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Factors affecting fatal road crash trends

This study investigates the effect of various non-road safety factors on the
level of fatal road crashes. Steps were taken to develop equations capable of
predicting future levels.

Factors atfecting fatal road crash trends (CR106)

This report is a single volume with two distinct parts:

1.

N.B.

Literature Review of Explanatory and Predictive Models for the
Number of Fatal Road Crashes

A detailed literature review of factors which have been
investigated for their ability to explain or predict the number of
fatal road crashes.

Explanatory and Predictive Models for the Number of Fatal Road
Crashes.

Describes steps taken by this study to develop and test various
statistical models. These models were fitted to various
economic, social and meteorological factors to determine the
power of each factor to predict fatal road crash trends.

A short summary of the main findings of this work is also available in
the following separate report:

Factors affecting fatal road crash trends:

Summary Report.
(CR109)



Part 1

Literature Review of Explanatory
and Predictive Models for the Number of
Fatal Road Crashes
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glossary

Abbrev. Definition

ABS Australian Bureau of Statistics

ARIMA  Autoregressive, Integrated, Moving Average
model

BAC Blood Alcohal Level

BAT Blood Alcohol Testing unit

BR British Rail

CPI Consumer Price Index

DUI Driving Under the Influence {of drugs or alcohol)

GDP Gross Domestic Product

GNP Gross National Product

I[z] If 2 is true, then this evaluates to 1, otherwise 0.

iid independent and identically distributed (random
variables)

LT London Transport

KSI Killed and Sericusly Injured

NBER National Bureau ol Economics Research (US)

PCGNP Per Capita Gross National Product

PSV Passenger-Service Vehicles

pti Per Thousand Inhabitants

R? amount of variation explained by a regression
model compared to a null model

RDU Restraint Device Usage

RPI Retail Price Index

Us United States

VKT Vehicle Kilometres Travelled

VMT Vehicle Miles Travelled




1 Introduction

This paper reviews both Australian and worldwide literature in the area of road
and traffic safety. The investigation is focussed on road crash fatalities and fatal
road crashes, and how these have been statistically modelled by researchers.
Given that the variables of interest are road crash fatalities and fatal road
ctashes, it is then necessary to decide the following:

1. What is the form of the response wvariable? Is a ratio of fatalities to
population or vehicles registered a more meaningful response variable?

2. Which ezplanatory variablesshould be included in the model, as suggested
by theory, in such areas as road safety, socioeconomics, and psychology?

3. What type of statislics model and error structure is appropriate?
The three major tequirements are addressed in three sections.

§1 Choice of response variable

§2 Choice of explanatory variable(s)

§3 Chaice of statistical model (also addressed in §1 and §2.)

1.1 Owerall

Overall, the litetature in the area of the analysis of road fatalities seems to
be concentrated on two major types of models, local effects models and global
effects models. The characteristics of these two types of models are tabulated
below.

Characteristic Local effects models Global effects models
of model {micro-level) (macro-level)
applications indepth analyses macro-models,  regres-

sion, time-series analysis

focus of model

local impacts present at
each particelar fatality

global impacts on the to-
tal number of fatalities

examples of

model effects

emotional, physical, and
psychological state of
driver; vehicle character-
istics; road design; road
conditions

state of the economy, fuel
prices; average weather
conditions; number of ve-
hicles on the road, num-
ber of young drivers.

effects of coun-
termeasures

effect of installation of
new set of traffic lights

effect of new legislation




Hakim & Shefer review 15 of the more recent papers, which use a wide
range of explanatory variables, in models which are mostly based on regression
models. Some of the models they cover are discussed elsewhere in this report:
Eshler (1977), Fridstrom (1989), Hautzinger (1986), Joksch (1984}, Loeb (1987),
Partyka (1984), Peltzmann (1975) and Zlatoper (1984), and one paper with a
time series approach, Wagenaar (1984). The authors discuss some ‘issues and
probelms’ with analysing global effects.

1.2 Road crash data

Many developing countries have only recently, or are still in the process, of
determining the structure of the data on fatal road crashes to be collected. Most
European countries, America and Australia have passed this milestone, and now
devote much of their research effort to analysing this information. This change
in collection itself could be changing what we are measuring and thus produce
spurious results. Fridstrgm and Ingebrigisen (1991) incorporated the effect of
changing accident teporting procedures into their models for traffic safety in
Norway. Unfortunately this effect was confounded by concurrent changes in
legislation.

