44 
AN? 199lIFORS 
37.03.93 



Table 7.3 

Details of various BATS models fitted to standardised quarterly data for 
Victoria, VICACCQ 

Period 2nd quarter 1981 until  4th quarter 1990 

X-variable@) 

FUEL 
%CHGPET 

DIESEL 
h4vR 
UNEMP 
%CHGPET FUEL 
%CHGPET DIESEL 

ANP 19PlIFOPS 
27.03.91 

MSE x 105 
2.3 
2.1 

45 

2.3 
2.6 
3.1 
2.1 
2.1 
2.1 
2.2 
2.5 

R2 
< O  0.19 
< O  0.28 
< O  0.2 1 
< O  0.10 
c o  < O  
< O  0.3 1 
< O  0.29 
< O  0.30 
c o  0.28 
< O  < O  



Table 7.4 

Victoria Quarterly: Reduced structural models Y = VICACCQ 

Structural Model 
X variables 1 

1.  FUEL f i x  10 
8 

0.0 
3.6 se  x 108 

innovation 
variance x 16 1.36 

2 .  FUEL f ix10  
8 

0.00 
sex 10s 3.8 

%CHGPET fi x  10 - 8.2 
3 

sex I@ 9.6 
innovation 
variance x 1 6  1.37 

3. FUEL j3x  10 

MVR f ix10  

8 
0.0 

sex  10s 3.1 

sex 10 
innovation 
variance x 16 1.39 

- 3.0 
5.8 

4. %CHGPET Sjx1o3 - 8.1 
sex I@ 9.3 

~- DIESEL j 3 X l O  - 0.1 
5.1 

8 

sex 108 
innovation 
variance x 16 1.37 

2 

7.8 
3.3 

1.21 

7.8 
3.5 

0.3 
8.5 

1.25 

0.2 
3.1 

3.3 
6.7 

1 A9 

6.3 
8.8 

6.2 
5.1 

1.41 

3 

7.7 
3.4 

1.26 

7.6 
3.6 

. 0.4 
8.5 

1.32 

0.1 
3.8 

5.8 
6.7 

1.66 

.6.0 
8.7 

5.6 
5.2 

1.48 

4 

0.0 
3.9 

1.94 

0.2 
4.1 

3.6 
9.1 

2.02 

0.0 
4.1 

6.2 
7.0 

1.92 

4.1 
9.0 

0.0 
5.8 

2.06 

5 

0.0 
3.9 

1.56 

0.0 
4.0 

. 5.0 
9.2 

1.62 

0.0 
4.0 

3.7 
6.9 

1.58 

. 4.9 
8.9 

0.0 
5.3 

1.63 
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Table 7.5 

Details of BATS models fitted to standardised quarterly data for 
NSW. NSWACCO 

Period 2nd quarter'1981 until  4fh quarter 1990 

X-variable(s) 

%CHGPET 
FLTEL 
DIESEL 
MVR 
UNEMP 

%CHGPET 
%CHGPET 

FUEL 

%CHGPET 
DIESEL 
UNEMP 

MSE x 105 R2 
3.05 < O  < O  
3.00 < O  
2.98 < O  

< O  
< O  

3.11 < O  < O  
3.26 < O  < O  

2.70 
2.21 

< O  < O  
0.16 < O  

2.53 0.03 < O  

%CHGPET h4vR 3.82 . - " - - - - - 
%CHGPET FUEL UNEMP 
%CHGPET DIESEL UNEMP 

. . 

3.82 
2.81 

~~ < O  < O  
< O  < O  
< O  < O  

Table 7.6 

Details of BATS models fitted to standardised quarterly data for 
Queensland, QLDACCQ 

Period 2nd quarter 1981 until 4th  quarter 1990 

X-variable@.) 

%CHGPET 
FTJEL 
DIESEL 
MVR 
UNEMP 
%CHGPET 
FUEL 

FUEL 

%CHGPET 
MVR 
UNEMP 

FUEL UNEMP 
%CHGPET MVR 
%CHGPET MVRFUEL 

MSE X 105 R2 

7.35 
3.82  0.28 

< O  
< O  
< O  

< O  
9.48 

< O  
< O  

8.82 
< O  

< O  
6.69 

< O  
< O   < O  

9.60 < O  
7.43 

< O  
< O  

7.87 < O  
< O  
< O  

4.42 < O  < O  
8.39 < O  < O  

11.8 
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ON-LINE COEFFICIENT OF FUEL 

1,753-8 8 

Figure 7.1 
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ON-LINE S. D. 

Figure 7 . 2  
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8 .  EXPLANATORY & PREDICTIVE  MODELS  FOR  ROUTINE  USE 

8 .1  Introduction 

In this section we critically review various models investigated earlier and provide 
models for prediction  and  explanation. In particular  we  give  estimates  of  reductions  in 
numbers of fatal crashes for 1990 and 1991 which  are due to continuing road safety 
measures or economic  conditions;  see  Section 8.8. 

Since carrying out the  preliminary  work  described in earlier sections,  revised data for 
FUEL was  obtained  from  ABARE  and  the  most recent data available for other  variables 
is used in analyses in this  Section. Thus there  are  small  differences  in estimates when 
comparing  models fitted in this  section  with  those used in earlier sections.  FUEL  was 
available  until 43,1991, monthly  fatal  crash  figures  until  December 1991. 

In Table 8.1  we summarise  the best monthly  and quarterly models which  have  been 

found  in  the  earlier  sections.  The  two  significant  statistics  are  the '2-value' and  the  R 
2 

value.  The  'Z-value'  indicates  whether  the  estimated  regression  parameter  is  statistically 
S 

significant from zero. We would expect a reasonable model to have  a '2-value' in 

excess of 2 in absolute size.  The  R  value  indicates how  much  better the explanatory 
model is compared  with  a  pure  time  series  model. 

For monthly Australian data, the  FUEL + LAG FUEL model  has  estimated regression 

parameters  which are statistically  significantly  different  from  zero. The value  of  RS , 
0.5 1, indicates a  model  with  superior perfonnance over a  pure  time  series  model. The 
model for Queensland is close to being significant. The values of  the regression 
coefficients  can  be  compared for Australia  and  the  states. For MVR,  the Australia and 

respectively. For WI, the  regression coefficients for NSW and  Queensland  are  almost 
Victoria  series give regression coefficients which  are  similar 6.8 x  and 3.9 x 

identical, - 1.0 x  and - 1.1 x  which  gives  some  support to the  model  although 
the monthly  series  are  not  standardised by population. 

For quarterly data,  the FUEL model for Australia  gives  a  highly  significant  regression 

2 
S 

2 

" 
parameter (2-value = 3.5) and a value of R i  = 0.526  indicating  superior 
performance over a pure time series model. Victoria gives similar results but the 

significance of the regression  parameter is less and  R 1s greater. The models with 
L .  

S 
n 

FUEL and  %CHGPET give little improvement  in  terms of R over the models with 
FUEL only  and  the  regression  coefficient for %CHGPET is not  significantly different 
from  zero.  The  regression coefficients for FUEL for the Australia and Victoria series 
are 1.8  x  and  7.8  x  which are substantially different. The regression 
coefficient for %CHGPET, in the FUEL + %CHGPET model, is - 9.2  x lo3 for 
Australia and - 3.0 x for Victoria, here  a larger value for the Australia series. 
These  systematic  differences  should  not be present if relationships  were  similar  because 
of  the  standardisation by population  used for the  quarterly  series. 

L 

S 
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8.2 FUEL model for Australian  Quarterly Series 

recent  crash  figures,  unless  othenvise  indicated. 
Results  presented  in  the rest of this section  use  the revised FUEL Series and the  most 

Ofthe models presented in $8.1,  the  model for the  Australian  Quarterly  Series  involving 
FUEL appears best for both explanatory and  predictive  purposes. In Tables 8.2 we 
give  detailed  results of the  Reduced  Structural  model  2 fitted to data from  2nd Quarter 

1981 to  4th  Quarter  1989.  The  value of R i  is 0.54 and is satisfactorily  large  indicating 
a good improvement of the  explanatory  model over a pure time series model. Also 
given are results  for  the  Reduced Smctural Model  1. 

The fitted Reduced  Structural  model  2  is 

V AUSACCQ = - 0.000818 X t 
(0.00023) 

- 0.001212 x V(indicat0r for quarter  2) 
(O.Ooo91) 

+ 0.000315 x  V(indicator  for  quarter 3) 
(O.Ooo91) 

+ 0.000340 x  V(indicator  for  quarter 4) 
(0.0013) 

+ 2.2 x 10-8 x  VFUEL, 
(0.56 x 

+ h 4 A e m  

with t being an index t = 1.2, ... indicating the periods in the series starting at 2nd 
Quarter 1981  with t = 1. 

In Table 8.3a we give results for the  model  fitted up to  the 4th Quarter 1990. This 
model  is 

VAlJSACCa, = - 0.000854 
(0.000228) 

- 0.000868  x  V(indicator for quarter 2) 
(0.000833) 

+ O.OOO641 x V(indicator  for  quarter 3) 
(0.000854) 

+ 0.00083 x  V(indicator for quarter 4) 
(0.00124) 

+ 2.1 x lo8 x VFUEL, 
(0.54 x 

+ MAerror 
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which  gives  values  not  statistically  different  from  the  previous fit to data up to 1989. 

Again  the  value of  RS ,0.46, is satisfactorily  large. 

From Table 8.3, the estimated regression coefficient for FUEL is 2.1 x lo8 ,  the 
average  value for FUEL is 3.97  x 106 minimum  and  maximum values are 3.61  x 106 
and  4.39  x lo6, that is average value of FUEL plus  and  minus  about 10 percent of the 
average  value  of  FUEL,  which is 0.1 x  4.0  x 106. A  change  of FUEL from  one  quarter 
to the next,  VFUEL,,  of 0.4 x 106 contributes  a  value  of  0.4  x lo6 x 2.6 x  (2.6 x 
lo-* is the estimate of  the FUEL term from Table  8.3a) or 1.04  x or 0.0104 to the 
explanatory  term.  Now  the  average  value of AUSACCQ, from Table  8.3, is 0.0409 so 
that a  change in FUEL equal to 10 percent of the  average  value of FUEL produces a 
change in the  accident rate equal  to  0.0104/0.0409  x 100 or 25 percent of the  average 

practical importance with  a  multiplying effect of 2.5 in terms  of changes in average 
accident  rate. Thus the  relationship  between  the  accident  rate  and  FUEL  has  significant 

value  of  FUEL  and  accident  rate. 

Also in analysing  the  revised FUEL data,  we  found  that  structural  model 1 gave  a  large 

value of R  (0.65 from Table 8.2a,  0.53 from Table  8.3a).  Results for the  model  are 
included for interest but it tends to have  worse predictions than structural model 2, 

although, of course, using retrospective measures such as R it appears a good 
model. 

Table 8 . 3 ~  gives  results of these  models fitted to  data  upto Q3 1991.  Results are similar 
to data fitted up to 44 1989 and  up to 4 4  1990,  but  the  FUEL  regression  coefficient for 
Reduced  Structural  model  2 is estimated  as 1.8 x  cf  2.2  x lo8 to Q4, 1989; 2.1 x 

L 

2 
S 

2 
S '  

Q4, 1990. 

In Table 8.2b we give forecasts for 1990 based  on  the  models fitted to data up to the 
end  of  1989  and  the  actual values of FUEL for 1990.  The forecasts of  AUSACCQ for 
structural model 2 for 1990 have typically a relative error of 6 percent. Errors of 
forecasts are all negative. The confidence limits appear  somewhat conservative. In 
Table 8.3b forecasts for 1991 are produced  based  on  the  model  and data up to the end 
of 1990 for AUSACCQ.  The  errors for structural  model  2  are 0 to 2  significant  figures. 
The values of FUEL for each quarter of 1991 are  taken to  be equal to those for the 
corresponding quarter of 1990. This is a  simple  approach to providing estimates or 
forecasts of future values of FUEL to be used in the prediction equation  for 
AUSACCQ.  In the next  section  we discuss this  point  further  and consider some  time 
series models for FUEL in order to provide better predictions. However, first we 
consider  the  effect  of  standardisation by population on the NFC data values.  Recall  that 
standardisation  was  done  to  facilitate  comparisons  across  states. 

For  the raw NFC  quarterly data, the  reduced  structural  models  were fitted to the  series 
from 2nd quarter 1981 to the  3rd  quarter  1991. For this  series,  the  reduced structural 

models 1 and  2  were  the  best  and results are given  in Table 8.4a. For model 1, the R i  
value is 0.54 indicating good  explanation by FUEL  in  addition  to  that  purely  explained 
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by a time series  model.  For  model  2, Rf is 0.48  and  the  estimated  coefficient of FUJX 
is smaller  and  less  significant  than  for model 1. We prefer  model  2  because of its better 
predictive power. Using the  model  2 FUEL estimate (2.8 x lo4), a change in FUEL 

quarterly NFC equal to  112 fatal crashes which is about 18 percent of the average 
equal to 10 percent of the average value of FUEL (4 x lo5) gives a change in raw 

quarterly NFC  (630  crashes).  The equivalent change for the population standardised 
series,  AUSACCQ, reported earlier is 25 percent, slightly larger than for the raw data 
series. 

The Reduced Smctural Model 2 uses first differencing so that  the  model fitted (Table 
8.4a) to the  series  is 

VrawNFCt = VFUEL, x 2.78 x lo4 
(0.64 x 10-4, 

- 9.47 - VQ2 X 12.4 + VQ3 X 12.6 + VQ4 X 21.2 
(3.15) (11.5) (11.9) (14.8) 

Forecasts for 1990 and 1991 for NFC are given in Tables 8 . 4 ~  and 8.4d; the former for 

latter for 1991 using  NFC data up to 4th  Quarter 1990 and FUEL for 1991 estimated by 
1990 using  NFC  data  up to 4th Quarter  1989  and FUEL up to 4th  Quarter  1990,  and  the 

the  corresponding quarter of 1990. These  tables  give results for NFC  corresponding to 
those for AUSACCQ in Table 8.2b and Table 8.3b  respectively. Errors of  forecasts  for 
structural model  2 are generally smaller  and are all negative and  on average have  a 
relative error of about 7 percent for 1990 forecasts (Table 8 . 4 ~ )  and 5 percent for 1991 
forecasts (Table  8.4d). In Table 8 . k .  we give forecasts for 1991 based on raw  NFC 
up to Q4 1990 a n d m  up to 4 3  1991. On this  occasion  errors are both  positive  and 
negative. 

8 . 3  Time  Series Model for FUEL for use  in forecasts 

A  brief literature search was canied  out to investigate what  work  had  been done to 
predict road transport fuel demand in Australia and overseas. Fuel demand is, of 
course,  of  great  interest in its own right  for  economic  planning.  Donaldson,  Gillan and 
Jones  (1990)  presented  work  describing  models  for  predicting annual fuel demand  and 

overseas data. 
is not useful to our study here. Elsewhere, time series models have been fitted to 

Here we explore possible ARIMA  time series models  in order to predict FUEL for 
incorporation into the reduced  structural  model to predict  either  AUSACCQ or the raw 
quarterly  NFC  series. A number of models were fitted  to FUEL using the 
STATGRAPHICS  package  and  a summary of the  better  models is given in Table 8.5. 
All  the  models fit the  series  well  and  diagnostics for model  inadequacy are all negative. 
Interestingly, FUEL only requires first differencing, and  not  seasonal differencing as 
well, for the  better  ARIMA  models. 

Forecasts are given in  Table 8.6 for 1991  values  based  on  the  model  fitted to data  up to 
the 4th Quarter 1990 and values up to the same time.  For Model 2 of Table  8.5, 
forecasts for the  first two quarters  of 1991 are  both  high  with  a  relative error of about -3 
percent. 
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For FUEL Model 3 of Table 8.5 forecasts for 1991  are  given in Table 8.6. Forecasts 

AUSACCQ  prediction  model. 
are  high  but errors are  smaller  than for Model 2 and it is preferred for inclusion  in  the 

8.4 Combining  the FUEL Explanatory Model with  the  Time  Series 
Model for FUEL to give forecasts for Australian Quarterly series. 

We  can  now  combine  the FUEL explanatory  model for fatalities (Section 8.2) with the 
FUEL time series  model (Section 8.3) to  give  a  prediction  model for Australian  fatalities 
on a quarterly basis. 

We  consider  the  following  two models for  the population standardised  series 
AUSACCQ  and  the  quarterly NCF series. 

AUSACCQ 

AUSACCQ  modelled by smctural model 2 with 

X = FUEL (see Table 8.3); FUEL  modelled  by  a  SARIMA (0, 1, 1, 1, 0, 0, 4) 
TSM  (see  Table 8.5). 

Quarterly NFC 

NFC modelled by structural model 2 with X = FUEL (see  Table 8.4); FUEL 
modelled by a SARIMA (0, 1,  1, 1,0,0,4) TSM  (see Table 8.5). 

Predictions for 1991 are given in Table 8.7.  On the  assessment of errors  of  prediction 

errors are negative,  that is predicions are too  large. Table 8 . 4 ~  looks  at  predictions for 
given in Table 8.4c, Table 8 . 4  and Table 8.7b for the  raw  NFC  quarterly  series, all 

1990 using actual FUEL for 1990, Table 8.4d looks at predictions for 1991 using 
FUEL from the corresponding quarter of 1990, Table 8.7b  uses  a TSM estimate of 
FUEL for 1991. 

8.5 Forecasts based on the monthly series 

It is well known,  (see, for example,  Box  and  Jenkins, 1970, $5.1) quarterly forecasts 
can  be derived from monthly forecasts by  merely  aggregating  the  monthly forecasts. 
Section 2 of this report considered time  series  models for the  monthly  series  and  some 
uniformity of results was  obtained  across  analyses for Australia  and  the  States.  Below 
we  give  prediction  errors  (actual-prediction) for the  quarterly  forecasts  for 1991 derived 
from  Table 2. Id. The  forecast for the 1st Quarter  is  given by 

4.63  x 31 + 4.87 x 28 + 5.70  x 31 or 456.6. 
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We  also  give  errors  from  the  quarterly  models  given in the  previous  Section, $8.4. 