Analyses of road crash data are usually one of following types, in increasing
order of sophistication:

1. aggregation of data

(2) numbers of road crash fatalities and fatal road crashes
(b) road crashes according to country, state within country, road user
type, age, sex, etc
2. in-depth accident studies

3. hefore-and-after studies of the effectiveness of countermeasures

4, using various explanatory variables or factors to explain the variation in
the numbers of fatal road crashes or fatalities

5. using time-series models to prediet future numbers of fatal road crashes
or fatalities

1.3 Aggregation of data

Similar to other countries, Australia has a Bureau of Statistics (ABS) which
publishes monthly national figures on: the number of road crashes, the number
of fatal road crashes, the number of fatalities resulting from road crashes. Cor-
responding figures for the different states are not always available; only Victoria,
Queensland, Tasmania breakdowns are supplied.



In order to model the number of fatalities resulting from road crashes and
the number of fatal crashes, our study relies heavily on these aggtegates. Thus
the degtee of disaggregation available {by state) determines, to some extent, the
scope of our study.

Care is required when using aggregated accident data, since different groups
of crash victims might not behave similarly. For example, compare multi-vehicle
and single vehicle crashes, or vehicle-occupant and pedestrian accidents. (See
Hakim et al (1991), among cthers for more discussion.)

1.4 In-depth accident studies

In-depth or local-effects accident studies try to relate the specific features of an
accident to the severity of the injuries in order to locate primary causes and
then to finally eliminate them. Thus fatal accidents are a natural focus for de-
termining the major contributing factors to serious road crashes. These studies
concentrate on the local factors influencing the crash, such as road geometry,
signage, roadside objects, BAC level of driver, age/sex of driver, weather con-
ditions at the scene of the accident, and the time, day, and month of accident,

Most of the research effort has gone into these types of studies, worldwide.
However, due to their specific nature, these models are not relevant to our study.

1.5 Before-and-after studies

Before-and-after studies are generally conducted by governmental departments
to determine the impact of countermeasures either at a local or & global level.
They may investigate the effectiveness of some global countermeasure such as
new legislation, by state/county or entire nation; or the effectiveness of some
local countermeasure, such as the installation of some new traffic safety device
(traffic lights, new road design, etc). .

There is a multitude of papers discussing the success or otherwise of various
legislative measures, Seat-belt legislation, drink-driving laws, age of licence,
and drinking age are some of the main measures considered over the last two
decades.

In particular, there are a number of papers (eg Peltzmann {1975)) which have
concluded that the eflect of countermeasures has been swamped by a steady
downward trend in fatalities during the last two decades.

1.6 Explanatory models

These models have been considered in international research much more than
time series models, but considerably less than before-and-afier studies or in-
depth accident analyses. According to Hakim et al (1991), explanatory models
have two main advantages:

» They provide understanding about the causes of accidents.



e They provide a basline for evaluating the effectiveness of countermeasures.
There are several types of models identified in the literature:

1. longitudinal models, often called time seties models

2. crosssectional models

3. pooled crosssectional and longitudinal, or spacio-temporal models

Hakim et al (1991) pointed out the advantages and disadvantages of these
different types. It is hard to control for geographical differences, such as climate,
lifestyle, ete, in cross-sectional analyses. With annual longitudinal data, at least
30 years' worth of observations are required to provide the minimum database,
and a large time trend appears to dominate most of the variability in annual
series. With monthly longitudinal data, the number of years of data required is
much smaller but less countries/states collect data on a monthly basis than on
an annual basis.

1.7 Predictive models

Often regression models have been used to predict fatality rates or numbers in
future years, eg (Partyka 1984, 1991). Hakim et al (1991} gave a good review
of models used for prediction, and the problems associated with using them.
They considered both regression-type models assuming an independent error
structure, and ARIMA or structural models which do not assume independent
error structures,

Relatively little has been done in this area, even overseas. Most of the work
in using time series models (with autocorrelation error structures as opposed to
regressions with trend and monthly effects) was prompted by & need to model
the impact of legislation, such as seatbelt or speed reduction.