Q 1  Q 2  Q3 

Actual  NFC 464 444 495 

Error of predictions 

Sum  of  monthly  TSM  prediction  (Table 2.ld) 7 - 6  8 

FUEL  predicted by previous  year's  value 
Reduced  structural  model, X = FUEL, - 21 - 3  - 19 

in  same  quarter  (Table 8.4d) 

FUEL predicted by TSM  (Table  8.7b) 
Reduced  structural  model, X = FUEL, - 32 - 43 - 23 

We  note  that  the  quarterly  errors for the  monthly  pure time series  model are smaller  than 
those for the two predictions involving the quarterly reduced structural model  and 
FUEL. Theoretically  one  would  expect  better  forecasts to be derived  from  monthly  data 
than quarterly data  because  the  quarterly forecasts could be derived as special cases of 
the  monthly data. 
Here we  investigate  further  structural  models for monthly  data  and  fuel.  We  recall from 

FUEL and  LAG FUEL was not  a good one although the reduced structural model 
$6.1 that  the  BATS analysis for AUSACCM Fable 6.1) suggested  that  the  model  with 

analysis  of  Table  6.2b  had  both FUEL and  LAG FUEL statistically  significant. 

The BATS analysis, we remind the reader from 85, allows for both  a stochastically 
evolving trend  and seasonal pattern for the dependent variable. If  an explanatory 
variable is following  largely the same stochastic  evolution  as  the  dependent  variable  then 
it will have  little explanatory power and  the regression coefficient will not be 
significantly  different  from zero. 

In Figures 8.1 and 8.2 we give on-line estimates (estimate  given by the  the  solid line, 
90% confidence limits by the  dashed  lines) of the  regression  coefficients for FUEL  and 
LAG FUEL from the BATS analysis. If the reduced  structural  model  with estimates 
(2.16 x lo4 and  3.16  x lod) for FUEL and  LAG  FUEL  were  adequate,  then  the  plots 
in Figures 8.1  and  8.2 should be horizontal at the values 2.16 x lod and  3.16  x 
respectively.  This is obviously not  the  case.  We  summarise  the  situation  below. 

FUEL estimate x 106 LAG FUEL estimate x lo6 

Reduced srmchlral model 2 

BATS analysis 

2.16 

z = 2.12 
(1.02) 

- 2 in 1982 
0 in 1987 
1 in 6/89 

to 6DO 

3.16 

2 = 3.10 
(1.02) 

- 1 in 1982 

1984 to 1991  
varying about 0 

The BATS analysis therefore suggests little explanatory  power from fuel sales as the 
on-line  estimated  regression  coefficients are never  significantly  different  from zero. 

The  model  with  FUEL for monthly  data  needs  further  investigation. Preliminary results 
when fitting the  reduced structural model  2 with FUEL, LAG FUEL  and LAG LAG 
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FUEL to the revised data up to 4 3  1991 give statistically significant coefficients for 
FUEL  and LAG FUEL, equal to  about  3  x lo6,  and  nonsignificant  coefficient for LAG 
LAG FUEL. 

This model  suggests  therefore  that  some  account  should be  made for the  delay in retail 
sales of vehicle fuel as compared  with  wholesale  sales  of fuel, as  measured by FUEL, 
which  could be up to two  months,  but  unlikely  to  be  longer. 

8.8  Conclusion 

The Reduced Structural model  2 for quarterly Australian  NFC data involving FUEL 
n 

appears  to  give  a  reasonable fit to the  data (Rs = 0.48)  with  a  statistically  significant 

kilolitres of  fuel; Table 8.4a.  The  model  can be  used  to  'explain'  the extent to  which 
( Z  = 4.35)  regression  coefficient  estimated  to be 2.78 x lo4 accidents per quarter  per 

the decrease in crash numbers in 1990 and 1991 are due to economic factors as 
accounted for in  the  model by FUEL. Table 8 . 4 ~  gives predictions of quarterly NFC 
for 1990 using the data up to 4 4  1989 but  the  actual FUEL values for 1990. These 
predictions are those  which  the  model  gives by taking into account actual economic 
conditions. We  can  compare these with predictions made  using 1989 FUEL values 

FUEL into 1990. Below  we  give  the  predictions  made  using  reduced Smctural model 
used for 1990 FUEL, that is a  projection of 1989 economic conditions, as given by 

2. 

L 

Actual and Predictions for 1990 

Q1 Q2  Q3  Q4 Total 

Actual 498 510 544 496 2048 
*Actual FLTEL 561 548 588 506 2203 
+ 1989 FUEL 557 545 561 580 2242 

1989 actual 2402 

*Table 8 . 4 ~ ;  +new predictions. 

We  can  express  the  totals for each row as  a  percentage of 1989 actual NFC 

1990 actual 85.3 
Prediction  using 1990 FUEL  91.7 
Prediction  using  1989 FUEL 93.4 
1989  actual 

Thus the decrease in  NFC seen in 1990 compared  with 1989, 100 - 93.4 or 6.6%, 
could be attributed to continuing  trends  of  road  safety;  a  further  93.4 - 91.7, or 1.7%, 
attributed  to  the  economic conditions of 1990 and  91.7 - 85.3 or 6.4% is unexplained 
by the model. The 6.4% difference  could  be due to  road  safety  measures  unaccounted 
for,  unexplained  economic  effects or other  factors. 

Carrying out a similar analysis for the f i s t  three quarters of 1991 we obtain these 

- 
100%. 

figures. 
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Actual and Predictions for 1991 

Actual 

+ 1989 FUEL 
*Actual FUEL 

1989 Total 

'Table. 8 . 4 ~  + Table 8 . 4 .  

Q1 Q2 Q3 

464 444 495 
446 445 453 
485 477 514 

Total 

1403 
1344 
1476 

1786 

We can  now  express  these  totals as a  percentage 

1991  actual  78.6% 
Prediction  using 1 9 9 1  FUEL 75.3% 
Prediction  using  1989  FUEL 82.6% 
1989  actual 

predictions using 1989 FUEL values for both 1990 and  1991 over predict the 1991 
In this particular case the model predictions using actual FUEL under predict.  The 

actual value by 4%.  In  this  the  interpretation is not as straightforward,  but  the  model 
suggests  that  the 1991 total is as bad as to  be  expected  but  better  than if 1989  economic 
conditions had  continued. It could  be  argued  from  the  model  that  the  recession of 1990 
and 1991 has saved lives by reducing NFC by (2402 - 2203) or 199 crashes in 1990 

This and other factors have reduced the number of fatal crashes by, in total, 737 
and (1786 - 1344) or 442 crashes in the first 3  quarters  of  1991 - a  total of 641 crashes. 

crashes. 

Finally  we  can consider predictions for 1991 using data up to the end of 1989, FUEL 
for 1990 and 1991 equal to  the  values of FUEL for 1989. These predictions for 1991 
represent  continuing  economic  conditions of 1989  and  road  safety  trends  of  1989.  The 
@dons are 

I 

100%. 

Q1 QZ Q3 Total 

516 505 520 1541 

as a percentage of 1989 figure, the total, 1541, is 86.3% whereas, as above, the  actual 
for 1991 is 1403 or 78.6% of the  1989  corresponding  total. 

We now  have  various  predictions  for 1991 (Q1 - Q3) as follows 

Base 1989, FUEL = 1989 86.3% 
Base 1990, FUEL = 1989 82.6% 
Base 1990, FUEL = actual  75.3% 

Actual 78.6 %. 

The drop 100 - 86.3 or 13.7% is what might have  been expected given continuing 
economic activity  and  road  safety  trends  from  1989.  The further drop  86.3 - 82.6 or 
3.7% could represent new road safety trends based on 1990 trends. The difference 

actual  economic  conditions. In reality,  this is an overestimate of the  improvement  seen 
82.6 - 75.3 or 7.3%  might be the further drop which  would  have  been  expected  due  to 

in 1991. In all of these predictions, however,  the  overwhelming  message is the size of 
the  effects  due  to  economic  factors as represented by FUEL. 
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In summary, we  have found models which are both useful for explanation and 
prediction.  These  include for explanation the  following. 

. Australian  quarterly  data a  model  involving  fuel  sales. 

. Australian  monthly  data a  model  involving current and lagged fuel sales;  this 
model requires further  investigation. 

. Victoria  quarterly  data a  model  involving  fuel  sales. 

. NSW and  Queensland  monthly  data a  monthly  involving  a  weather  index. 

For prediction time series models for Australian and  States monthly data 
perform  well. 

Table 8.1 

Summary of Monthly &Quarterly Best Models 
(fitted to data up to end 1990) 

Monthly Data 

Australia 

N S  W 

Victoria 

Queensland 

Explanatory Structural 

Variables Model 

FUEL+ 2 
LAG FUEL 

MVR 2 

WI 2 

MVR 2.5 
WI 3 

WI 2 

21.03.91 
ANP 199UFOPS 

Regression Z-value 

Estimate of estimated 
parameter 

2.2 x 10-6  2.1 
3.2 x 3.1 

6.8 x 0.5 

- 1.0 x 10-2 - 1.2 

-2.7 x 10-3 - 0.4 
0.3 3.9 x 10-6 

1.1 x lo-’ - 1.9 

59 

0.510 

0.396 

0.445 

0.363 
0.364 

0.387 



Quarterly Data 

Explanatory Structursl Regression 2-value 

Variables Model Estimate of estimated 
parameter 

Australia 

FUEL 2 
FUEL+ 2 
%CHGPET 

Victoria 

FUEL 2 
FUEL+ 5 
4bCHGPET 

1.8 x 3.5 0.526 
1.8 x 3.1 0.363 

- 9.2 x 1W3 - 0.4 

7.8 x 2.4 0.639 
7.8 x 2.2 0.639 

- 3.0 x lo4 - 0.35 

Table 8.2 

Detailed Results for the Australian Quarterly Series AUSACCQ with 
FUEL as explanatory variable - Reduce Structural Models 1 and 2 

(fitted using data up to 4th Quarter, 1989) 

Table 8.2a 

Model Estimates 

SM1 

Term ESTIMAE 
(standard error) 

5m2 

ESTIMATE 
(standard emr) 

mnd 
42 
Q3 

-8.4 x 10" (8.3 x -0.000818 (0.000234) 
-0.00171 (O.oaO886) -0.001212 ( O . O o o 9 0 9 )  
-0.00020 (0.00114) 0.000315 (O.OOO906) 
-0.00093 ~0.00110~ O.OOO34 (0.00130) 

R2 
. .  

0.86 

0.65 0.54 

60 
A N I  l99llFORS 
27.13.92 



Table 8.2b 

Predictions for 1990 based on values of AUSACCQ up to 44,1989 and FUEL up to 
44, 1990. 

1990 Quarter Forecast 95% Confidence Limits Actual Error 
SM 1 Limits 

41 0.0331 0.0300. 0.0361 0.029 
4 2  0.0332 0.0294, 0.0370 0.030 

-0.004 

4 3  0.0364 
-0.003 

0.0326, 0.0401 
44 

0.032 -0.004 
0.0284 0.0246, 0.0321 

SMZ 

Q1 
42 

0.0324 0.0289,  0.0359 

4 3  
0.03 13 
0.0340 

0.0273. 0.0353 

44 0.0282 
0.0295.  0.0385 
0.0232.  0.0331 

0.029 -0.003 
0.030 -0.001 
0.032 -0.002 

Table 8 . 2 ~  

Summary Values up to  Q4 1989 

Average  value of AUSACCQ 0.0409 
Minimum value of AUSACCQ 0.0340 
Maximum value of AUSACCQ 0.05 10 

Average  value of FUEL 3.97 x 106 
Minimum value of FUEL 3.61 x lo6 
Maximum value of FUEL 4.39 x 106 

Table 8.3 

Detailed Results for the Australian  Quarterly Series AUSACCQ  with 
FUEL as explanatory variable - reduced structural models 1 and 2 (fitted 

using  data  up to 4th Quarter, 1990) 

Table 8.3a 

SM1 5m2 

ESTIMATE ESTIMATE 
(standard error) (standard e m )  

-0.000857 (0.0080) -0.000854 (0.000228) 
-0.001389 (0.000873) -0.000868 (0.000833) 

-0.00031 (0.00105) 0.00083 (0.00124) 
0.00005 (0.00117)  0.000641 (0.000854) 

2.6 x 10-8 (3.3 x 10-9) 2.1 x 10-8 (5.4 x 10-9) 
-0.777 (0.124)  IMA(1)  0.407 (0.166) 
0.88 0.87 

0.53 0.46 
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Table  8.3b 

FUEL for 1991 is taken as same as for 1990. 
Predictions for 1991. 

Forecast 95% Confidence Limits Actual Error 
Limits  

0.02967 0.02644, 0.03290 0.027 
0.02853 0.02444,0.03262  0.026 -0.003 

-0.003 

0.03142 
0.0243 1 

0.02733, 0.03551 
0.02022,0.02840 

1991 Quarter 
SM 1 

Q1 
QZ 
0 3  
64 
S M 2  

Q1 
QZ 
Q3 
44 

0.02697 0.02352,0.03043 
0.02616 0.02214,0.03017 
0.02871 0.02420, 0.03321 
0.02321 0.01826. 0.02816 

0.027 0.00 
0.026 0.00 

Table 8 . 3 ~  

Detailed Results for the AUSACCQ series  with FUEL as explanatory 
variable - reduced structural models 1 and 2 (fitted using data up to 3rd 

Quarter,  1991) 

SM1 5m2 

TellIl ESTIMATE ESTIMATE 
(standad error) (standard error) 

trend  -0.000780 (0.000064) -0.000762 (0.000207) 
42 -0.001098  (0.000786)  -0.000764 (0.000735) 
4 3  0.00036 (0.00103) 0.000706 (0.000781) 
44 0.000636  (0.000927) 0.001296 (0.000949) 
F m L  2.2 x 10-8 (3.2 x 10-9) 1.8 x (4.1 x 
R2 0.91 0.90 

0.56 0.50 
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Table  8.4 

Reduced Structural model estimates for raw  NFC quarterly data (fitted 
using  data up  to 3rd Quarter 1991) 

Table 8.4a 

Structural Model 

1 2 3  4 5 

FUEL (estimate x 16) 34.3 27.8 27.8  27.7  27.8 
( s td  x 105) (4.64)  (6.39)  (6.48) (6.84) (6.50) 

0.54  0.48 0.47 0.42  0.47 

1990 
Quarter 

Table 8.4b 

Detailed Results for Models 1 and 2 

SM1 SM2 

ES"ATE 
(standard error) 

ESTIMATE 
(standard emr) 

- 10.04 0.95 
-0.666 (0.130) 

- 9.47 3.15 

0.393 (0.160) 
0.87 0.86 

0.54  0.48 

Table 8 . 4 ~  

Predictions for 1990 based on values of raw  NFC quarterly up to Q4, 
1989 and FUEL up to  Q4, 1990. 

Forecast 95% Confidence Limits Actual Error 

SM1 

Q1 
Qz 
Q3 
44 
S M l  

Q1 
42 
4 3  
44 

570.3 
573.2 
62 1.4 

523.1.  617.4 
515.4,  631.1 
563.6.  679.3 

506.5 448.6; 564.3 

56 1 A 507.8, 615.0 
547.7 
588.4 

486.0,  609.4 

506.4 
519.5, 657.2 
431.0, 581.7 

498  -72 
510  -63 
544 -77 
4% -11 

498  -63 
510  -38 
544 44 
4% -10 
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Table  8.4d 

Predictions for 1991 based on values of  raw  NFC quarterly data up to 
4 4 ,  1990. FUEL for 1991 is taken as the same as for 1989, quarter by 

quarter. 

1991 
Quarter 

SMl 

Q1 
42 
4 3  
44 

S M 2  

Q1 
42 
Q3 
44 

Forecast 

536.8 
513.4 
554.5 
470.8 

485.4 
416.9 
513.6 
449.5 

95%  Confidence Limits Actual Error 

486.0, 587.6 
452.3.  514.4 
493.5,  615.6 
409.8.  531.9 

432.0,  538.9 
414.2.  539.6 
442.9,  584.4 
371.6.  527.5 

464 -73 
444 -69 
495 -60 

444 
464  -21 

-33 
495  -19 

Table  8.4e 

Predictions for Q1, Q2, Q3 1991 based on values of raw NFC quarterly 
data up to Q4 1990 and actual FUEL up to Q3, 1991 

1991 Forecast  95% Confidence Limits Actual Error 
Quarter 

SM1 

Q1 
42 

488.9 438.0,  539.7 
413.9 

4 3  480.1 
412.9.  535.0 
419.0. 541.1 

S M 2  

Q1 446.1 
42 444.6 

392.1.  499.6 

4 3  452.5 
381.9. 507.3 
381.7.  523.2 

464 -25 
444 -30 
495 15 

464 18 
444 - 1  
495 42 
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Table 8.5 

Models for FUEL, quarterly 
until 4 4  1990 

ARIMA Time Series series from Q Z  1981 

FUEL  Model 1 SARIMA (1111004) 

AR( 1 ) -0.381 (0.248) 

“ W )  0.455 (0.224) 
SAR(4) 0.569 (0.150) 

Mean  Square  Error = 8.27 x lo9 on  35  degrees  of  freedom. 

Chi-square  statistic  for  residual  autocorrelations = 7.437 on  19  degrees of freedom 

FUEL Model 2 SARIMA (0110014) 

“1) 0.646 (0.132) 

SMA(4) -0.486 (0.170) 

Mean  Square Error 9.73 x lo9 on 36  degrees of freedom. 

Chi-square  statistic  for  residual  autocorrelations = 15.747 on 19  degrees of freedom. 

FUEL Model 3 SARIMA (0111004) 

MA(1) 0.698 (0.135) 

SAR(4) 0.626 (0.146) 

Mean  Square Error = 8.46 x lo9 in 36  degrees of freedom. 