Part I
Choice of response variable

2 Exposure

The tesponse variable used in an analysis is often the raw number of fatalities,
fatal road crashes or accidents. Two other forms of the teponse vartable, which
are thought to be especially useful when comparing fatality rates in different
geographic regions/counties:

1. fatality rate per head of population: especially from a health or epidemi-
ological point of view

2. fatality rate per vehicle mile travelled: attempts to balance the differences
between areas with relatively little vs large amounts of travel

2.1 Relating road deaths to motorization

Since Smeed’s influential paper was published in 1949, there has been much
work and controversy on the relationship between the road death rate—as mea-
sured per head of population. or alternatively per registered vehicle—and the
motorization level—the nuinber of registered vehicles per head of population.
The comparison of road death rates between different countries was a large area
of interest in the fcllowing years. In particular, work was done on compating
the road death rates betueen developing and developed countries. Ses Haight
(1980), Jacobs & Cutting {1936), Jacobs & Hards (1977), Mekky (1985), Smeed
& Jeffcoate (1970) and Wintemute (1985) for example.

2.2 Smeed’s equation

Smeed (1949) obtained the fellowing well-known equation relating D the num-
ber of deaths due to road accidents, V', the number of vehicles, and P, the
population, using least squares analysis:

D/ P =0.0003(V/P)?
and then derived, via simple algebraic manipulation,
D/V = 0.0003(V/P)~33

According to Weiss (1983), Smeed’s law of traffic safety, which was derived
from a set of 1538 data, was a result that is ‘still cited and that is apparently
still valid.’ He found that it still "gives a satisfactory fit’ to more recent data
from 1980, as shown by Adams (1985),

10



Smeed’s 1949 paper has had considerable impact in the field of road safety,
especially since it was one of the earliest attempts to quantify the relationships
between road fatalities and easily obtained macro-data. We have found numer-
ous references to his work in the road safety literature, Not only have researchers
applied his model to their own data, but they have alsc used his model as a
basis for more complex models incorporating the effects of population size and
the number of vehicles for different countries and regions within countries. See
Hampson (1982), and Preston (1982).

However, in the last decade, the accuracy of Smeed’s formula has been ques-
tioned by many, including Haight (1980), Jacobs & Sayer (1983}, Wintemute
(1984), Mekky (1985) and Andreassen (1985). In particular, Andreassen (1985)
conducts a thorough review of the theoretical basis for Smeed’s formula and
finds many problems:

o The original regression is different in form from what is known as Smeed’s
formula. To obtain the formula, the equation containing the coefficients
estimated by least squares was simply elgebraically manipulated. This
rendered suspect both the values and the accuracy of the coefficients of
the new formula.!

e The equivalence of the different forms of Smeed’s formula was a coinci-
dence, due to the data set used and rounding performed.

¢ The formula encouraged people to assume that P and V account for sall
the variation in D.

Andreassen (1985) then proceeded to show that:

e The values in Smeed’s {formula were not applicable to many different coun-
tries.

e Deaths per vehicle was not a good basis for international comparisons.

Despite the fact that the coeflicients derived in Smeed’s formula are not
always applicabte, Weiss (1985} reminded us that ‘his work is important in
introducing a way of thinking about traffic problems on a large scale.” Minter
(L987) echoed Andreassen (1985) in suggesting that separate constants might be
required for different countries, but commented that ‘Smeed’s formula still gives
remarkably good prediction of accident rates over a wide range of conditions.’

In a later paper, Andreassen (1991} further investigated the problems with
the application of Smeed’s ‘formula’ to various data. In particular, the problem
of spurious correlations between independent and dependent variables may arise
when one variable is used to calculate both the independent and dependent
variables.

Another problem with Smeed’s model was that the measure of goodness-of-
fit was not significant at the usual levels.

INote that when these approximations were made, the advenced computing regression
tools of today were not availabie to allow simple changes of the regressed variable.

11



2.3 DMotorization level

Mekky (1985) defined the motorization rate m as follows:
= [(Me=yl/n_ 2
m_[{mo} 1]*100

where my, is the final motorization rate, mg is the initial motorization rate, n is
the number of years during which the change in motorization level took place.
Then the number of rcad fatalities of several countries in a given year was
given by a Smeed-like formula:
F 1-%
==
= =a(5)
where V' is the number of vehicles, F is the annual fatality 1ate, P is population.
The elasticity, &, of the annual fatality rates of several countries, F, was
regressed on the motorization rate:

b=a+8m

The regression was highly significant for rich developing countries, and mod-
erately significant for industrialised countries during the fifties. Thus, the ong-
inal hypothesis that rich developing countries experience worse road fatality
rates than already developed countries was not supported by this evidence.