Chi-square  statistic  for  residual  autocornlation = 8.775 on 17 degrees  of freedom. 
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Table  8.6 

Predictions for FUEL for 1991 using models of Table 8.5 
Model fitted to data up to end of 1990 

(Units  millions  of kilo litres) 

FUEL Model 2 (of Table 8.5) SARIMA (0110014) 

1991 Quarter  Forecast 95% Confidence  Limits Actual Error 

Q1  4.249 
Q2 

4.049,  4.450 
4.253 

4 3  
4.040.4.46s 

4.299 
44 

4.076,4.523 
4.175  3.941.4.410 

4.122 -0.127 
4.189 -0.064 
4.177 -0.122 

FUEL Model 3 (of Table 8.5) SARIMA (0111004) 

1991 Quarter  Forecast 95% Confidence  Limits Actual  Error 

Q1 4.253 
Q2  4.280 

4.066.4.439 
4.085,  4.474 

Q3  4.335 
44 

4.132,  4.538 
4.193  3.982,  4.404 

4.122 -0.131 
4.189 -0.091 
4.117 -0.158 

Table  8.7 

Predictions for AUSACCQ and raw quarterly NFC using reduced 
structural model 2 with X = FUEL and FUEL predicted by a  TSM 

Table 8.7a 

Predictions for AUSACCQ  for 1991 using data up  to the end  of 1990 

1991 Forecasts 95% Confidence  Limits* 

0.0284 (0.0245,0.0314) 
0.0273 
0.0291 

(0.0225.0.0316) 
(0.0237.0.03441 

Table  8.7b 

Predictions for raw quarterly NFC for  1991 using data upto 
the end of 1990 

1991 Quarter  Forecast 95% Confidence Limits* Actual  Error 

Q1 
Q2 
Q3 

4%.4  (440.6.552.2) 464 -32 
486.6  (415.7, 557.5) 444 4 3  
5  16.6  (433.3,  599.9j 495 -22 

44 488.4  (394.3.  582.5) 

Contiidence intervals include errors of e c t i o n  for FUEL. 
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Figure  8.2 
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PART 3 

Fatalities Per Crash 

Overview 

A  simple time series model  is suggested for the  variable  fatalities per crash.  Also,  the 
A m  is found to have an estimate of fatalities  per crash which  is  statistically  different 
from other jurisdictions. 

9 .  MODELLING OF THE NUMBER OF FATALITIES  PER  CRASH 

Data for the number  of crash fatalities (NCF) were investigated for the period April 
1975 until  December 1990 on a monthly  basis for Australia. Initially, the variable 
Fatalities per Crash (FC) was derived by dividing NCF by  NFC for each month; 

crash, with  an  estimated  standard error of 0.003. The summary indicates the variation 
summary statistics are given in Table 9.1, indicating an average of 1.129 fatalities per 

is quite large, with the lower and upper quartiles given by 1.104 and 1.148 and 
minimum and maximum values given by 1.057  and  1.286. We have not  standardised 

effect would be very small for these  analyses,  being a second order effect of variance 
the number of accidents or fatalities by days in the  month or population because the 

rather  than first order of mean. 

An alternative estimate of the average fatalities per  crash is given by a regression ratio 
estimate. This turns out to have the same precision (standard error 0.003) as the 
monthly  average of FC values found above.  This  analysis also investigates differences 
between Australia, states and territories. Estimates found by regressing, with no 
intercept,  the  number of crash fatalities (NCF) per month  on  the  number  of fatal crashes 
(NFC)  per  month for Australia, the states  and temtories were  obtained  and  estimates are 

value for comparing  the  largest  value of the states and territories  (except  ACT)  with  the 
given  in Table 2. Without making any allowance for multiple comparisons, the Z 

smallest (NSW, 1.136  against  Tasmania,1.113)  is  2.1, just statistically significant at the 
5 percent level. It would probably be reasonable to assume no  or little differences 
between states  and territories. The ACT does have a rate which is statistically 
significantly  different  from the other states and  territories. 

From  the  plot  of Ausmlia FC  series  against  time,  Appendix D Figure Dl, it appears thxt 

Figure 0 2 ,  confirms a strong seasonal (monthly) effect. The Seasonal Subseries plot 
there  might  be a seasonal or monthly effect. The Seasonal  Subseries  plot,  Appendix D, 

depicts the 12 monthly  averages as horizontal  lines  with values from succeeding years 
for the given  month plotted as vertical lines to the horizontal  line.  From the plot, there 
are local peaks in the monthly effects at May, September and December. There is no 
apparent  trend in the  yearly  values since the vertical  lines  are  haphazardly  patterned.  A 

Appendix D, Figure D3, which shows little pattern whatsoever and suggests purely 
Seasonal  Subseries  plot is given for  the series of seasonal  (monthly  lag 12) differences, 

monthly/seasonal  effects.  An  ANOVA c o n f i i s  monthly  effects  for  the Aushalian data. 
Results are given in Table 3 where an  ANOVA for between  and  within months is given 
both for the original series and the seasonally differenced  series. There are significant 
differences between  month effects which are indicated by the significance of the 
between  month effect for the original data and the insignificance of the between  month 
effect for seasonally  differenced  data. 

December  (significantly  different  from an average  month)  and  January (not significantly 
In Table 9.4  we give the monthly means for  the series, giving the high months as 

different)  and  the  low  month as July  (significantly  different from an average  month).  A 
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simple  prediction  method  would  be  to use the appropriate  monthly  average for July and 
December and  the average, 1.129  (which remains unchanged), for the remaining 
months, or extend this method to include February  and June, which  have  marginally 
significant  effects,  and  the  average  of  the  remaining  months,  1.134. This suggests  that 
a  time series approach to predicting  the  number of fatalities per fatal accident may be 

monthly  components  was fitted to  the FC series. The moving  average error of order 1 
worthwhile.  A reduced structural model  2 (see section 5) with explicit trend  and 

terms found  to be significatly  different  from  zero.  All  other  moving  average terms were 
was,  however, replaced by moving average error of order 12, and  the lag 6 and 11 

not significatly different from zero.  Although  a  time series approach is possible to 
implement to provide forecasts, it is doubtful whether  such forecasts would  be  an 
improvement  over  monthly  means. 

Table  9.1 

Summary statistics for Fatalities per crash: Australia 
April 1975 to December 1989 

Average 1.129  (0.003) 
Median 1.127 
Standard  Devn 0.037 
Min, max 1.057, 1.286 
Lower,  upper  quartiles 1.104, 1.148 

jurisdiction 

Ausmha 
NSW 
Victoria 
Queensland 
South  Australia 
WA 
Tasmania 
Northern Temtory 
ACT 

ANI 19911FORS 
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Table 9.2 

Fatalities per Fatal Crash, monthly data. 
Results from Regression Analysis 

estimate  (s.e.) 

1.130  (0.003) 
1.136 (0.004) 
1.127 (o.oosj 
1.133  (0.005) 
1.120 (0.006) 
1.124 (0.008) 

~ I - ~ "  

1.113 (o.oioj 
1.131 (0.015) 
1.081 (0.013) 
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Table 9.3 

ANOVA for monthly series for number of fatalities per crash 

Original Data 

Source Sum of Squares Df F statistic 

Between  years 0.0304 
Between  months 0.0395 
Within  months  and  years 0.2332 

14 
11 

2.05 
3.38 

154 

Seasonally Differenced Data 

Between  years 0.0550 14 1.79 
Between  months 0.0010 11 0.04 
Within  months  and  years 0.3316 151(3) 

Table 9.4 

Monthly  means for the  number of fatalities per crash and, in 
parentheses, the difference from the average 1.129 multiplied by 100 

January 1.147 (18) 
February 1.119 (-20) 

April 1.127 (-2) 
1.136 (7) 

June 1.109 (-20) 

March 1.116 (-13) 

July 1.104 (-25) 
August 1.124 
September 1.139 

(-5) 
(10) 

October 1.133 (4) 
November 1.126 
December 1.158 (29) 

(-3) 

(standard error of difference of monthly  means, 0.012). 
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A U S T R A L I A  MONTHLY OATA 
TABLE A . l .  N M b e r  of fa ta l  road crashes by day 

ROU 

1 

3 
2 

4 

6 
5 

8 
7 

10 
9 

1 1  
12 
13 
14 
1 5  

ROU 

2 
1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1 5  

YEAR 

1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

YEAR 

1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

JAN F E B  MAR APR nAY  JUN JUL 

8.0323 
7.4516 
8.3548 
6.9032 
6.7742 
7.7419 
8.0645 
5.8065 
6.5484 
6.1935 
6.7742 
6.6452 
6.7097 
6.1290 
4.9355 

7.8966 
8.1429 
8.1071 

6.3103 
7.7143 

7.5714 
8.3571 

6.2069 
5.9286 

7.3214 
7.2500 
5.6429 
7.2143 
6.7857 
5.2143 

8.3548 
9.2258 
9.6774 
9.6452 
7.9355 

6.9032 
7.2903 

6.8710 
7.2581 
6.8387 
7.9355 
7.0645 
7.5484 
7.2581 
6.4194 

9.1000 
8.8000 
7.9667 
9.3333 
8.8000 
8.2000 
8.4333 
6.7333 
6.5333 
6.7667 
7.6333 
6.4667 
6.1000 
5.5333 
5.3000 

8.7419 
8.5806 
8.5484 
7.8065 
7.6129 
7.8387 
8.0323 
6.6129 
6.5806 
7.6452 
7.3226 
6.3548 
7.1613 
6.1290 
5.2581 

AUG SEP OCT NOV OEC 

8.2258 
8.7742 

10.0645 
8.8065 
8.8065 
7.3226 
8.2581 
6.9355 
7.0968 
5.9677 
6.6452 
6.0645 
7.2903 
5.8710 
5.2903 

9.6333 
8.1000 
8.9000 
8.8667 
7.6333 
8.7667 
7.5000 
7.7333 
7.4333 

6.5000 
7.4667 

8.0667 
7.0000 

6.5000 
7.8667 

8.7419 
8.9032 
9.1613 
8.3871 
8.3548 
8.5806 
8.1290 
6.4516 
6.7419 
7.4516 
7.0000 
7.6129 
7.3871 
6.2903 
4.7742 

TABLE A.2. N e w  Motor V e h i c l e  Registrations 

ROU 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

ROU 

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

YEAR JAN 

1981 
1982 
1983 

43847 
34924 

1984 41610 
1985 
1986 

50568 

1987 
43481 
33339 

1988  29686 
1989 
1990 

35435 
44212 

YEAR  AUG 

1981 51727 
1982 56500 
1983 54268 
1 984 56884 
1985 56194 
1986  48119 
1987  35308 
1988  46187 
1989  54790 
1990 50681 

* 

F E E  

* 
45002 
40147 
49612 
56284 
41259 
34464 
35473 
45052 
48213 

S E P  

50406 
50587 
46768 
49256 
54547 
42137 
40672 
50071 
55232 
50261 

MAR 

51059 
59485 
56966 
57167 
64435 
44083 
39327 
42903 
52981 
67172 

OCT 

46963 
47940 
44284 
56770 
57599 
40510 
38947 
46066 
51183 
53345 

8.6667 
9.5333 
9.0333 
7.7000 
9.5000 
8.4333 
7.9333 
7.1333 
7.4000 
7.7000 
7.1333 
7.6000 
6.9667 
6.1000 
5.2000 

APR 

48948 
50111 
42216 
46277 

51955 
56576 

32015 
36745 
43987 
47284 

NOV 

48800 
46763 
49946 
53631 
58703 
35565 
35417 
52980 
53265 
47484 

10.1290 
9.8065 

10.1613 
8.8387 

7.9677 
7.9355 
7.5161 
7.0645 
8.2581 
8.9677 
7.2581 

7.0000 
7.3548 

6.1935 
7.6774 

8.2667 
8.3333 
9.6667 
8.2667 
8.5000 
7.8000 
7.5667 
7.1667 
6.5667 

6.8667 
7.0333 

6.5667 
6.1667 

6.2667 
7.2000 

MAY JUN J U L  

51508 56222 59278 
54043 59146 55565 
49903 50945 45697 
60993 57552 57603 

47354 44798 48787 
64554 57661 61673 

35773 40674 40335 
44335 46448 40240 
52713 54104 51427 
60353 52463 55863 

D E E  

53434 
57567 
49540 
50608 

38091 
50568 

44551 
49405 
47168 
42204 

7.5806 
8.1935 
9.1290 
8.4516 
8.6774 
8.1935 
7.8065 
6.8387 
5.4194 
6.9032 
6.2903 
7.2581 
6.6129 
6.1613 
5.9677 



N S U  MONTHLY DATA 
TAELE A.3 Number of fa ta l  road crashes per day 

ROU 

1 
2 
3 
4 

6 
5 

8 
7 

10 
9 

1 1  
12 
13 
14 
15 

ROU 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

1 1  
12 
13 
14 
15 

YEAR J A N  

1982  3.74194 
1983 2.09677 
1984  2.54839 
1985 2.09677 
1986 2.48387 
1987 2.51613 
1988  2.51613 

1990 1.38710 

YEAR  JUL 

1976 2.67742 
1977 3.00000 
1978  3.64516 
1979 3.16129 
1980 
1981 

3.74194 
3.16129 

1982 
1983 

3.09677 
2.32258 

1984 
1985 2.41935 

1.77419 

1986 2.22581 
1987 2.41935 
1988 2.45161 

1990 
2.06452 
2.41935 

1989  1.54839 

1989 

TABLE A . 4  Ueather Index 

ROU 

2 
1 

3 
4 
5 
6 
7 
8 
9 

10 

ROU 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

YEAR  JAN 

?on? . 
1982 
1983 

9.2734 

1984 
5.3910 

14.9763 
1985 
1986 

3.9139 
10.9606 

1987 8.4692 
1988 9.0624 
1989 
1990 

18.8035 
11.2031 

~~~~~~ 

YEAR J U L  

4.9067 

1987  11.9606 

1989 8.4384 
1988 6.2037 

1990 10.2425 

FEB 

2.41379 
2.96429 
3.21429 
2.50000 
1.93103 
3.03571 
3.50000 
1.71429 

2.89286 
2.60714 
1.75000 
2.39286 
2.64286 
1.78571 

AUC 

3.19355 
2.90323 

3.61290 
2.90323 
3.58065 
2.77419 
3.09677 
2.35484 
2.58065 
2.35484 
2.06452 
1.83871 
2.16129 
1 .BO645 
1.90323 

2.34483 

FEE 

* 
7.2031 

10.8824 
17.8350 
10.2031 
10.8508 
8.8120 

11.1012 
10.8429 
17.6786 

AUC 

6.1098 
4.1249 

10.8902 
7.7812 

10.1643 

16.1249 
12.0703 

9.2425 

12.2741 
6.3831 

MAR 

2.74194 
3.19355 
3.67742 
3.61290 
2.80645 
2.54839 
2.67742 
2.58065 
2.77419 
2.06452 
2.87097 
2.38710 
2.77419 
2.32258 
2.48387 

S E P  

3.83333 
2.73333 
3.33333 
3.40000 

3.10000 
2.80000 

2.96667 
2.66667 
2.50000 
2.86667 
2.30000 
2.50000 
2.73333 
2.80000 
2.30000 

MAR 

5.1170 
16.3674 
9.1170 

10.2655 
11.6477 

11.4535 
7.1873 

13.0618 

17.8508 

S E P  

10.1249 
4.1564 

10.0940 
9.0000 

11.2734 
11.0388 

10.9139 
4.9921 

10.1003 
2.2741 

18.5459 

APR 

3.33333 
3.36667 
2.93333 
3.73333 
3.66667 
3.60000 
3.36667 
2.63333 
2.13333 
2.56667 
2.40000 
2.50000 
2.20000 
1.33333 
1.73333 

OCT 

3.35484 

3.03226 
2.93548 

3.35484 

3.06452 
2.35484 
2.22581 
2.77419 

3.09677 
2.83871 

3.09677 
2.16129 
1.70968 

3.48387 

3.48387 

APR 

6.9606 

12.3595 
8.9527 

15.7884 
9.1952 

7.8042 

17.1952 
7.1873 

20.7489 
15.2583 

OCT 

11.9060 
11.9369 
12.9527 
11.2188 
15.7884 
9.0237 

14.2734 
0.1019 

12.9606 
5.1564 

MAY JUN 

3.51613 3.00000 
2.93548 2.56667 
3.29032 3.90000 
3.29032 2.73333 
3.06452 3.26667 
2.93548 2.53333 
2.93548 2.93333 
2.19355 2.50000 
2.45161 2.56667 
2.64516 2.30000 
3.00000 2.23333 
1.96774 2.50000 
2.35484 2.30000 
2.09677 2.50000 
1.74194 1.96667 

NOV D E C  

2.86667 3.25806 
3.30000 3.35484 
3.06667 3.38710 
2.96667 3.51613 
3.83333 2.90323 
3.46667 3.38710 
3.00000 2.32258 
2.60000 2.77419 
2.83333 3.12903 
2.90000 3.51613 
2.33333 2.54839 
2.33333 2.32258 
2.36667 2.70968 
2.10000 2.41935 
1.66667 2.03226 

MAY JUN 

12.0703 7.9067 
3.9842 15.7568 

12.9297 10.2188 
10.0151 5.4456 
17.9757 7.3049 
11.0467 3.1643 
10.1406 10.0782 
14.0703 11.8981 

14.0309 12.0624 

NOV OEC 

17.8824 18.0388 

12.5616 17.6865 
6.9455 10.9842 

13.0230 12.9606 
5.0545 7.1406 



V I C T O R I A  MOUTHLY DATA 
TABLE A . 5  Umber of fa ta l  road crashes by day 

RW 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
13 
14 
15 

R O Y  

1 

3 
2 

4 

6 
5 

7 
8 
9 

10 
11 
12 
13 
14 
15 

lEAR  JAY 

1976  2.16129 
1977 1 .E0645 
1978 
1979 

2.00000 
1.93548 

1980  1.41935 
1981 1.77419 
1982  1.61290 
1983  1.03226 
1984  1 .PO323 
1985 1.45161 
1986 
1 987 

1  .Sa065 

1988 
1.67742 
1.41935 

1989  1.96774 
1990  1.41935 

YEAR  JUL 

1976  1  .a3871 
1977 
1978 

2.09677 
2.12903 

1979  2.12903 
1980 1.77419 
1981  1.83871 
1982  1.41935 
1983 2.00000 
1984 1.29032 
1985  1.58065 
1986  1.29032 
1987  1.74194 
1988  1.51613 
1989 1.64516 
1990  1.19355 

FEE 

2.31034 
2.32143 
1  .a9286 
1.71429 
1.75’310 
1.96429 
1 . a 2 8 6  
1.67857 
1.58621 
1.50000 
1.64286 
1.32143 

2.142B6 
1.92857 

1.32143 

AUG 

2.03226 
2.51613 
2.35484 
2.19355 
1.54839 
1.77419 
2.00000 
1 . s a 3 9  
1.41935 
1.45161 
1.64516 
1.48387 
1.54839 
1.70968 
1.06452 

MAR 

2.45161 
2.61290 
2.77419 
2.54839 
1  ,96774 
1  ,70968 
1.51613 
1  ,58065 
1.77419 
1.48387 
2.00000 
1  .77419 
2.06452 
2.35484 
1.67742 

S E P  

2.23333 
2.10000 
1.96667 
1.86667 

2.06667 
1.43333 

1.66667 
1 .a3333 
1.76667 
1.56667 
1.60000 
1.56667 

2.20000 
1.90000 

1.40000 

TABLE A.6 new Motor Vehicle Registrations 

ROU 

1 
2 
3 
4 
5 
6 

8 
7 

10 
9 

ROY 

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

YEAR JAW 

1981 
1982 
1983 

8862 
8486 

1984 
1985 

10032 
11311 

1987 
1986  12182 

10990 
1988  8456 
1989 8321 
1990  8440 

YEAR  JUL 

I 

1985  15475 
1986  12603 
1987  11078 . . .. 
1  988 
1989 

9237 

1990 
16435 
15627 

~~ 

FEE 

* 
9695 
9698 

11990 
16209 
11622 

9535 

10850 
9123 

12051 

AUG 

11960 
14584 
13236 
14053 
13751 
13076 

13655 
8640 

13875 
12055 

M A R  

11171 
15345 
13724 
14058 
17502 
10710 
11359 

13877 
9615 

19521 

S E P  

12073 
11984 
12301 
12650 
14039 
10682 
11  247 
1201  2 
17522 
12701 

APR MAY J U Y  

2.40000 2.06452 2.43333 
2.20000 1.90323 2.43333 
1,90000 1.93548 2.13333 
2.16667 1.41935 2.00000 
1.90000 1.45161 1.76667 
1.70000 2.03226 2.03333 
1.80000 1.96774 1.43333 
2.00000 1.74194 1.76667 
1.43333 1  .Sa065 1.43333 
1.86667 2.03226 1.53333 
1.90000 1.77419 1.50000 
1.56667 1 .SO645 1.83333 
1.666-57 2.22581 1.56667 
1.80000 1.96774 2.10000 
1.20000 1.64516 1.70000 

OCT WOV D E C  

2.16129 2.30000 2.74194 
1.87097 2.63333 2.93548 
2.32258 2.20000 1.90323 
2.19355 2.00000 2.54839 
1,64516 1.80000 1.51613 
1.96774 1.73333 1.54839 
1.90323 1.90000 1.90323 
1.32258 1.63333 1.54839 
1.41935 1.56667 1.74194 
1.67742 1.70000 1.87097 
1.54839 1.83333 1.58065 
1  .77419 1.66667 2.32258 
1.51613 1.26667 1.61290 

0.96774 1.23333 1.32258 
1.41935 1.13333 1.87097 

APR WAY J U U  

10385 11246 13443 
11152 12868 17281 
11426 13088 12254 
12253 15789 13425 
14391 16847 13588 
1LP82 11466 13407 . . . ~~ 

10007 11739 10890 
8726 10235 10713 

10474 11197 13761 
14863 15066 12378 

OCT  YOV  OEC 

10068 9053 13107 
14162 11765 14820 
11903 13395 13216 
15128 13193 11798 
15766 13236 11925 
11916 10135 8303 
11151 7343 12872 
11169 14441 12500 
12090 13306 13818 
13310 10543 8680 



TABLE A.7 Ueather Index 

R O Y  

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

ROU 

2 
1 

3 
4 
5 
6 

8 
7 

10 
9 

YEAR JAN 

1981 
1982 6.9769 

* 

1983 8.9461 
1984 
1985 

12.9538 

1986 
5.9769 

1987 
6.9461 
8.9692 

1988 5.9692 
1989 8.9461 
1990 3.0000 

YEAR JUL 

1987 1 1  .no00 
1988 
1989 

17.9461 
17.9231 

1990 18.9384 

FEE 

t 

4.9769 

6.9615 
1 .DO?? 

4.9615 
3.9769 
6.9692 
1 .W23 
5.9615 

13.9154 

AUG 

19.9384 
8.9538 

1 1.9692 
19.9538 
19.9923 
12.9923 
15.9461 
15.9154 
22.8846 
23.9308 

MAR 

9.9461 
9.9461 

9.9615 
9.9615 
9.9308 
3.9692 
9.9461 

12.9231 
9.9384 

6.9615 

SEP 

11.9846 
7.0000 

19.907? 
15.9308 
13.9384 
13.9461 
13.9384 
12.9615 
12.9461 
9.9538 

APR 

7.9461 

12.9461 
7.9769 

10.9538 
9.9461 

15.9000 
7.9461 

10.9308 
5.9923 

13.9231 

OCT 

10.9461 
9.9538 

11.9615 
10.9538 

20.9231 
11.9615 

16.8769 
9.9769 

17.8923 
15.9077 

HAY 

12.9308 
16.9538 

15.9231 

11.9461 
5.9692 

16.9384 
16.9154 
15.9615 
10.9692 
9.9692 

NOV 

12.9384 
4.9692 

14.9384 
9.9615 

15.9231 
8.9615 

12.9231 
14.9384 
9.9461 
9.9538 

JUN 

15.9846 

14.9461 
8.9846 

14.9308 
7.9384 

11.9384 
14.9692 
12.9538 
15.9461 
15.9308 

DEC 

7.9615 
5.9692 

13.90TT 
5.0154 

17.9231 
9.9692 

11.9461 
9.9538 

9.9615 
7.9846 



QUEENSLAND MONTHLY DATA 
TABLE A.8 N m r  of fatal  road crashes by day 

ROU 

1 
2 
3 
4 

6 
5 

8 
7 

10 
9 

1 1  
12 
13 
14 
15 

ROU 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

1 1  
12 
13 
14 
15 

YEAR JAN F E E  I U R  APR MAY JUN 

1976 0.77419 1.17241 1.25806 1.33333 1.35484 1.33333 
1977 1.22581 0.78571 1.61290 1.30000 1.61290 1.20000 
1978 1.32258 1.17857 1.29032 1.20000 1,09677 1.26667 
1979 0.96774 1.21429 1.22581 1.63333 1.45161 1.76667 

1 988 
1989 
1990 

YEAR 

1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

1 .ooooo 
1.12903 
1.19355 
1.06452 
0.90323 
1.12903 

0.90323 
1.16129 

1.29032 
0.80645 
0.61290 

JUL 

1.12903 
1.58065 

1.58065 
1.38710 

1.38710 
1.54839 

1.54839 
0.83871 
0.83871 
1 .ooooo 
1.25806 
1.22581 
1.29032 

0.96774 
1.12903 

TABLE A.9 Weather Index 

ROU 

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

ROU 

2 
1 

3 
4 

6 
5 

7 
8 

10 
9 

YEAR 

1981 
1982 
1983 
1984 
1985 
1 986 
1987 
1 988 
1989 
1590 

YEAR 

1981 
1982 
1983 
1 984 
1985 
1986 
1987 
1988 
1989 
1990 

J A N  . 
14.277 
9.049 

14.097 
9.111 
8.821 

17.801 
12.311 
9.057 

11.898 

JUL 

8.359 
4.000 

1 1  .878 
9.752 

10.946 
6.849 

7.786 
8.442 
7.088 
4.111 

0.93103 
1.17857 
1.28571 
1.03571 
0.79310 
1.25000 
1.42857 
1.03571 

0.75000 
1.35714 

0.85714 

AUG 

1.16129 
1.45161 
1.83871 

1.35484 
1.74194 

1.35484 
1.48387 
1.67742 
1.51613 
1.06452 
1.06452 
1.35484 

0.90323 
1.67742 

1.12903 

FEE . 
15.379 
12.635 
10.815 
16.296 
10.097 
15.490 

12.199 
7.744 

13.490 

AUG 

13.330 
2.869 

8.155 
5.684 

10.849 
5.014 

10.151 
9.767 

4.738 
4.621 

1.38710 
1.51613 
1.19355 
1 .ooooo 
1.25806 
1 .LE387 
1.29032 
1.22581 
1.06452 
1.06452 
0.90323 

SEP 

1.60000 
1.36667 
1.80000 
1.63333 
1.16667 
1.76667 
1.50000 
1.46667 
1.66667 
1.40000 
1.23333 
1.23333 
1.46667 
1.10000 
1.23333 

MAR 

7.602 
16.384 
13.296 

18.399 
6.510 

10.171 
9.830 

15.641 
15.325 
16.296 

SEP 

4.684 
9.567 
4.117 
8.476 
7.587 
5.077 

6.864 
2.519 

4.732 
3.505 

1.36667 
1.23333 
1.53333 
1 .ooooo 
1.43333 
1.10000 
1.33333 
0.76667 

0.73333 
1.06667 

0.86667 

OCT 

1.64516 
1.58065 
1 .PO323 
1.45161 
1.51613 
1.51613 
1.45161 
1.19355 
1.48387 

0.90323 
1.31613 

1.19355 
1.38710 

0.96774 
1.16129 

1.58065 
1.06452 
1.61290 
0.96774 
1.12903 
1.22581 
0.93548 
0.90323 

0.96774 
1.41935 

0.77419 

NOV 

1.63333 
1.40000 
1.46667 
1.63333 
1.63333 
1.53333 
1.63333 
1.16667 
1.30000 
1.06667 
1.03333 
1.33333 
1.63333 
1.46667 
0.90000 

~~ ~ 

APR 

10.384 
11.772 
11.559 
8.462 
9.160 

14.875 
7.097 

20.616 
16.399 
16.986 

OCT 

10.160 
5.601 

15.305 
9.767 

12.330 
9.592 

11.339 
3.291 
7.567 
5.704 

MAr 

7.641 
10.282 
18.971 
10.243 
15.034 
13.020 
14.854 

20.020 
4.613 

1 1 . 6 4 1  

N O V  

15.932 
8.140 

14.951 
11.023 
11.820 
7.995 
8.408 
8.393 

13.869 
7.616 

1.90000 
1 .a3333 
1.56667 

0.93333 
1.36667 

1.40000 
1.16667 
1.13333 

~ ~~~ 

1 .OW7 
0.90000 
1.16667 

OEC 

1 .PO323 
1.74194 
1.70968 
1.58065 
1.25806 
1.25806 
1.16129 
1.58065 
1.41935 
1.22581 
1.06452 

1.16129 
1.35484 
1.12903 

0.83871 

JUN 

2.951 

11.470 
2.131 

11.097 
3.136 

13.863 
4.550 

8.655 
8.835 
9.932 

DEC 

14.533 
15.504 
10.481 
10.257 
10.801 
13.373 
11.057 
18.165 
10.655 . 



AUSTRALIA OUARTERLY DATA 

TABLE A . 1 0 .  Number of fata l  road crashes  standardised by 
estimated  population (‘000) 

ROW YEAR MARCH 0. J U N E  0. SEPT 0. O E C  0. 

2  1982 
1 1981 * 0.048 0.050 0.051 

0.046 0.048 0.047 0.047 
3  1983  0.036 0.040 0.043 0.041 
4  1984  0.039  0.038  0.039  0.044 
5  1985  0.039  0.041  0.039  0.047 
6 1986 
7 1987 

0.041  0.041  0.037  0.041 

9  1989 
0.039  0.036  0.041  0.039 
0.036  0.034  0.036  0.036 

8 1988 
0.036  0.036  0.038  0.042 

10 1990  0.029  0.030  0.032 

TABLE A . l l .  Percentage change in  average  retail  price of 
petrol over e ight   capi ta l   c i t ies  

ROU YEAR MARCH 0 .  JUNE 0 .  SEPT 0 .  O E C  0 .  

4  1984 
5  1985 
6  1986 
7 1987 
a 19a8 
9  1989 

10  1990 

* 
0.002 
0.037 

-0.002 
0.020 
0.015 
0.018 

0.101 
0.020 

-0.030 
0.014 

-0.107 
0.085 

-0.017 

-0.041 
0.104 
0.053 
0.010 
0.034 

-0.001 
0.065 

0.025 
0.021 
0.047 
0.002 

-0.031 
0.077 
0.020 

-0.002 0.083 0.014 0.032 
0.014 -0.046 -0.015 -0.019 

0.062 -0.004 0.045 0.206 

TABLE A.12. Automotive fuel sales (megalitres) 

ROW YEAR MARCH 0 .  JUNE 0 .  SEPT 0 .  OEC 0 .  

10 
9 

1981 
1982 
1983 
1984 
1985 

1987 
1988 
1989 

1986 

1990 

* 
3699134 
3607371 
3802535 

3815766 

4140660 

4261324 

3 a m a 1  

3a79669 

t 

3716171 
3a61840 
375111a 
3867537 
3923407 
4064484 
4005934 
4097406 
4294497 
4303956 

3a23972 
3720533 
3784060 
3801619 . 
4012536 
4097943 
4217293 
4308409 
4392969 

3839872 
3904406 
3882418 
4014809 
4100403 
4110137 

1 . 
4388843 
4165786 

TABLE A.13. Neu motor vehicle  registrations  stardardised 
by estimated population ( , O O O )  

ROU YEAR MARCH 0 .  JUNE 0 .  SEPT 0 .  OEC 0 .  

2  1982 
1 1981 

0,010  0.011  0.011  0.010 
* 0,010  0.011  0.010 

0.009 0.009 0.010 0.009 
0,010 0.011 0.010 0.010 
0,011 0.011 0.011 0.010 
0,008 0.009 0.009 0.007 
0.007 0.007 0.007 0.007 

0.008 0.009  0.010  0.009 

3 1983 
4  1984 
5 w a s  
6 1986 
7 1987 
a 1988 
9  1989 

0.007 0.008 o.ooa 0.009 

10 1990  0.009  0.009  0.009 



VICTORIA PUARlERLY  DATA 

TABLE A.14. Nurber of   fatal  road crashes  standardised by 
estimated  population ( , O O O )  

ROU YEAR MARCH a .  JUNE a .  S E P T  a .  DEC '2. 

10 
9 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

t 

0.036 
0.032 
0.039 
0.032 
0.038 
0.034 
0.038 
0.045 
0.030 

0.044 
0.040 
0.041 
0.033 
0.040 
0.038 
0.038 
0.039 
0.041 
0.032 

0.044 
0.039 
0.041 
0,034 
0.034 
0.033 
0.035 
0.036 
0.039 
0.025 

0.041 
0.044 
0.034 
0.035 
0.039 
0.036 
0.042 
0.031 
0.037 

t 

TABLE A . 1 5 .  N e w  motor vehicle  registrations  standardised 
by estimated  population (1000)  

ROU YEAR MARCH a .  JUNE 0. S E P T  0. OEC 0 .  

1 1981 
2 1982 0.009  0.010 0.010 0.010 

* 0.009 0.011 0.008 

3 1983 
4 1984 

0.008 0.009  0.009 0.009 

5  1985 
0.009 0.010  0.010 0.010 

6 1986 
0.011 0.011  0.010  0.010 

7 1987 
0.008  0.010 0.009 0.007 

8 1988 
0.008 0.007  0.007  0.007 

9 1989 
0.006 0.008 0.008 0.009 
0.008 0,008 0.011 0.009 

10 1990  0.009 0.010 0.009 1 

TABLE A.16. Percentage change i n  average  retail  price of 
petrol  price over e i g h t  capital c i t les  

ROY YEAR  UARCH 0 .  JUNE 0 .  S E P T  P .  DEC 0. 

2 1982 
1 1981 

-0,075 0.093  0.137  -0.036 
0.092 -0.087  0.040 

3 1983  0.052  -0.052  0.118  0.043 
4 1984 
5 1985 

-0.017  0.042 0.002  -0.010 

6  1986 
0.023  0.126 0.029 -0.079 

7 1987 
0.079 -0.124 0.055 0.066 
0.033 -0.046 -0.007 0.063 

8 1988  -0.037 -0,049 -0.015 -0.031 
9 1989  0.032 0.072 0.005 0.043 

10 1990 0.066 0.000 0.053 0.242 

TABLE A.17. Automotive fuel Sales  (megalitres) 

RW YEAR M A R C H  a .  J U N E  a .  S E P T  0. O E C  a.  

1 1981 
2 1982 

* 1034901  1055658 1094359 

3 1983 
1043062 1079788  1059513  1097663 
1014437  1073603 1054540  1079659 

4 1984 1071671 1081560 1056898 1129183 
5 1985 1080998 1106391 * 1159275 . 
6  1986  1666838 1136422  1099522  1171431 
7 1987  1080793  1130201  1141658 
8 1988  1152917  1167708 1146720 

10 1990 
9 1989 

1190300  1197615 1191160  1157554 
1221678 119318G 1236323 

. . 



TABLE A.18.  Automotive diesel   o i l   sales   (megalitres)  

ROU YEAR MARCH a .  JUNE a .  SEPT a .  D E C  a .  

1 
2 
3 
& 
5 
6 
7 

0 
9 

10 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

1990 
1989 

291014 343115 320000 297579 
328063 307713 303089 

281661  351201 319165 325362 
317400  357860  320083  347083 
326051 370044 * 349882 
315554  377508 347841 359668 
345781 383533  360290 " 
370726  395168  384360 

429172 439017 399832 372875 
* 446903 405100 443322 

1 
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APPENDIX B 

Sources of Explanatory  Variables 

ANP 199lIFORS 
06.11.91 



Sources  of Data and   Def in i t ions   o f   Der ived   Var iab les  

Response Variables 

1. FATACC Number of F a t a l  Accidents 

S O U R C E : ( i )  ABS P u b l i c a t i o n  No. 9401.0 

F a t a l i t i e s , A u s t r a l i a  ' 
'Road Tra f f i c   Acc iden t s   Invo lv ing  

Monthly; first i s s u e   c o n t a i n i n g   T a b l e  2 - F a t a l  
Road T r a f f i c   A c c i d e n t s  - J u l y  1976; l a s t  issue 
December 1990 .  

(ii) FORS P u b l i c a t i o n  
'Road Crash S t a t i s t i c s , A u s t r a l i a '  
Monthly; f i r s t  i s sue  January  1991 .  

DESCRIPTION: The  number of f a t a l  r o a d   t r a f f i c   a c c i d e n t s   i n  
each S ta t e  and T e r r i t o r y .  

2 .  FATALS Number of Road T r a f f i c   A c c i d e n t   F a t a l i t i e s  

SOURCE:(i) ABS P u b l i c a t i o n  No. 9 4 0 1 . 0  
Monthly; f i r s t   i s s u e  January 1970;  l a s t  issue 
December 1 9 9 0 .  

(ii) FORS P u b l i c a t i o n  