2.4 Exposure

A numbet of in-depth studies have considered the probability of a fatality given
the amount of exposure a person has had on the roads. It seems reasonable
that if a person only travels once a week, they are less Likely to be exposed to
dangetous situations, than someone who travels every day. On the other hand,
someone who travels regularly should have a better technique than someone
who travels irregularly!

Jovanis & Chang (1989) wrote:

*A study of accident occurrence alone is generally not sufficient to
obtain a complete understanding of accident risk. This is because the
occurrence of accidents, as reflected in accident reports, for example,
must be compared to the number of opportunities available to be
involved in an accident.’

The amount of exposure could be measured by the hourly traffic volume,
as done by Oppe (1379), Ivey et al. (1981), Ceder & Livneh (1982); average
daily traffic volume and total VMT as described by Jovanis & Chang (1986).
Other measutes used include: travel speed as done by Hall & Dickinson (1974},
Lavette (1977); tonne-miles; passenger-miles; vehicle registrations; weather and

12



vehicle type from Jovanis & Delleur (1983); sales of gasoline, eg Fridstrgm &
Ingebrigtsen (1991); and population.

One of the main problems identified was how to combine exposure, which is
aggregated on a daily, weekly, monthly or most often yearly basis, with accident
data, which is discrete by nature.

Johnson & Garwood (1971} offered the following opinions on the advantages
and disadvantages of many different measures of exposure.

Measure When appropri- Comment

ate
per head of pop- pedestrian data  vehicles contain one or more oc-
ulation cupants

per oceupant km  effect of age im- exposure levels per head of popu-

portant lation varies more with age than
it does for pedestrians

per km road indicates  ideal
[ocation for re-
medial measures

per vehicle kilo- compares differ- allows for traffic flow

metres travelled  ent types of road

Jovanis & Chang (1986) included automobile and truck VMT derived from
a toll collection systern, ihe weather as measured by average hours of snow and
rain for the toll road, and a weekend binary variable as explanatory variables.
They retained all but the weekend variable as valid coefficients in the resulting
loglinear regression.

See the section on Problems with Regression Models for a discussion of the
statistical problems with the use of simple ratios to represent risk.

2.5 Risk compensation

The paper by Fridstram & Ingebrigtsen (1991) considered two basic types of risk
compensation. The first theory, advocated by Peltzmann (1975) and Andreassen
{1991), is that the relative accident risk to road users who are not benefited by
the intraduction of a particular legislation or countermeasure may increase, yet
result in no change in the overall risk to road users of all types. Thus the response
variables need to be disaggregated by road user type to obtain a clearer picture
of the effects of the explanatory variables on different road users.
Alternatively, drivers may change their behaviour in response to changes in
their environment, including attempts to increase road safety, such as changes in
legislation. This change in behaviour may mean that drivers are less careful in
a safer environinent, and thus make the roads less safe far pedestrians and other
non-occupants of motor vehicles. Since it was difficult to measure these changes

13



in behaviour, an indirect method to account for them was used. It involved the
simultaneous regression of the number of fatal crashes and the number of fatal
casualties per accident (also referred to as the gravity index) on the same group
of explanatory factors.

The authors’ results were not conclusive. The propottion of new drivers
was the only explanatery variable whose effect was opposite for the number of
crashes and the gravity of crashes. The effects of snowfall, road improvement
and wine consumption were opposing for the iwo response variables, but not
significant in explaining the gravity of crashes.

The nwodel form used by the authorsis discussed in more detail in section 8.3
and a summary of the results for various explanatory variables can be found in
section 6.

2.6 Hazard models

In a later paper, Jovanis & Chang {198%) used a hazard model to incorporate
this idea of risk {or differing amount of exposure.)
There are a number of different hazard models to choose from:

Independent competing risk model Under this model, the failure of one
risk component would cause a traffic accident. However, it is widely ac-
cepted that most traffic accidents have many contributing factors. See
Treat et al (1977) (or example. Also, it is hard to precisely define the
failure of a risk component such as weather and road conditions.