Monthly; first issue January  1991 .  
'Road Crash S ta t i s t i c s ,Aus t r a l i a '  

DESCRIPTION: The  number o f   p e r s o n s   k i l l e d  i n  road t r a f f i c  
a c c i d e n t s .  

Explanatory V a r i a b l e s  

1. CPI  Consumer Price Index   fo r  a l l  Groups: s i x  s t a t e  
c a p i t a l  c i t i es  and  Canberra. 

SOURCE:  ABS p u b l i c a t i o n  No. 6401.0 

Quar t e r ly :  first issue June 1 9 6 0 .  
'Consumer P r i ce   Index '  

2 .  CPITRS Consumer Price I n d e x   f o r   T r a n s p o r t a t i o n  Group: 
weighted average of s i x  s t a t e  cap i ta l  c i t i es .  

SOURCE:  ABS p u b l i c a t i o n  No. 6 4 0 1 . 0  
D a t a   a v a i l a b l e   f o r   b a s e   y e a r  1980-81 from 
March q u a r t e r  1982.  

3 .  GDP Gross Domestic Product 

SOURCE: ABS P u b l i c a t i o n  No. 5206.0 

and  Expenditure '  
' A u s t r a l i a n   N a t i o n a l  Accounts:  National  Income 

December Quarter 1990;  Table 4 2  



DESCRIPTION: Gross  Domestic  Product  for Austral ia  a t  c u r r e n t  

p r i c e s   ( $ m i l l i o n ) .   D a t a   c o l l e c t e d  from September 
q u a r t e r  1 9 7 5 .  

4 .  NEWMVR R e g i s t r a t i o n s   o f  N e w  Motor  Vehicles 

SOURCE: ABS P u b l i c a t i o n  No. 9 3 0 1 . 0  
‘Reg i s t r a t ions   o f  New Motor  Vehicles,  Australia,  

Month ly(Aust ra1 ia) ; f i r s t  i s s u e  September 1 9 5 3 .  
Prel iminary’  

t o  May 1979  then  monthly from June 1 9 7 9 .  
S t a t e   a n d   T e r r i t o r y   d a t a  available q u a r t e r l y  

Data   co l lec ted   f rom March q u a r t e r  1 9 7 5 .  

DESCRIPTION: R e g i s t r a t i o n s  i n  each State and   Te r r i t o ry   o f  new 
motor   vehic les .  

5 .  PETROL Average   Re ta i l  Price o f   P e t r o l   ( s u p e r   g r a d e )  

SOURCE: ABS P u b l i c a t i o n  No. 6 4 0 3 . 0  
‘Average Retail Prices of   Se lec ted  Items, Eight  

Q u a r t e r l y ;  first issue March 1 9 6 2 .  
Average p e t r o l   p r i c e s  were p u b l i s h e d   f o r   t h e  first 
time i n  t h e  December q u a r t e r  1980 issue. 

C a p i t a l  C i t i e s ‘  

DESCRIPTION: Average r e t a i l   p r i c e s   o f   s u p e r   g r a d e   p e t r o l   f o r  
each   o f   t he  s i x  S t a t e   c a p i t a l s ,   C a n b e r r a  and 
Darwin. P r i c e s  are c o l l e c t e d  a t  t h e   m i d d l e   o f   t h e  
f i r s t  month of t h e   q u a r t e r .  

6 .  POPN Res ident   Popula t ion   Es t imates  

SOURCE: ABS P u b l i c a t i o n  No. 3 1 0 1 . 0  

Q u a r t e r l y :   f i r s t   i s s u e  June 1 9 7 9 .  
’Aus t ra l ian   Demographic   S ta t i s t ics ’  

Da ta   co l l ec t ed   f rom  June   qua r t e r  1 9 7 1 .  

DESCRIPTION: L a t e s t   q u a r t e r l y   p o p u l a t i o n   e s t i m a t e s ( ‘ 0 0 0 )   f o r  
A u s t r a l i a ,  States  and t e r r i t o r i e s .  

POPNAGE Annual Est imated  Resident   Populat ion by A g e  Groups, 
S t a t e s   a n d   T e r r i t o r i e s .  

POPNFEM} Annual   Est imated  Resident   Populat ion by age  and 
POPNMAL} sex g r o u p s , S t a t e s   a n d   T e r r i t o r i e s .  

SOURCE: ABS P u b l i c a t i o n  No: 3 2 0 1 . 0  
‘Est imated  Resident   Populat ion by Sex and Age: 

Annual; f i r s t  i s sue  3 0  June 1 9 6 8 .  
S t a t e s   a n d   T e r r i t o r i e s   o f   A u s t r a l i a ‘  

7 .  RDAYS Number of  Rain Days 

SOURCE: Aus t ra l ian  Bureau  of  Meteorology 
‘Report  of  Monthly  and  Yearly R a i n f a l l  by N.C.C. ‘  
f o r   c h o s e n   s t a t i o n s   w i t h i n   e a c h  State  and 



T e r r i t o r y .  Data was co l l ec t ed   f rom 1970 onwards. 

DESCRIPTION:  Number of  days f o r  which r a i n f a l l  is recorded a t  
a chosen s t a t i o n  w i t h i n  a given month.  The 17  
s t a t i o n s  chosen were: 

ACT: Canberra 
NSW: Sydney, Dubbo, Newcastle 

QLD: B r i s b a n e ,  C a i r n s ,  Mackay 
SA : Adelaide,  P o r t  Augusta 
WA : Perth,   Albany 
V I C :  Melbourne,  Mildura 
N T  : Darwin, A l i c e  Spr ings  
TAS: Hobart,  Launceston 

8 .  SFUEL Sales of Automotive Gasoline by State Marketing  Area 

SDIESEL S a l e s   o f   I n l a n d  Automotive Diesel O i l  by S t a t e  

SLPG Sales  of LPG for   Automotive U s e  by S ta t e  Marketing 

( k i l o l i t r e s )  

Marketing Area (kiloli tres) 

Area ( k i l o l i t r e s )  

SOURCE: ( i )  Department   of   Pr imary  Industr ies   and  Energy 
B u l l e t i n  
'Major   Energy  Stat is t ics ' : ISSN 0727-260X 
Table  3B. 
Monthly B u l l e t i n s  Avai lable   f rom March 1 9 8 1  
t o  May 1989. 

(ii) Austral ian  Bureau  of   Agricul tural   and  Resource 
Economics (ABARE) B u l l e t i n  
'Quar t e r ly  Mineral S t a t i s t i c s '  
F i r s t   i s s u e   J u n e   q u a r t e r   1 9 8 9 .  
Monthly  data  from June  1989 w a s  provided by 
ABARE on r e q u e s t .  

DESCRIPTION: Sa les   o f   pe t ro leum  products  by S t a t e s   a n d  
Ter r i to r ies  ( k i l o l i t r e s )  . 

9 .  UNEMP Unemployment Rate 

SOURCE: ABS P u b l i c a t i o n  No: 6203.0 
'The  Labour  Force,   Australia '  
Monthly;   data   avai lable   monthly f o r  s t a t e s  from 
from 1978.  

DESCRIPTION: Unemployment Rate (expressed  a s  a p e r c e n t a g e )   f o r  
t h e   c i v i l i a n   p o p u l a t i o n   a g e d  15 and  over f o r  
A u s t r a l i a ,  States and T e r r i t o r i e s .  



ADDITIONAL VARIABLES INVESTIGATED 

D a t a   f o r   a d d i t i o n a l   v a r i a b l e s   t h a t  were s o u g h t   b u t   n o t   r e a d i l y  
a v a i l a b l e   i n  t he  f o r m   r e q u i r e d   c o n s i s t s   o f :  

down i n t o   r e g i o n s   w i t h i n  states. 
1. The number of f a t a l  road   c rashes   and  f a t a l i t i e s  broken 

ABS p u b l i c a t i o n s   a v a i l a b l e   f o r   r e g i o n s   w i t h i n   S t a t e s   a r e  as 
fo l lows  : 

(i) VICTORIA 
9406 .2  'Road Traf f ic  Accidents   Involv ing   Casua l t ies ,  V I C ' ;  
annual .  

(ii) QUEENSLAND 
9405 .3  'Road Tra f f i c  Accidents ,  QLD'; q u a r t e r l y  
9406.3  'Road Tra f f i c  Accidents ,  QLD'; annual 

(iii) WESTERN AUSTRALIA 
9405 .5  'Road Traf f ic  Acc iden t s   i nvo lv ing   Casua l t i e s  

Reported t o  the Pol ice   Department ,  WA'; 

9 4 0 6 . 5  'Road T r a f f i c   A c c i d e n t s   I n v o l v i n g   C a s u a l t i e s  
q u a r t e r l y  

Reported t o   t h e   P o l i c e   D e p a r t m e n t ,  WA'; annual  

( i v )  TASMANIA 
9405 .6  'Road Traf f ic  Accidents   Involv ing   Casua l t ies ,  

9 4 0 6 . 6  'Road T r a f f i c   A c c i d e n t s   I n v o l v i n g   C a s u a l t i e s ,  
TAS'; q u a r t e r l y  

TAS'; annual  

whi le  monthly  data  is not   publ i shed   for   any   of  the  States o r  
Q u a r t e r l y  data i s  provided  for  Queensland,  Tasmania  and W.A. 

T e r r i t o r i e s .  

2 .  The  number  of d r i v e r   l i c e n s e s   i n   f o r c e .  

T h i s   d a t a   c o u l d   n o t  be r ead i ly   ob ta ined   fo r   any   o f  t h e  states 
excep t   Wes te rn   Aus t r a l i a   fo r  which q u a r t e r l y   d a t a  is publ i shed  
i n  the pub l i ca t ion   no .  9 4 0 6 . 5 .  

3 .  The  number o f   v e h i c l e   k i l o m e t r e s   t r a v e l l e d   ( v k t ) .  

T h i s  da t a   cou ld   on ly  be l o c a t e d   i n   t h e  ABS P u b l i c a t i o n  

9208.0  'Survey  of  Motor Vehicle U s e ,  A u s t r a l i a '  
t h ree -yea r ly ;  first issue  September  1971;  
l a s t   i s s u e   S e p t e m b e r  1988. 

The r e l e v a n t   i n f o r m a t i o n  i s  c o n t a i n e d   i n   T a b l e  15 
' T o t a l   k i l o m e t r e s   t r a v e l l e d  by type   o f   veh ic l e :  
S t a t e I T e r r i t o r y   o f   r e g i s t r a t i o n   t w e l v e   m o n t h s   e n d e d  3 0  
September 1988' .  
However a s   o n l y  6 d a t a   v a l u e s  are a v a i l a b l e   f o r   v k t   o v e r  2 0  
y e a r s  t h i s  v a r i a b l e   c o u l d   n o t  be inc luded   i n   ou r   mode l s  
conta in ing   month ly   and   quar te r ly   da ta .  I t  is suggested t h a t  



t h e   r e q u i r e d   d a t a  be co l lec ted   month ly  by some means o t h e r  
t han   su rvey ,  i f  possible, i n   t h e  future. 

4 .  The level of  alcohol  consumption. 

A s  a l c o h o l  may be a c a u s e   o f   f a t a l   r o a d  crashes, d a t a  on 
alcohol  consumption was sought .  
Annual   da ta   for   a lcohol   consumpt ion   a re  shown i n   t h e  ABS 
pub l i ca t ion   no .  4 3 1 5 . 0  'Apparent  consumption  of selected 
f o o d s t u f f s  , Australia, Pre1iminary ' ;annual ;  first i s s u e  1 9 7 8 -  
7 9 .  I n  t h e  l a t e s t  1 9 8 9 - 9 0  i s s u e ,  a time series p l o t  of 
'Apparent   per   capi ta   consumption of selected beverages 1 9 8 4 - 8 5  
t o  1 9 8 9 - 9 0 ,  Aust ra l ia ,   year   ended  3 0  June'  on  page 3 ,  shows 
tha t   the   consumpt ion   of   wine   has   been   s teady  whi le  consumption 
of low a l c o h o l  beer h a s   i n c r e a s e d   s i n c e  1 9 8 8  and decreased 

a p p e a r   t o   h a v e   r e m a i n e d   f a i r l y   c o n s t a n t .  
s teadi ly  f o r   o t h e r  beer. The overal l   consumption  of  beer would 

The annua l   da t a  was n o t   a p p r o p r i a t e   f o r   i n c l u s i o n   i n   o u r  
models. 

There is an ABS p u b l i c a t i o n   d u e   f o r   r e l e a s e   i n  1 9 9 1  which 

p a t t e r n s  of alcohol  consumption  and selected demographic  and 
c o n t a i n s   n a t i o n a l   s t a t i s t i c s   d e s c r i b i n g  t h e  l e v e l s   a n d  

socio-economic  character is ics   of   consumers .  

4 3 8 1 . 0  'National  Health  Survey:  Alcohol  Consumption'  

VARIABLES DERIVED FROM R A W  DATA COLLECTED 

For   month ly   da ta   var iab les  were s t a n d a r d i s e d  as fo l lows :  

1.  STDACC 
(i) The  number of monthly f a t a l   a c c i d e n t s  was s t a n d a r d i s e d  by 

the number  of d a y s   i n  t h e  month.  This  was  done t o  
e l i m i n a t e   t h e  b i a s   d u e   t o   t h e   l e n g t h   o f   t h e  month. 

(ii) The v a r i a b l e  was then   s t anda rd i sed  by popu la t ion  s i z e  t o  
e l i m i n a t e   t h e   e f f e c t  of i n c r e a s i n g   p o p u l a t i o n  s i z e  o-?er 

2 .  

3 .  

4 .  

time. 

SO I STDACC = (STANDARDISED MONTHLY FATACC ) / P O P N  

%CHGPET 
T h i s   v a r i a b l e  is a measure of t he   pe rcen tage   change   i n  
p e t r o l  price from  one month t o   t h e   n e x t .  

m 
NEWMVR is s t a n d a r d i s e d  by d i v i d i n g  by p o p u l a t i o n   s i z e .  

S O ,  MVR = NEWMVRIPOPN 

WEATHER I N D E X  ( W I  I 

r a i n d a y s   f o r   c h o s e n  c e n t r e s   w i t h i n  a S t a t e   o r  T e r r i t o r y  by 
The weather   index is c a l c u l a t e d  by weight ing  t h e  number of 

t h e i r   r e s p e c t i v e   p o p u l a t i o n  s i z e  (Maunder, 1 9 7 4 )  . Popula t ion  
sizes f o r  t h e   c e n t r e s   c h o s e n  were taken   f rom  the  ABS 1 9 8 6  
CENSUS 'Persons  and  Dwellings i n  l e g a l   l o c a l  Government  Areas, 



S . L . A . ' s  and  Urban  Centres/   Rural   Local i t ies ' .  
Publ icat ion  numbers  2 4 6 2 . 0  - 2 4 6 9 . 0 .  

The State  W I  is given  by 

RDs = 2 (RDc X PC) 
its 

t e  5 
2 PC 

where c denotes   u rban  centre i n  s ta te  

PC deno tes  popu la t ion  s i z e  of centre 
s denotes  s t a t e  or  t e r r i t o r y  

RDc deno tes  number of r a i n   d a y s   i n   c e n t r e  



APPENDIX C 

Computer Code for  Predictive 
Models 

ANP 19911FORS 
06.11.91 



Program 1 
(Table 8.7a) 

AUSTRALIA  DATA 
Regress  standardised  accidents on FUEL  SALES,  
trend and quarters where fuel sales are produced i n  the 
transfer  function model by a S A R I M A ( O , 1 , 1 , 1 , 0 , 0 , 4 )  d e l .  

U N I T S [   N V A L U E S = 3 9 1  
OPEN 'AUSPRT.DAT'; CHANNEL=2 
O P E N   ' F O R F L 9 1 , D A T ' ;   C H A N N E L 1 3  

0 1 , 0 2 , 0 3 , 0 4  
READ1  CHANNEL-21 POPN.STDACC,UNEMP,NELMVR,CHGPET,FUEL,DIESEL,TREND,\  

VARIATE  lNVALUES=41  FF 
R E M  lCHANNEL=3;  SETNVALUES=YI I N T R E N D , l N ~ l , I N P 2 , I N r a 3 , I N Q 4 , l u F u E L  

VARIATE DIFFACC,RESl,RES2,RES3,RES4,RES5 

GENERATE  4 ,QUART 
FACTOR  [NVALUES=39; L E V E L S = ~ ( 2 , 3 , 1 . 1 ) 1   W A R T  

CALC DIFFACC=DIFFERENCE(STDACC) 
TREATMENT  QUART 
ANOVA I P R I N T = A I   D I F F A C C  
AKEEP  WART;  VARIANCEq7VAR 
CALC  DSSS=RVAR*33 
P R I N T  DSSS 

CALC  N=NOBS(STDACC) 
CALC  TSS=VAR(STDACC) . (N- l )  

Using a S A R l M A ( l , O , l , l , l , O , O . 4 )  model for errors 

TSM E R H 2 :   O R D E R S = ! ( O , l , l )  

ISM FU-ARlM; O R D E R S = ! ( O , 1 , 1 , 1 , 0 , 0 , 4 )  
ESTlMATElPRINT=ESTlMATESI FUEL; TSM=FU-ARIM 
FORECASTlMAXLEAD-4;  FORECAST=FF] 

TSM [madel=tl FU-TSM; ORDERS=!(1,D,1,1,1,0,0,4) 

ESTIIVITElPRINT=ESTIHATES;constant=f; MAXCYCLE=501  STDACC:  TSH-ERM2 
T R A N S F E R   T R E N D , Q 2 , 0 3 , 0 4 , F U E L ;  transfer=*,*,*;,* 

FORECAST  [HAXLEAD=41 I N T R E N D , I N Q 2 , I N Q 3 , I N Q 4 , F F  

TKEEP  RESIDUALS=RESZ 
CALC  NZ=NOES(RESZ) 
C A L C   E S S Z = V A R ( R E S 2 ) ' ( N 2 - 1 )  
P R I N T   E S S 2  

C A L C   R 2 2 = ( T S S - E S S Z ) / T S S  

P R I N T   R 2 2 , R Z S Z  
C A L C   R Z S Z = ( D S S S - E S S 2 ) / D S S S  

STOP 



Program 2 
(Section 8.7) 

Regress monthly standardised  accidents on FUEL,  LAG FUEL,LAG(LAGFUEL),  
AUSTRALIA  DATA 

belou. Models f i t t e d   t o  time s e r i e s  from March 1 9 8 1  t o  December 
trend and months, f i t t i n g   s t r u c t u r a l  models 1 t o  5 as defined 

December 1992. Fuel sales  predicted from a i r l i n e  model. 
1 9 9 0  and fa tal   accidents   predicted  for  months January 1 9 9 1  t o  

PROGRAM MLAG2.GEN 

U N I T S 1   N V A L U E S = 1 1 8 1  
OPEN  'MTHFL.DAT';  CHANNEL.2 
OPEN  'MV.DAT' ; CHANNEL13 
READ1  CHANNEL=ZI S T D A C C , F U E L , L A G F U E L , T R E N D , \  
Ml,M2,M3,M4,M5,M6,17,M8,M9,MlO,Mll,Ml2 
READ [ C H A N N E L J ;   S E T N V A L U E S = Y l  I N T R E N D , I N M l , l N M 2 . I N M 3 , I N M 4 , l N M S , \  

VARIATE DIFFACC,RESl,RES2,RES3,RES4,RESS,LLFUEL 
INM6,INM7,INM8,INM9,lNMlO,lNMll,lNMl2 

VARIATE [NVALUES=241 F F , L A G F F , M V F F , L L A G F F , L L M V F F  
VARIATE [NVALUES-24;  V A L U E S = 1 3 8 6 1 7 5 , 2 3 ( 1 ) ]  REP 
VARIATE [NVALUES=24;  VALUES=l406254.1386475,22(1)] LREP 

GENERATE  12,MONTH 
FACTOR [ N V A L U E S = l l B ;  LEVELS=!(3,4,5,6,7,8,9,10,11,12,1,2)1 MONTH 

CALC  LLFUEL=SHIFT(LAGFUEL; l )  

Remove trend by differencing and seasons by ANOVA 
DSS = deseasonalised sms of squares 

CALC D I F F A C C = D I F F E R E N C E ( S T D A C C )  
TREATMENT MONTH 
ANOVA [ P R I N T = A l   D I F F A C C  
AKEEP MONTH; VARIANCE=RVAR 
CALC  DSSS=RVAR*lOS 
P R I N T  DSSS 

CALC  N=NDBS(STDACC) 
CALC  TSS=YAR(STDACC)' (N- l )  

Predic t ing   fue l   sa les   fa r  1 9 9 1  and 1 9 9 2  f rm past  data,  
using a S A R l M A ( O , l , l , O , 1 , 1 , 1 2 )  model for   e r rors .  

TSM FU-ARlM; ORDERS=!(0,1,1,0,1,1,12)  
ESTIMATE  [PRINT=ESTIMATESI  FUEL;  TSM=FU-ARIW 

C A L C   M V F F = S H I F T ( F F ; l )  
FORECAST  [MAXLEAD=24;  FORECAST-FFI 

CALC LAGFF=MVREPLACE(MVFF;REP) 
C A L C   L L M V F F = S H I F T ( F F ; 2 )  
CALC LLAGFF=MVREPLACE(LLMVFF;LREP) 
P R I N T   L A G F F , L L A C F F  

Using an M A ( 1 )  model for   e r rors  

TSM ERM1; O R D E R S = ! ( O , O , l )  
TRANSFER T R E N O , M 2 , M 3 , M 4 , ~ 5 , M 6 , M 7 , M ~ , M 9 , M l O , M l l , ~ l 2 , F U E L , L A G F U E L , L L F U E L  
ESTIMATE  [PRINT  =ESTIMATES1  STDACC;  lSM=ERMl 
FORECAST  [MAXLEAD=241 I N T R E N D , I N M 2 , I N M 3 , 1 N M 4 , 1 N M 5 , \  
I N M 6 , 1 N M 7 , 1 N M 8 , 1 N M 9 , I N M l O , l N M l l , l N M l 2 , F F , L A G F F , L L A G F F  

T K E E P   R E S I D = R E S l  
C A L C   N l = N O B S ( R E S l )  
CALC E S S l ~ V A R ( R E S l ) * ( N l - l )  
P R I N T   E S S l  
C A L C   R Z l = ( T S S - E S S l ) / T S S  
CALC R 2 S l = ( D S S S - E S S l ) I O S S S  



P R I N T   R 2 1 , R Z S l  

U s i n g  an I M A ( D . l . 1 )  model fo r   e r ro r s  