Accumulative hazard model Each individual risk component contributes some
hazard to the system depending on its level. Hazards accumulate and the
system fails when the cumufative hazard level reaches a threshold value.
This model would be appreptiate when the levels of all the risk compo-
nents may be easily measured; and each individual risk component does
have some effect on system failure.

Latent system hazard model Here the probability of a failure at time ¢ is
determined by the total hazard contributed by the level of each risk com-
ponent at that particular time. This overcomes the problem of defining a
‘failure’ for risk components, and also of specifying the specific causes of
accidents.

The population used was a fleet of trucks in the US, since the levels of the
various risk components were adequately recorded. They modelled the proba-
bility that a vehicle survives until tiine ¢ in both an additive and a multiplicative
latent hazard model.

The individual risk components included were: winter, night, age, weight
& experience of the driver, hours driving in the last 8 days, and recent hours
off. They feund that the risk of a severe accident is strongly related to driver
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experience and environmental factors (winter, night), whereas the risk of minor
accidents is related most strongly to the number of hours driving.

Chang & Jovanis {1990) extended their hazard model further to account for
a number of trials.

The authors noted that since accidents are such rare occurrences, an en-
riched sampling of failure vs censored data would be required. For instance,
the authors mention that Chang (1987}, in a study on truck accidents, required
6000 nonaccident trips to obtain a risk factor that significantly contributed ta
accident occurrence.

2.7 Induced exposure Index

Janke {1991) showed how exposure should not be represented by a simple num-
ber of accidents to VMT ratio, which may inflate the exposure risk of people
who generally are only involved in short trips. Short trips usually remain within
the city and residential areas, involving more stop/starts and much denser traf-
fic. Longer trips comprise maostly {reeway travel, which has been shown to have
a lower rate of accident incidence than nonfreeway travel. Janke cited evidence
from the California Bus, Transportation and Housing Agency.

Furthermore, a linear relationship between mileage and the number of acci-
dents could also inflate the nsk.

Cerrelli’s induced exposure method (1973) used a hazard index:

liability

exposure

hazard index =

where

% mnocently accident-involved drivers in a category
% licensed drivers in a category

exposure index =

and
U accident responsible drivers in a category

liability index = %% licensed drivers in a category

The main problemn with tlis method was thai assigning respousibility for
the accident could be highly subjective, and vary widely between different ob-
servers, both within the swme region, and from different regions, Wasielewski
& Evans (1985) created an induced responsibility model similar to Cerrelli’s
induced exposure model, but relaxed the assumption that only one driver is
responsible. They assigned different degrees of responsibility to crash-involved
drivers. Nevertheless, it remained a highly subjective measure.
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Part II
Choice of explanatory variables

3 Before-and-after studies

These papers are of interest to our Investigation because the models used often
can be applied in an explanatory context. Over the last decade, the techniques
for comparing road fatalities before and after some countermeasure has been
introduced, have become more sophisticated.

3.1 Simple before/after comparison method

The simplest, most naive method, consists of fitting a simple regression line
over time to the data, and determining whether the slope is different before and
after. (See Brinkman (1986). } Recently, however, more explanatory variables
have been incorporated into the regression before determining whether there
has been some change. Wagenaar (1984), for example, suggested that economic
factors may overwhelm the effects of legislative countermeasures, as supported
by common health literature findings that ‘negative changes in economic con-
ditions, such as increasing unemployment rate, are associated with increased
incidence of health problems.’

Persaud (1986) believes that many traffic engineers hold the misled belief
that the effectiveness {or reduction in accidents) of a safety measure depends
on the number of accidents at the location before installation of the counter-
measure, and that the established effectiveness of a safety device may often be
attributed to the ‘regression-to-mean’ effect.

This ‘regression-to-mean’ effect is such that it is entirely due to chance that
high values may be observed before a change, and low values afterward. A good
explanation of this effect can be found in Hauer (1%86), p3. Given a random
variable which fluctuates around its mean, the best estimate of a future value
of this random variable is just its mean. So even if we cbserve an unusually
high value at a particular time, then we still expect the following observation
to be the mean. Hence, a downward trend towards the mean is observed after
an upusunally high value is observed.

A paper by Brinkman (1985) outlined the dangers inherent in using these
simplified before/after evaluation techniques. He advocated the use of some
basic statistical principles: using data over as long a time period before and
after, as is possible; randomised control groups; comparison groups (matching);
time series designs; empirical bayesian statisties.

An earlier paper by Johnson & Garwood (1971) suggested that there should
be ‘allowance for growth of traffic, weather, changes in legislation’ and that ‘the
seasons he equally represented.’
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3.2 More sophisticated techniques

Fortenberry et al. {1985) described a ‘nonparametric quasi-experimental’ method
for evaluating countermeasures. The response variable was observed for two
different locations: a treatment (with intervention), and a control. They par-
titioned the observations before and after the intervention as the baseline and
operational period respectively. Then a regression line was fitted to the baseline
and operational period separately for each location. They proceeded to compare
the amount of deviation from the regression line for the operational pericd of
each location using a form of the Wilcoxon statistic. Nevertheless, the statistic
they derived was still based on a simple regression over time,

The Expert Group on Road Safety {1978) used contingency table analysis
to compare before and after accident rates. They also used the rest of Australia
as a control when considering data for Victoria, which was the first state to
introduce compulsory seat-belt wearing. However, the authors decided that
the responses from the other states were confounded by the effect that the
widespread publicity of Victoria's new legislation obtained.

Danielsson (1986} proposed that the effect of countermensures may be over-
inflated if the only sites where the number of accidents were measured were those
notorious for having high accident levels, The author based his method on that
used by Hauer (1980a). The number of accidents before the countermeasure was
modelled as a Poisson distribution with parameter A; for the ith geographie lo-
cation affected by the countermeasure., The number of accidents occurring after
the countermeasure was also modelled as a Poisson distribution with parameter
al;, where a represented the proportional change in the accident rate.

Danielsson compared the performance of three estimatots of the number
of accidents after the countermeasure was introduced. The traditional estima-
tor lost 30% efficiency; the maximum likelihood estimator was very accurate,
independent of the true value of a and also best for large values of «; and
Hauer's estimator underestimated the effect of the countermeasure, although it
performed well for small a.

3.3 Arguments against the effectiveness of countermea-
sures

Several authors, especially Peltzmann (1975) and Minter (1987), have suggested
that the fatality rate is decreasing irrespective of any changes in legislation.
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4 Regression analysis

In the road safety literature, it has become more common for tesearchers
to characterise studies by the way in which the variables of interest have been
observed. This gives rise to three ‘types of studies’:

e longitudinal studies (often referred to as time-series studies), where the
observations are obtained from regularly spaced time periods, measured
at the same location. Here the emphasis of the study is how the variable
is changing over time.

s crossectionai studies, where the observations for particular time periods
are gathered from diflerent geographical locations. Here the emphasis
is on determining whether the observed phenomenon recurs in different
locations.

» pooled crosssectional longitudinal studies which intend to look at the effect
of both the geography and time on the variable (hence the term spacio-
temporal.)

Zlatoper (1989) presented a ‘selective survey’ of the United States literature
on road crash fatality rates. He began with a description of a pivotal study by
Peltzmann (1975). Its controversial finding, that there was no decrease in road
fatalities after the implementation of new legislation, spatked many criticisms.
Peltzmann’s study is an ideal example of the typical regression analysis of road
crash fatalities, and the subsequent criticisms illustrate the many finer points
which need to be considered.

This paper is alsc of uterest because it supports the unpopular view that
road fatalities are decreasing anyway, irrespective of new legislation. See the
section on Before-and-After analysis for more discussion on this long term down-
ward trend in {atalities

4.1 Peltzmann’s initial model

Initially, the response variable in Peltzmann’s (1875} model was the annual fa-
tality rate per vehicle mile, standardised for type of driving {urban, rural) and
for the type of road (lughway or other). Three different road crash fatality
rates, also called moter-vehicle death rates, in the US were modelled: total,
non-occupant (pedestrians, bicyclists, motorcyclists) and vehicle-occupant (to-
tal minus non-occupant). The study compared annual data from prelegislation
years, 1947-1965 to postlegislation years, 1966-1972.
The explanatory variables used were as follows:

Cost of an accident In otder to measure the cost component of an accident
that is typically insured, the author used the index of direct accident costs
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(property damage and medical costs) multiplied by an insurance loading
factor (ratio of premiums to benefit paid.)