TSM ERMZ; O R D E R S = ! ( D , l , l )  
T R A N S F E R  l R E N D , M Z , M 3 , M 4 , M 5 , M 6 , M 7 , M 8 , M ~ , M l D , M l l , M l 2 , F U E L , L A G F U E L , L L F U E L  
ESTIMATEIPRINT=ESllMATES; CONSTANTrFI  STDACC;  TSM=ERMZ 
F O R E C A S T   I M A X L E M = Z 4 1  INTREND.INM2.INn3.INM4,~uM5,\ 

T K E E P   R E S I D = R E S 2  
I N M 6 , I U M 7 , I N M B , I N M 9 , l N M l D , l N M l l , l N M l 2 , F F , L A G F F , L L A G F F  

C A L C   N Z = N O B S ( R E S Z )  

P R I N l   E S S 2  
C A L C   E S S Z = W A R ( R E S Z ) ' ( Y Z - l )  

C A L C   R Z Z = ( T S S - E S S Z ) / T S S  
C A L C   R Z S Z = ( D S S S - E S S Z ) / O S S S  
P R I N T  R 2 2 , R Z S Z  

Using an I M A ( D , 2 , 2 )  d e l  f o r   e r r o r s  

TSM E R M 3 ;   O R D E R S = ! ( D , 2 , 2 )  
T R A N S F E R  M Z . M 3 , M 4 , M 5 , M 6 , H 7 . ~ 8 , n 9 . n 1 0 . n l l , M l 2 , F U E L , L A G F U E L , L L F U E L  
E S T I M A T E   [ P R I N T = E S l I M A T E S ;   C O N S T A N T = F ;   M A X C Y C L E = 5 D I   S T D A C C ;   T S M = E R M 3  
F O R E C A S T   [ M A X L E A D = 2 4 1   I N M Z , I N H 3 , I N M 4 , I W ~ 5 , \  
I U M 6 , 1 N M 7 . 1 N ~ 8 , I N M 9 , l N M l O , l N M l l , l N M l 2 , F F . L A G F F , L L A G F F  
T K E E P   R E S I D r R E S 3  
C A L C   N 3 = N O B S ( R E S 3 )  
C A L C   E S S 3 = V A R ( R E S 3 ) * ( N 3 - 1 )  
P R I N T   E S S 3  
C A L C   R 2 3 = ( T S S - E S S 3 ) / T S S  
C A L C   R Z S 3 = ( D S S S - E S S 3 ) / D S S S  
P R I N T   R 2 3 . R Z S 3  

U s i n g  an A R I M A ( 0 , 2 , 2 , 0 , 1 , 1 , 1 2 )  rode l   fo r   e r ro r s  

TSM ERM4; D R D E R S = I ( D , Z , Z , D , l , l , l Z )  
T R A N S F E R   F U E L , L A G F U E L , L L F U E L  
E S T I M A T E   [ P R I N T = E S T I M A T E S ;   C O N S T A N T - F ;   M A X C Y C L E - 5 0 1   S T D A C C ;   l S M = E R M 4  

T K E E P   R E S I D = R E S 4  
F O R E C A S T   [ M A X L E A D = 2 4 1   F F . L A G F F , L L A G F F  

C A L C   N 4 = N O B S ( R E S 4 )  
C A L C   E S S 4 = V A R [ R E S L ) - ( N 4 - 1 )  

C A L C   R 2 4 = ( l S S - E S S 4 ) / T S S  
P R I N T   E S S 4  

C A L C   R Z S 4 = ( D S S S - E S S 4 ) / D S S S  
P R I N T   R 2 4 . R Z S 4  

u s i n g  an A R I M A ( D , l . 1 , 0 , 1 , 1 , 1 2 )  d e l  f o r  errors 

TSM ERMS; O R D E R S = ! ( O , 1 , 1 , 0 , 1 , 1 , 1 2 )  

E S T I M A T E   [ P R I N T = E S T I M A T E S ;   C O N S T A N T - F ;   M A X C Y C L E = 5 0 1   S T D A C C ;   T S M = E R M 5  
T R A N S F E R   F U E L , L A G F U E L , L L F U E L  

F O R E C A S T   [ M A X L E A D - 2 4 1   F F . L A G F F , L L A G F F  
T K E E P   R E S I D = R E S 5  

C A L C   E S S 5 = W A R ( R E S 5 ) ' ( N 5 - 1 )  
C A L C   N 5 = N O B S ( R E S 5 )  

P R I N T   E S S 5  
C A L C   R 2 5 = ( T S S - E S S S ) / T S S  
C A L C   R Z S 5 = ( D S S S - E S S 5 ) / D S S S  
P R I N T   R 2 5 . R Z S 5  

S T O P  



output of 
Program 1 

Genstat 5 Release  2.1 (VaxlVMS5) 16-OCT-1991 16:16:43.00 
Copyright  1990, Laws  Agricultural  Trust (Rothamsted  Experimental Station) 

2 0,  

1 
AUSTRALIA DATA 

-3  Regress  standardised  accidents on FUEL SALES, 
-4 trend and quarters where fuel   sales   are produced i n  the 
-5  transfer  function model by a SARIMA~0.1.1.1.0.0.4~ model. 
-6  II  

7 UNITS[  NVALUES=39I 
8 OPEN ‘AUSORT.DAT‘;  CHANNEL-2 
9 OPEN ‘FORFL9l.DAT’; CHANNEL=3 

10 READ[ CHANNEL-21 P O P N , S T D A C C , U N E M P , N E ~ V R , C H G P E I , F U E L , D I E S E L , T R E N O , \  
11 01.02.03.04 

Identif ier  Minimum 

STDACC 0.02900 
POPN 14927 

NEUMVR 0.00700D 
UNEMP 5.467 

CHGPET -0.10700 
F U E L  3607371 

DIESEL 1658003 
TREND 

01 O.OOD0 
1 .oo 

02 O.DOO0 
03 0.DDOO 
04 0.ODDD 

12 READ [CHANNEL-3; SE1 

15985 17149 
Mean M a x i m  

0.04008 0.05100 
7.709 10.400 

0.009211 0.011000 
0.02336 0.20600 
3985657 6392969 
2109155 2612561 

20.00 39.00 
0.2308 1.0000 
0.2564 1.0000 

0.2564 1.0000 
0.2564 1.0000 

INVALUES=Yl  INTREND, 

Values Missing 
39 1 
39 1 
39 
39 

0 
1 

39 
39 

0 

39 4 
4 

39 0 
39 0 Skew 
39 0 
39 0 
39 

I N O l , I N O 2 , I N 0 3 , I N O 4 , l N F U E L  
0 

Identif ier  M i n i m  Mean M a x i m  Values  Missing 
I N T R E N D  40.00 41.50 43.00 4 

IN01 0,0000 0.2500 1.0000 
0 

4 0 
IN02 0.0000 0.2500  1.0000 4 0 
IN03 0,0000 0.2500  1.0000 
IN04 0.0000 0.2500  1.0000 

4 0 
4 

I N F U E L  4202420  4270318  4336290 4 
0 
0 

13 VARIATE INVALUES=41 F F  
14 V A R I A T E  DIFFACC,RESl,RES2,RES3,RES4,RES5 
1 5  FACTOR INVALUESJP; LEVELS=!(2,3,4,1)1 WART 
16 GENERATE 4,OUART 

.. . 

******** Uarning (Code CA 2 4 ) .  Statement 1 on Line 16 
Comnand: GENERATE 4,OUART 

Nunber of un i t s  of GENERATED factors  does  not  give an exact number of reps 

17 CALC D I F F A C C = D I F F E R E N C E ( S T D A C C )  
18 TREATMENT OUART 
19 ANOVA [PRINT=AI D I F F A C C  



1 9 . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

***** Analysis of variance ***** 

Variate: D I F F A C C  

Source of variation 
aUART 

d . f . ( m . v . )  S . S .  

Residual 
Total 

3 
m . 5 .  ".r. 

0.292E-03  0.973E-04  12.76 
33(2)  0.252E-03  0.762E-05 
36(2)  0.537E-03 

21 CALC DSSS=RVAR*33 
20 AKEEP QUART; VARIANCE=RVAR 

22 P R I N T  D S S S  

0.0002516 
DSSS 

23 
24 
25 
26 

-28 
27 

-29 

31 
30 

32 
33 

C A L C  N=NOES(STDACC) 
CALC TSS=VAR(STOACC)*(N-l) 

Using a SARlMA(1,0,1,1,1.0,0.4) model for errors 

TSM ERH2; ORDERS=!(O,l,l) 

TSM FU-ARIM: ORDERS=!(O,l,l,1,0,0,4) 
ESTlMATE[PRINT=ESTlMATESl FUEL; TSM=FU-ARIM 



33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

**e** Time-series  analysis ***** 

*** Autoregressive  moving-average model *** 

Innovation  variance  8.112E+09 

Transformation 
r e f .  estimate 

0 
6 . e .  

Constant 1 
1 .ooooo 
15842. 

F I X E D  
2276. 

Yon-seasonal;  differencing order 1 

Moving-average 1 2 
lag ref .  estimate S.e .  

0.994  0.105 

* Seasonal;  period 4; no differencing 

lag re f .  estimate 
Autoregressive 1 3 0.495  0.197 

S.e .  

34 FORECAST[MAXLEAO=4; FORECAST-FFI 



34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** Forecasts *** 

Maxinun Lead time: 4 

Lead time forecast louer l i m i t  upper l i m i t  
1 4323477. 4175333. 4471621. 

3 4404657. 4256500. 4552006. 
2  43525%. 420443a. 4 s o o n 1 .  

4  4300163. 4152012. 444a315. 

35 
36 1W FU-TSM; OROERS=!(1,0,1,1,1,0,0,4);  PARlMETERS=!(l,D,D,D.1) 
37 TRANSFER TREND,02,03,04,FUEL; A R l M A = * . ' . * , * , F U - l S U  
38 ESTIHAlElPRINT-ESTIMATES; CONSTANT=F;  K 4 X t Y C L E = S O I  SlDlCt; TSM=ERM2 



***** Tine-series   analysis  *I*** 

*** Transfer-function model 1 *** 

Delay time 0 

Transformation 
ref.   estimate 

constant 
0 1 .ooooo 
0 0.  

* Non-seasonal; no differencing 

Moving-average 0 1 -0.000812 
lag ref.   estimate 

*** Transfer-function model 2 *** 

Delay  time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

* Non-seasonal; no differencing 

Moving-average 0 2 -0 .000624 
lag re f .  estimate 

*** Transfer-function  rodel 3 *** 

D e l a y  time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0. 

Nan-seasonal; no differencing 

Moving-average 0 3 0.001238 
lag  ref.   estimate 

*** Transfer-function model 4 *** 

Delay  time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

* Yon-seasonal; no differencing 

Moving-average 0 4 
lag ref .  estimate 

0.00149 

F I X E D  
s.e. 

F I X E D  

s . e .  
0.000308 

s . e .  
F I X E D  
F I X E D  

0.000807 
s . e .  

s . e .  
F I X E D  
F I X E D  

s . e .  
0.000891 

F I X E 0  
s . e .  

F I X E D  

0.00124 
s . e .  

*** Transfer-function model 5 *** 



Delay  time 0 

Transformation 
re f .  estimate 

0 
s . e .  

1 .ooooo F I Y E 0  
Constant 0 0. F I X E D  

* Nan-seasonal; no differencing 

Lag ref.   estimate 
Moving-average 0 5 0 . 1 8 E - 0 7   0 . 5 2 E - 0 8  

5 . e .  

*** Autoregressive  moving-average d e l  *** 

Innovation  variance 0.000004417 

Transformation 
re f .  estimate 

0 
8 . e .  

1 .ooooo 
Constant 0 0. f1xe0 

F I X E D  

* Won-seasonal; differencing order 1 

Moving-average 1 6 
l a g  ref.   estimate 

0.154 
5 . e .  

0.199 

39 
40 FORECAST IHAXLEAD-41 I U l R E U D , I N P 2 , I N P 3 , 1 N O 4 , F F ;  M E T H C O = O , O , O , O , F  



*** Forecasts *** 

M a x i m  lead  time: 4 

Lead time  forecast lower l i m i t  upper l i m i t  

2 
1 0.02794  0.02448  0.03140 

0.02704  0.02251 
3 0.02904  0.02365 

0.03156 

4  0.02657  0.02044 
0.03443 
0.03270 

41 
42 T K E E P  RESIDUALS-RES2 
43 CALC NZ=NOBS(RESZ) 
44 CALC ESSZ=VAR(RESZ)*(NZ-l) 
45 P R I N T  ESS2 

0.0001193 
ESS2 

46 
47 CALC RZZ=<TSS-ESSZ)/TSS 
48 CALC R2S2=tOSSS-ESS2)/0SSS 
49 PRINT R22,RZSZ 

0.8834 
R22 

0.5259 
r252 

50 SIOP 

******** End of job. M a x i m  of 19152 data u n i t s  used a t  l ine  43  (30562 l e f t )  



output of 
Program 2 

Genstat 5 Release 2.1 (Vax/VMS5) 30-OCT-1991 09:21:35.62 
Copyright 1990, Lanes Agricultural  Trust (Rothamsted  Experimental s t a t i o n )  

1 
2 " AUSTRALIA DATA 

- 3  Regress monthly standardised  accidents on F U E L ,  LAG F U E L , L A G ( L A G F U E L ) ,  
-4 trend and months, f i t t i n g   S t r u c t u r a l  models 1 t o  5 as  defined 
- 5  below. Models f i t t e d   t o  time s e r i e s   f r m  March 1981 t o   D e c h r  
-6 1990 and fatal   accidents   predicted  for  months January 1991 t o  
-7  Decelrber 1992. fuel  sales predicted from a i r l i n e  model. 
-8 
-9 PROGRAM MLAG2.GEN 

11 UNITS[  NVALUES=1181 
12 OPEN 'M1HFL.DAT'; CHANNEL=2 
13 OPEN OMV.DAT' ; CHANNEL=J 
14 REAOI CHANNEL.21 SlDACC,FUEL,LRGFUEL,TRENO,\  
15 Ml,M2,M3,M4,M5,H6.M7,M8,M9,H10,Mll,M12 

-10 'I 

Iden t i f ie r  Minimum 
STDACC 4.774  6.960 8.968 

Mean M a x i m  Values Miss ing  

FUEL 1118114 1330823  1639366 
118 0 
118 

LAGFUEL 1118114 1330331 1639366  118 
4 
5 

TREND 1.00  59.50 118.00  118 0 
Ml 0.00000 0.07627 1.00000 
M2 0.00000 0.07627 1.00000 
M3 0.00000 0.08475 1.00000 
M4 0.00000 0.08475 1.DOOOO 
M5 0.00000 0.08475 1.00000 
M6 0.00000 0.08475 1.00000 
M7 0.00000 0.08475 1.00000 
M8 0.00000 0.08475 1.00000 

M l O  O . D O O O 0  0.08475 1.OODOO 
H9 0.00000 0.08475 1.00000 

Mll 0.00000 0.08475 1.00000 
Ml2 0.00000 0.08475 1.00000 

16 READ ItHANNEL.3;  SETNVALUESsYl  INTREND.INM1, 
17 INH6,INH7,INM8,INM9,INMlO,lNMll,lNMl2 

118 
118 

0 Skeu 

118 
0 Skeu 
0 Skew 

118 0 stem 
118 0 Skew 
118 
118 

0 Skew 

118 
0 Skeu 

118 
0 Skeu 

118 
0 Skeu 

118 
0 Skeu 

118 
0 Skeu 
0 Skew 

INM2,INM3,INM4,INM5,\ 

I d e n t i f i e r   M i n i m  Mean Haxi- Values  Missing 
INTREND 119.0 130.5  142.0 24 0 

INMl 0.00000 0.08333  1.00000 24 0 Skew 
INM2 o.ooooo 0.08333 1.00ooo 24 
INM3 0.00000 0.08333 1.00000 24 

0 skev 
0 Skeu 

lNM4 D.00000 0.08333  1.00000 24 
1NM5 0.00000  0.08333 1.00000 24 

0 Skew 
0 Skew 

INN6 0,00000 0.08333  1.00000 24 0 Skew 
INM7 0.00000 0.08333  1.00000 
INN8 0.00000 0.08333 1.00000 

24 0 skev 
24 

INM9 0.00000 0.08333 1.00000 24 
0 Skew 
0 Skew 

L N M l O  0,00000 0.08333 1.00000 24 0 s*eu 
INMll 0.00000 0.08333 1.00000 
INMl2 0.00000 0.08333 1.00000 

24 
24 0 Skeu 

0 Skew 

~~ ~~~~~~~ 

18  VARIATE DIFFACC,RESl .RES2 .RES3 .RES4 ,RES5 ,LLFUEL 
19 VARIATE I N V A L U E S = 2 4 l ~ F F , L ~ G F F . M V F F . L L A G F F , L L l l V F F  
20 VARIATE INVALUES=24; VALUES=l386475.23(1)1 REP 
21 VARIATE INVALUES=24; VALUES=l406254,1386475,22(1)1 LREP 

23 GENERATE 12,HONlH 
22 FACTOR INVALUES=118; LEVELS=!(3 ,4 ,5 ,6 ,7~8,9 ,10 ,11 ,12 ,1 ,2~1 MONTH 

******** Uarning (Code CA 2 4 ) .  Statement 1 on Line 23 
command: GENERATE 12,MONTH 

Nwber  of units. of  G E N E R A T E D  factors  does  not give  an exact nunber o f  reps 



24 
25 C A L C   L L F U E L = S H I F T C L A G F U E L ; l )  

27 01 

26 

-28  Remove trend by differencing and seasons by ANOVA 
-29 DSS = deseasonalised sum of squares 
-30 11 

32 TREATMENT MONTH 
31 CALC DlFFACC=DlFFERENCECSTDACC) 

33 RNOVA I P R I N T = A l  D I F F A C C  



33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
***** Analysis of variance ***+* 

Variate: O I F F A C C  

Source of variation 
MONTH 
Residual 

d.f . (m.v.)  S . S .  m.s. ".I-. 
1 1  

105(1) 
28.4730 2 . 5 8 8 5  4.30 
63.1615  0.6015 

Total  116(1) 91 A123 

34 AKEEP MONTH: WARIAUCE=RVAR 
35 CALC OSSS=RVAR*105 
36 P R I N T  O S S S  

O S S S  
63.16 

37 
38 CALC UrNOBS(STDACC) 
39 CALC TSS=VAR(STDACC)*(N-l) 
40 11 

-41  Predicting  fuel  sales  for 1991 and 1992 from past data, 
-42  using a SARIMA~O.1.1.0.1.1.12) d e l  for  e r r o r s .  
-L3 8, 

44 TSM FU-ARIM; O R D E R S = ! ( O , 1 , 1 , 0 . 1 , 1 , 1 2 )  
45 ESTIMATE [PRINT-ESTIMATES1 FUEL:  TSM=FU-ARIM 

.. 



******** Warning (Code TS 21). Statement 1 on Line 45 
Cornnard: ESTIMATE [PRINT-ESllMAlESI FUEL; TSM-FU-nRlM 

The iterative  estimation  process has not  converged 
The lnaximm d e r  of cycles  is 15 

***** Time-series  analysis I**** 

*** Autoregressive  moving-average model *** 

Innovation  variance 4.097E+OP 

ref.   estimate 
Transformation 

s . e .  
0 1 .ooooo 

Constant 1 154. 178. 
F I X E D  

* Non-seasonal;  differencing  order 1 

lag ref.   estimate 
Moving-average 1 2 0.9988 0.0566 

Seasonal; period 12; differencing order 1 

S . e .  

Moving-average 12 3 
Lag ref.   estimate 

0.650 
s . e .  

0.116 

46 FORECAST IMAXLEAD=24; FORECAST=FFI 



46... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** Forecasts I** 

M a x i m  lead time: 24 

L e a d  time forecast louer l i m i t  upper L i m i t  
1 1457263. 1351977. 1562549. 

3 
2 

4 
5 
6 
7 
8 

1373949. 
1507727. 
1426119. 
1516573. 
1468163. 
1482711. 
1563090. 

1268663. 
1402440. 
1320833. 
1411287. 
1362877. 
1377424. 
1457804. 

1L792351 
1613013. 
1531405. 
1621060. 
1573450. 
1587997. 
1668377. 

9 1424702. 1319415. 1529988. 
10 
11 
12 
13 
14 
15 
16 

1472606. 
1481660. 
1499614. 
1489660. 
1406502. 
1540433. 
1458980. 

1367319. 
1376373. 
1394327. 
1378075. 
1294916. 
1428847. 
1347394. 

1577892. 
1586947. 
1604901. 
1601246. 
1518087. 

~~ ~~~ 

1652019. 
1570566. 

17 1549589. 1438003. 1661175. 

19 1516035. 
18 1501334. 1389747. 1612920. 

1404449. 1627622. 
20 1596570. 1484983. 1708156. 
21 1458335. 1346749. 1569922. 

23 1515603. 1404016. 1627190. 
22 1506394. 1394807. 1617981. 

24 1533711. 1422124. 1645298. 

47 C A L C  MVFF=SHIFT(FF;l) 
48 C A L C  L A G F F = H V R E P L A C E ( H V F F ; R E P )  
49 C A L C   L L H V F F = S H I F T ( F F ; 2 )  
50 C A L C  L L A t F F = M V R E P L A C E ( L L H V F F ; L R E P )  
51 P R I N T  L A C F F , L L A G F F  

L A G F F  L L A G F F  
1386475 1406254 
1457263 1386475 
1373949 1457263 
1507727 1373949 
1426119 1507727 
1516573 1426119 
1468163 1516573 
1482711 1468163 
1563090 1482711 
1424702 1563090 
1472606 1424702 
1481660 1472606 
1499614 1481660 
1489660 1499614 
1406502 1489660 
1540433 1406502 
1458980 1540433 
1549589 1458980 
1501334 1549589 
1516035 1501334 
1596570 1516035 
1458335 1596570 
1506394 1458335 



1515603 1506394 

52 I' 

-53 Using an M A ( 1 )  model for  errors 
-54 1' 

55 TSM ERM1: O R D E R S = I ( O . O . l )  
56 T R A N S F E R ' T R E N D , M 2 , ~ 3 ~ M ~ , ~ S , M 6 , M 7 , M 8 , M 9 , M l O , M l l , M l 2 , F U E L , L A G F U E L , L L F U E L  
57 ESTIMATE [ P R I N T  =ESTIMATES1 STDACC; TSM=ERMl 



57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

***** Tim-se r i e s   ana lys i s  ***** 

*** Transfer-function d e l  1 lit* 

Delay  time 0 

Transformation 
ref.   estimate 

constant 
0 
0 

1 .ooooo 
0 .  

* Yon-seasonal; no differencing 

Moving-average 0 1 -0.02700 
Lag ref.   estimate 

*** Transfer-funct ion  mdel   2  *** 

Delay  time 0 

Transformation 
r e f .   e s t i m t e  

Constant 
0 1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

Moving-average 0 2 
lag ref. estlmate 

0.766 

*** Transfer-function d e l  3 *** 

Delay  time 0 

Transformation 
ref .   es t imate  

constant 
0 1.00000 
0 0. 

* Nan-seasonal; no differencing 

Moving-average 0 3 1.351 
lag  ref .   es t1mte 

*** Transfer-function model 4 *** 

Delay  time 0 

Transformatlo" 
re f .  estimate 

Constant 
0 1 .ooooo 
0 0. 

* Yon-seasonal; no differencing 

Moving-average 0 4 
lag ref .   es t imate  

0.557 

F I X E D  
s . e .  

F I X E D  

0.00577 
s .e .  

FIXED 
s . e .  

FIXED 

0.335 
s . e .  

FIXED 
5 . e .  

FIXED 

0.391 
* . e .  

5 . e .  
FIXED 
FIXED 

~~~~ 

0.356 
5 . e .  

*** Transfer-function model 5 *** 



Delay time 0 

ref.   estimate 
Transformation 0 
Constant 

1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

lag re f .  estimate 
Woving-everage 0 5 0.848 

*** Transfer-function model 6 *** 

Delay time 0 

ref.   estimate 
Transformtion 0 
constant 

1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

lag ref.   estimate 
Moving-average 0 6 0.782 

*** Transfer-function model 7 *** 

Delay time 0 

Transformation 
ref.   estimate 

0 1 .ooooo 
Constant 0 0. 

Non-seasonal; no differencing 

Moving-average 0 7 
l a g  ref.   estimate 

0.733 

*** Transfer-function model 8 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 1.00000 
0 0. 

Uon-seasonal; no differencing 

Moving-average 0 8 
lag ref.   estimate 

0.650 

*** Transfer-function model 9 *** 

Delay time 0 

Transformation 
ref.   estimate 

constant 
0 1.00000 
0 0. 

* Yon-seasonal; no differencing 

Moving-average 0 9 
lag ref.   estimate 

1.459 

F I X E D  
s . e .  

F I X E D  

0.325 
s . e .  

F l K E D  
s.e.  

F I X E D  

0.318 
s.e.  

F I X E D  
s . e .  

F I X E D  

0.322 
s.e. 

F I X E D  
F I X E D  

s .e .  

0.326 
s . e .  

F I X E D  
s . e .  

F I X E D  

0.324 
s . e .  



*** Transfer-function model 10 *** 

Delay  time 0 

ref .   es t imate  
lransformation O 

S . e .  
1 . O O O O D  

constant 0 0. 
F I X E D  
F I X E D  

* Yon-seasonal; no differencing 

lag  ref.  estimate 
Moving-average 0 10 1.140 0.337 

S . P .  

*** Transfer-function model 1 1  *** 

Delay time 0 

ref .   es t lmate  
Transformation 0 1.00000 
Constant 0 0. 

FIXED 
FIXED 

Won-seasonal; no differencing 

* . e .  

lag ref .   es t lmate  
Moving-average 0 11 1.144 0.326 

s . e .  

*** Transfer-function model 12 *** 

Delay time 0 

ref .   es t imate  
Transformation 0 

s.e. 
1 .ooooo 

Constant 0 0. 
F I X E D  
F I X E D  

* Non-seasonal; no differencing 

lag r e f .  estimate 
Moving-average 0 12 1.447 0.303 

s . e .  

*** Transfer-function  mdel 13 *** 

Delay time 0 

ref .   es t imate  
Transformation 

S . e .  
0 1 .ooooo 

Constant 0 0 .  
F I X E D  
F I X E D  

Yon-seasonal; no differencing 

Moving-average 0 13 0.00000260 0.00000115 
lag ref .   es t imate   s .e .  

*** Transfer-function  lwdel 14 *** 

Delay  time 0 

re f .  estimate s . e .  
Transformation 
Constant 

0 1 .ooooo F I X E D  
0 0 .  F I X E D  



Yon-seasonal; no differencing 

lag  ref.  estimate 
Moving-average 0 14 0.00000377  0.00000126 

s . e .  

*** Transfer-function model 1 5  *** 

Delay time 0 

ref.   estimate 
Transformation 

s . e .  
0 1 .ooooo 

Constant 0 0. 
F I X E D  
F I X E D  

* Non-seasonal; no differencing 

Moving-average 0 1 5  -0.00000037  0.00000119 
lag ref.   estimate s . e .  

*** Autoregressive  moving-average model *** 

Innovation  variance  0.3763 

Transformation 
ref.   estimate s . e .  

constant 
0 1 .ooooo 

16 
F I X E D  

-0.37  3.48 

* Ion-seasonal; no differencing 

lag ref.   estimate s .e .  
Moving-average 1 17 -0.236 0.104 

58 FORECAST [MAXLEAD=2CI I N T R E N O , I N M 2 , I N M 3 , 1 N M 4 , I N M 5 . \  
59 I N ~ 6 , 1 N M 7 , 1 N H 8 , 1 N ~ 9 , l N M l O , l N M l l , ~ N M l 2 , F F , L A G F F , L L A G F F  



59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** Forecasts *** 

MaXimUn lead  time: 24 

Lead time forecast lower 

2 
1 4.924 

5.709 
3 
4 

6.274 
5.777 

6 
5 5.919 

6.071 
7 5.818 
8 5.990 

~~ ~~ 

9 6.709 

18  5.946 
19  5.693 
20 
21 6.586 

5.866 

22 
23 

5.813 

24 
6.048 
6.388 

60 
61 TKEEP RESID=RESl 
62 C A L C  N1=NOES(RESl) 

64 PRINT ESSl 
63 CALC ESSl=YAR(RESl)*(Nl-l) 

I imi t 
3.915 
4.673 
5.238 
4.741 
4.882 
5.035 
4.781 
4.953 
5.672 

5.132 
5.471 
4.035 
4.513 
5.110 

4.898 

4.613 
4.756 
4.909 
4.656 
4.829 

4.777 
5.550 

5.011 
5.351 

33.49 
ESSl 

65 CALC R21=(TSS-ESSl)/TSS 
66 CALC R2Sl=(DSSS-ESSl)/DSSS 
67 PRINT R21,RZSl 

0.6158 
R21 

0.4698 
R2Sl 

-69 Using an IMA(O.1.1) model f o r  e r ro r s  
-70 11 

68 

l imit  
5.933 
6.746 
7.311 

6.955 
7.108 
6.854 
7.026 
7.746 
6.972 
7.205 
7.544 
6.109 

7.183 
6.686 

6.982 
6.730 
6.903 
7.623 
6.850 
7.085 
7.424 

6.814 

6.587 

6.829 

71 TSM ERH2; OROERS=!~O,1,1) 
72 TRANSFER T R E N D , M 2 , M 3 , H 4 , ~ 5 , M 6 . n 7 . n B . n P , n l O . W l l , M l 2 , F U E L , L A G F U E L , L L F U E l  
73 ESTlHATE[PRINT=ESTlMATES; CONSTANT=FI STDACC; TSM-ERM2 

..  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

***** Time-series  analysis ***** 

*** lrsnsfcr-function  mdel  1 *** 

Delay time 0 

Transformation 
ref.   estimate 

constant 
0 1 .ooooo 
0 0. 

Yon-seasonal; no differencing 

Moving-average 0 1 
lag  ref.   estimate 

-0.0282 

*** Transfer-function model 2 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

Yon-seasonal; no differencing 

Moving-average 0 2 
lag ref.   estimate 

0.646 

*** Transfer-function mdel 3 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 
0 

1 .ooooo 
0. 

* Yon-seasonal; no differencing 

Moving-average 0 3 
lag ref.   estimate 

1.153 

**I Transfer-function madel 4 *** 

Delay time 0 

Transformation 
ref.   estimate 

constant 
0 
0 

1,00000 
0 .  

* Yon-seasonal; no differencing 

Moving-average 0 4 
lag ref.   estimate 

0.346 

*** Transfer-function model 5 *** 

s.e. 
F I X E D  
FIXE0 

s.e. 
0.0148 

s . e .  
F I X E D  
F I X E D  

0.309 
s . e .  

F I X E D  
s . e .  

F I XED 

s . e .  
0.338 

5 . e .  
F I X E D  
F I X E D  

0.311 
s .e .  



Delay  time 0 

ref .   es t imate  
Transformation 0 
Constant 

1 .ooooo 
0 0 .  

Yon-seasonal; no differencing 

lag ref .   es t lmate  
Moving-average 0 5 0 . 7 4 2  

*** Transfer-function model 6 I** 

Delay  time 0 

Transformation 
ref .   es t imate  

Constant 
0 1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

Moving-average 0 6 
lag  ref.  estimate 

0.660 

*** Transfer-function model 7 +** 

Delay  time 0 

ref .   es t imate  
Transformation 0 1 .ooooo 
Constant 0 0. 

Non-seasonal; no differencing 

lag  ref .   es t imate  
Moving-average 0 7 0.639 

*** Transfer-function model 8 *** 

Delay  time 0 

Transformation 
ref .   es t imate  

Constant 
0 1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

Moving-average 0 8 
lag  ref .   es t imate  

0.612 

*** Transfer-function model 9 *** 

Delay  time 0 

ref .   es t imate  
Transformation 0 
Constant 

1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

lag ref .   es t imate  
Moving-average 0 9 1.414 

s . e .  
F I X E D  
F l X E O  

0 .278  
s . e .  

FIXEO 
FIXEO 

s . e .  

0 . 2 7 3  
s.e. 

s . e .  
F I X E 0  
F I X E D  

0 .275  
s.e. 

FIXE0 
FIXED 

s . e .  

0 . 2 n  
r .e.  

6 . F .  

0 .276  
s . e .  



*** Transfer-function model  10 *** 

Delay  time 0 

ref.   estimate 
Transformation 0 

s .e .  
1 .ooooo 

Constsnt 0 0. 
FIXED 
FIXE0 

* Yon-seasonal; no differencing 

lag  ref.  estimate 
Moving-average 0 10 1.099 

s . e .  
0.288 

**a Transfer-function model  11 *** 

Delay  time 0 

ref .   es t imate  
Transformation 0 

S . C .  
1 .ooooo 

Constant 0 0. 
F I X E D  
F I X E D  

* Nan-seasonal; no differencing 

lag  ref.   estimate 
Moving-average 0 11 1.032 

s . e .  
0.274 

*** Transfer-function model 12 *** 

Delay  time 0 

ref .   es t imate  s . e .  
Transformation 0 1,00000 
Constant 0 0. F I X E D  

F I X E D  

* Won-seasonal; no differencing 

lag  ref.  estimate s . e .  
Moving-average 0 12 1.483 0.277 

*** Transfer-function model 13 *** 

Delay  time 0 

Transformation 
ref. estimate 

0 
s . e .  

1 .ooooo 
constant 0 0 .  FIXED 

FIXED 

9 Non-seasonal; no differencing 

Moving-average 0 13 0.00000172 0.00000112 
lag  ref.   estimate s . e .  

*** Transfer-funct ion model 14 *** 

Delay  time 0 

ref .   es t imate  
Transformation 

s . e .  
0 

Constant 
1 .ooooo 

0 
F I X E D  

0. F I X E D  



* Non-seasonal; no differencing 

Lag ref.   estimate 
Moving-average 0 14 0.00000277 0.00000118 

s . e .  

*** Transfer-function model 15 *** 

Delay time 0 

Transformation 
ref .  es t imate   s .e .  

Constant 
0 1.00000 
0 0. 

FIXED 
F I X E 0  

Yon-seasonal; no differencing 

Moving-average 0 15 -0.00000131  0.00000115 
lag r e f .   e s t i m t e  s . e .  

*** Autoregressive  moving-average madel *** 

Innovation  variance 0.3289 

ref.   estimate 
Transformation 0 1 .ooooo 

s.e.  
F I X E D  

Constant 0 0 .  F I X E D  

Non-Seasonal: dlfferencing order 1 

Moving-average 1 16 
lag ref. estimate 5 . e .  

0.7422  0.07% 

74 FORECAST  [MAXLEAD=24I I Y T R E N D , I N M 2 , I N M 3 , I N M 4 , I N M 5 , \  
75 I N ~ 6 , I N M 7 , 1 N M 8 , I N H 9 , l N ~ l O , l N ~ l l , l N M l 2 , F F , L A G F F , L L A G F F  



75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** Forecasts *** 

M a x i m  lead time: 24 

76 
77 

79 
7a 

80 
81 
82 

-84 
83 

-85 
86 
87 
ea 

Lead time 
1 

3 
2 

4 

6 
5 

7 
a 

10 
9 

1 1  

13 
12 

14 
15 
16 
17 

19 
18 

20 
21 
22 
23 
24 

forecast 
4.512 
5.209 
5.595 
5.098 

5.385 
5.221 

5.108 
5.295 
6.034 
5.285 
5.519 
5.935 
4.445 
4.868 
5.361 
4.865 
4.988 
5.152 
4.876 
5.063 
5.803 
5.054 

5.705 
5.288 

lower l i m i t  upper L i m i t  
3.569 
4.234 

5.456 

4.591 
6.183 

4.065 
6.599 
6.132 

4.159  6.282 
4.296 
3.993 

6.474 
6.224 

4.153  6.437 
4.867 
4.092 
4.301 
4.694 
3.180 
3.581 
4.050 
3.532 
3.633 
3.775 
3.478 
3.645 
4.363 
3.594 
3.808 
4.205 

7.202 
6.477 
6.736 
7.176 
5.709 
6.156 
6.671 
6.198 
6.343 
6.529 
6.274 
6.482 
7.243 
6.514 
6.769 
7.205 

TKEEP RESID=RES2 
CALC N2=NOES(RESZ) 
CALC ESS2=VAR(RES2)r(N2-1) 
PRINT ESSZ 

29.27 
ESSZ 

CALC R22=(TSS-ESS2)/TSS 
CALC R2S2=(DSSS-ESS2)/DSSS 
P R I N T  R22.RZS2 

0.6642 
R22 

0.5365 
R2S2 

Using an IMA[O.2,2) model for  errors 

TSM ERM3; ORDERS=!(O,2,2) 
TRANSFER M2.U3.M4.M5,M6.M7.~8,M9,M10,Mll,M12,FUEL,LAGFUEL,LLFUEL 
ESTIMATE [PRINl=ESTIMATES; CONSlANT=F;  HAXCYCLE=501  STDACC;  TSM=ERM3 
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***** Time-series  analysis ***** 

*** Transfer-function  mdel 1 *** 

Delay  time 0 

Transformation 
ref.   estimate 

0 1 .ooooo 
Constant 0 0. 

* Non-seasonal; no differencing 

Moving-average 0 1 
lag ref .   es t imate  

0 . 4 2 2  

*** Transfer-funct ion  mdel  2 *** 

Delay  time 0 

Transformation 
ref .   es t imate  

Constant 
0 1 .ooooo 
0 0. 

* Won-seasonal; no differencing 

Moving-average 0 2 
l a g  ref.   estimate 

0.730 

*** Transfer-function madel 3 *** 

Delay time 0 

Transformarion 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

Won-seasonal; no dlfferencing 

Moving-average 0 3 
Lag ref.   estimate 

0.075 

*** Transfer-function model 4 *** 

Delay  time 0 

Transformation 
ref .   es t imate  

constant 
0 1 .ooooo 
0 0. 

* Uon-seasonal; no differencing 

Moving-average 0 4 
lag ref .   es t imate  

0.567 

F I X E D  
F I X E D  

s . e .  

0.311 
s . e .  

F I X E D  
s . e .  

F I X E D  

0.345 
s . e .  

F I X E D  
s .e .  

F I X E D  

0.320 
5 .e .  

F I X E D  
F I X E D  

s .e .  

0.284 
s . e .  

**I Transfer-function model 5 *** 



Delay time 0 

ref .   est imste 
Transformation 0 
Constant 0 

1 .ooooo 
0. 

* Yon-seasonal; no differencing 

lag  ref.  estimate 
Moving-average 0 5 0.508 

*I* Transfer-function model 6 *** 

Delay time 0 

ref.   estimate 
Transformation 0 1 .ooooo 
Constant 0 0. 

* Yon-seasonal; no differencing 

lag ref.   estimate 
Moving-average 0 6 0.482 

I** Transfer-function model 7 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0. 

* Yon-seasonal; no differencing 

Moving-average 0 7 
lag ref.   estimate 

0.497 

*** Transfer-function model 8 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 
0 

1 .ooooo 
0 .  

* Yon-seasonal; no differencing 

lag ref.   estimate 
Moving-average 0 8 1.285 

*** Transfer-function model 9 *** 

Delay time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0. 

* Non-seasonal; no differencing 

noving-average 0 9 
lag  ref.   estimate 

0.894 

F I X E D  
s . e .  

F I X E D  

0.279 
S . e .  

F I X E D  
s . e .  

F I X E D  

0.281 
s.e.  

F I X E D  
s.e. 

F I X E D  

0.284 
s.e.  

F I X E D  
s . e .  

F I X E D  

0.282 
s . e .  

F I X E D  
s .e.  

F I X E D  

0.293 
s . e .  



*** Transfer-function model  10 **e 

Delay  time 0 

ref .   es t imate  s . e .  
Transformation 0 
Constant 

1 .OD000 
0 0. 

FIXED 
FIXED 

Non-seasonal; no differencing 

Moving-average 0 10 
Lag ref.   estimate s . e .  

0.841 0.279 

*** Transfer-function model 1 1  *** 

Delay time 0 

Transformation 
ref .   es t imate  s .e .  

Constant 
0 1 .ooooo 
0 0. 

FIXED 
F I XED 

Non-seasonal; no differencing 

lag  ref.  estimate s . e .  
Uoving-average 0 11 1.400 0.278 

*** Transfer-function model 12 *** 

Delay time 0 

ref .   es t imate  
Transformation 

s .e .  
0 1.00000 

Constant 0 0. 
FIXED 
FIXED 

* Non-seasonal; no differencing 

Uoving-average 
ref .  

12 0.00000052 
estimate 

O.OODOD115 
s .e .  

*** Transfer-function -del  13 *** 

Delay time 0 

Transformation 
ref .  estimate 

0 1 .ooooo 
Constant 0 0. F I X E D  

F I X E D  
s . e .  

Non-seasonal; no differencing 

Lag ref .   es t imate  
Uoving-average 0 13  0.00000034 0.00000122 

s .e .  

*** Transfer-function model  14 **' 

Delay time 0 

Transformation 
ref.   estimate 

0 
Constant 

1,00000 
0 

FIXED 
0. FIXED 

* . e .  



* Uon-seasonal; no differencing 

Moving-average 0 14 -0.00000255 0.00000120 
lag r e f .  estimate s . e .  

*** Autoregressive  moving-average model *** 

Innovation  variance 0.3496 

ref. estimate 
Transformation 

s . e .  
0 1 .ooooo 

Constant 0 0. 
F I X E D  
F I X E D  

Non-seasonal;  differencing  order 2 

Moving-average 1 15 
lag ref. estimate 8.e.  

2 16 -0.6909 
1.6900 0.0851 

0.0850 

89 FORECAST  [MAXLEAD-241 IuM2,IYM3,IUM4,INM5,\ 
90 I N M 6 , I N M 7 , 1 N M 8 , I U M 9 , l U M l O , l N ~ l l , l N M l 2 , F F , L A G F F , L L A G F F  
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*** Forecasts *** 

M a x i m  lead time: 24 

Lead time 
1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

1 1  
12 
13 

1 5  
14 

16 
17 
18 
19 
20 
21 
22 
23 
24 

fo recas t  
4.683 
5 . 1 1 5  
5.262 
4.802 
4.951 
5.085 
4.798 

' l imit  
3.710 
4.097 
4.200 
3.698 
3.805 
3.899 
3.573 

5.655 
l i m i  t 

6.134 
6.324 
5.907 
6.097 
6.270 
6.022 

4.961 
5.648 

3.700  6.223 
4.349 

5.008  3.673 
6.946 
6 ~ 3 4 3  

5.307  3.937 6.677 

4.292 
5.735  4.330  7.140 

2.854  5.731 
4.601 
4.953 

3.130 
3.449 

6.073 
6.458 

. _  

4.494  2.957  6.030 
4.642 
4.776 

3.074 6.210 
3.176 6 ~ 3 7 5  

4.488 
4.65 

4.70 
5.34 

5.00 
5.42 

2.855 
2.99 
3.65 
2.98 
3.25 
3.65 

6.118 
6.31 
7.03 
6.42 
6.75 
7.20 

91 TKEEP RESID-RES3 

93 CALC ESS3=VAR(RES3)*(N3-1) 
92 CALC N3=NOBS(RES3) 

94 P R I N T  ESS3 

30.77 
ESS3 

96 CALC R2S3=(OSSS-ESS3)/DSSS 
95 CALC R23=(TSS-ESS3)/TSS 

97 P R I N T  R23,R2S3 

R23 
0.6471 

R2S3 
0.5129 

98 

-100 1, 

-99  Using an AR1HA~0.2.2.0.1.1.12~ mdel f o r  e r ro r s  

101 TSM ERM4; O R O E R S = ~ ( 0 , 2 , 2 . 0 , 1 , 1 , 1 2 )  
102 TRAUSFER F U E L , L A G F U E L , L L F U E L  
103 ESTIMATE [PRINT=ESTIMATES; COUSTAUT=F;  MAXCYCLE=SOI STDACC; TSH=ERM4 



103 .................................................................................................... 

***** l ime-ser ies   analysis  ***** 

*** Transfer-function model 1 *** 

Delay time 0 

Transformation 
ref .   es t imate  

Constant 
0 1 .ooooo 
0 0 .  

Non-seasonal; no differencing 

Moving-average 0 1 0.00000053 
lag  ref.  estimate 

*** Transfer-function model 2 *** 

Delay  time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

Non-seasonal; no differencing 

Moving-average 0 2 0.00000013 
lag  ref.  estimate 

*** Transfer-function model 3 *** 

Delay  time 0 

Transformation 
ref.   estimate 

Constant 
0 1 .ooooo 
0 0 .  

* Nan-seasonal; no differencing 

Moving-average 0 3 -0.00000286 
lag r e f .  estimate 

s.e. 
FIXED 
FIXED 

0.00000113 
s.e. 

FIXED 
s.e. 

FIXED 

0.00000119 
r.e.  

F I X E D  
s . e .  

F I X E D  

0.00000117 
s . e .  

*** Autoregressive  moving-average model *** 

Innovation  variance 0.4355 

ref .   es t imate  
Transformation 0 

s.e. 
1 .ooooo 

Constant 0 0. 
F I X E D  
F I X E D  

Non-seasonal;  differencing  order  2 

Moving-average  1  4 
Lag ref .   es t imate  

1.6318 
s.e.  

2 5  -0.6451 
0.0887 
0.0898 

* Seasonal;  period 12; differencing  order 1 



Moving-average 12 6 
Lag ref .  estimate 

0.600 0.113 
%.e.  

104 FORECAST MAXLEAD=241 F F , L A G F F , L L A G F F  



104... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ............................................................... 

*** Forecasts *** 

M a x i m  lead time: 24 

Lead time forecast Loner  Limit upper L i m i t  
1 
2 

4.204 
4.469 

3.119  5.289 
3.313  5.626 

3 5 . 1 1 1  3.882  6.339 
4  3.977 
5 

2.675  5.278 
4.209  2.835  5.584 

6 4 I649 3.200  6.098 
7  4.327  2.803 
8 

5.850 
3.997  2.398 

9  5.14  3.46  6.82 
5.597 

10 4.01  2.25 
1 1  4.00  2.17 

5.76 
5.84 

12 4.97  3.06 
13 

6.88 

14 
2.90  0.74 
3.03  0.75 

5.05 

15 3.88  1.49  6.28 
5.30 

21 3.81  0.68 
22 

6.95 
2.66 

23 
-0.60  5.92 

2.64  -0.75 
24 3.59  0.08  7.10 

6.03 

105 TKEEP RESID=RES4 
106 CALC U4=NOBS(RES4) 
107 CALC ESS4=VAR(RES4)'(N4-1) 
108 P R I N T  ESS4 

ESS4 
37.37 

109 CALC R24=(TSS-ESS4)/TSS 
110 CALC R2S4=(DSSS-ESS4)/OSSS 
1 1 1  P R I N T  R24.RZS4 

R24 
0.5713 

R2S4 
0.4083 

-113 us ing  an ARIHA(0.1.1.0.1.1.12) model far  errors 
112 

- , , L  II  

115 TSM ERM5; OROERS=!(O.1,1,0,1,1,12) 
116 TRANSFER FUEL,LAGFUEL,LLFUEL 
117 ESTIMATE [PRINT=ESTIMATES: CONSTANT-F; HAXCYCLE=SOI STDACC: TSM=ERM5 

, .- 



117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

***** Time-series  analysis ***** 

*** Transfer-funct ion model 1 **+ 

Delay  time 0 

r e f .   e s t ima te  
Transformation 

s .e .  
0 1 .ooooo 

Constant 0 0. 
FIXED 
FIXED 

* Won-seasonal: no differencing 

Moving-average 0 1 0.00000176  0.00000110 
Lag re f .   es t imate  s . e .  

*** Transfer-funct ion model 2 *** 

Delay time 0 

re f .   es t imate  
Transformation 0 

s.e. 

Constant 
1 .ooooo 

0 0 .  
F I X E D  
FIXE0 

* Non-seasonal: no d i f f e renc ing  

l ag   r e f .   e s t lma te  
Moving-average 0 2  0.00000249 0.00000116 

s . e .  

*** Transfer-funct ion model 3 *** 

Delay  time 0 

Transformation 0 1 .ooooo F I X E O  
re f .   es t imate  s . e .  

Constant 0 0. F I X E D  

* Nan-seasonal; no d i f f e renc ing  

lag   re f .   es t imate  s . e .  
Moving-average 0 3 -0.00000156  0.00000112 

*** Autoregressive  moving-average model *** 

Innovation  variance 0.3927 

ref. es t imate  s . e .  
Transformation 0 1 .ooooo 
Constant 0 0. FIXED 

F I X E D  
~~ ~~ ~ ~~ 

* Won-seasonal;  differencing  order 1 

Moving-average 1 4 
Lag r e f .  est imate  

0.7079 
s .e .  

0.0809 

* Seasonal;  period 12; differencing order 1 

lag  ref .   es t imate   s .e .  



Moving-average 12 5  0.655  0.106 

118 FORECAST  LMAXLEAD=241 F F , L A t F F . L L A G F F  



118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

*** Forecasts *** 

M a x i m  Lead time: 24 

Lead time forecast louer l imit  

2 
1 

4.803 
4.252  3.221 

3.730 
3 5.642  4.527 
4 4.615 
5 

3.459 

5 
4.891  3.697 

7 
5.306  4.075 
5.028 

8 4.807 
3.760 
3.505 

9 5.926  4.589 
10 
1 1  4.994 

4.91L 3.513 

12 5.919  4.484 
3.591 

13 
1L 
15 
16 
17 
18 
19 

. .  
3 1933 
4.226 

5.19 
4.16 
4 . 6 4  
4.86 
4.58 

21355 
2.596 

3.51 
2.44 
2.67 
3.06 
2.71 

20 4.36  2.45 
21 5.48 3.53 

23 
22 4.47 

4 . 5 5  
2.47 

2L 5.L7 
2.51 
3.40 

119 TKEEP RESID=RESS 

121 CALC ESSS=VAR(RE55).(N5-1) 
120 CALC N5=NOBS(RES5) 

122 P R I N T  ESSS 

34.52 
ESS5 

123 CALC RZS=(TSS-ESSS)/TSS 
124 CALC R2S5=(OSSS-ESS5)/OSSS 
125 P R l H T  R25,R255 

R25 
0.6040 

R2S5 
0.4534 

126 
127 STOP 

upper l imit  

5.877 
5.282 

6.757 
5 .no 
6.537 
6.085 

6.110 
6.295 

7.263 
6.284 
6.397 
7.3% 
5.512 
5.855 

6.87 

6.22 

~ ~~ 

5.89 

6.68 
6.44 
6.27 
7.43 
6.46 

7.54 
6.58 

******** End of job. M a x i m  of 36228 data units used a t  Line 88 (13486  Left) 
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L 

.... . 

0 

FIGURE D .  1 



1 . 0 5  1 
1 1 

. . . . . . . . . . .  

................ 

....... .~. .  . . . .  

. . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  

. . . . . .  

?IGURE D . 2  



So-oonml Sub==ri== PIot 

A f t e r  di f fe renc ing  - lag 1 2  

. . . ~ ,  . ..  .. 

. .. ~ 

;I . . .  

-0 .16  i :  
FIGURE D.3 



P l o t  of AUSFRATE.vrt-2 VI AUSFRATE.urr1 

140 170 200  2 3 0  260 290 3 2 0  

aUSFRaTE.uar1 

Number of Fatal   Traffic Accidents 
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