Income The real earned income per adult over fifteen years of age.

Alcohol The alecoholic intoxication level amongst the population at risk was
measured by the consumption of distilled spirits per persons over fifieen
years old.

Driving speed was measured by the estimated speed of motor vehicles on
noninterstate roads during offpeak hours.

Youth The driver age distribution was represented by the ratio of 15- to 25-
year-olds in the population to older people.

Trend

4.2 Criticisms

Correlation between explanatory variables Joksch (1976) found that the
income, time trend, and speed variables were highly correlated. Robertson
(1977) noted that the paired correlations between the explanatory variables
differed in the prelegislation and postlegislation periods. Peltzmann (1976) used
first differences to avoid these correlations.

Other methods used to remedy multicollinearity are: obtaining more data,
identifying relationships between the explanatory variables, and cmitting one of
the correlated variables.

Choice of response variable: rates or raw totals? Joksch (1976) echoed
many critics of Smeed {1949) in questioning the validity of the use of a fatality
rate as a regression response variable. Basically, nsing the ratio of two variables
as a response variable assumes a linear relationship between the two. If this
assumption is wrong, then additional correlation may wrongly be introduced
into the model.

In reply, Peltzmann (1976) investigated two things. First, the number of
fatalities was regressed on vehicle miles. A regression coefficient which was
insignificantly slightly less than one was reported. However, it was noted by
Robertson {1977) that this coefficient was not significantly different from zero
either.

Secondly, the number of fatalities was used as the response variable in the
initial model. This produced a similar pattern in the regression coefficients as
obtained when the fatality rate was used a response variable.
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Unstable regression Joksch (1976) also found that the regression was un-
stable after performing a validation analysis. The coefficients of some regressors
were not consistently significant under a slight change to the model, for example,
addition or deletion of other regressors, or a change in the functional form.

Omitted variables The major criticism was that various important variables
had been omitted {rom the regression. Thus, the change (or lack thereof) in
fatalities, could not solely be attributed to the introduction in legislation, since
Peltzmann’s initial model only accounted for six other factars. Furthermore,
the estimated effects of the factors that are included in a model could be biased
if important variables are not accounted for, Other variables suggested were:

Graham & Garber (1984) vehicle size distribution, no-fault in-
surance

Joksch (1976) highway improvements, weight and
size of vehicles

Zlatoper (1984) volume of driving, vehicle size, type of

driving as measured by the ratic of ru-
ral to urban vehicle miles
Garbacz (1985) miles of interstate highways

Correct measurement of the desired variables Robertson (1977) ques-
tioned whether the cost-of-an-accident variable was a valid measure of crash
costs, and suggested alternative expressions for a few of the other variables.
The alternative measurement [or ‘youih’ of the driving population was the ra-
tio of drivers in the 15-24 year cld age group to the total number of drivers
involved in accidents The percentage of matorcycles registered as compared
to all vehicles registered vould account for the shift in risk {rom occupants to
non-accupants. The alcoha] measure could account for beer as well as distilled
spirit consumption

The author found that the correlation problem was no longer present, and
that the impact of legisiation was significant when the definitions of these vari-
ables were used. Peltzmann commented that data-dredging will often produce
the required results, and noted the arbitrary nature of the definitions, question-
ing their theoretical justification.

Choosing the correct functional form Graham & Garber (1984) found
that the model was sensitive to the functional form used. They suggested that
a logatithmic form may be incorrect, and that the lincar form should at least
be investigated.

Identifying luerarchy of relationships amongst explanatory variables

Instead of using just ome regression equation relating all of the explanatory
variables, a number of authors have suggested the use of simultaneous regression
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equations. (See Zlatoper (1989) and Hakim et al (1991) for more details.) Some
explanatory variables could be regressed on others to obtain estimates of these
variables to be used in the {atality regression. This also ensured that prediction
could proceed more smoothly, since predicted values of the regressors could be
used in the main regression equation.

4.3 Crosssectional studies

Even though the emphasis in these studies is not the pattern in fatalities (or
fatality rates) over time, they still offer interesting suggestions for the choice of
explanatory variables.

Peltzmann's {1975) model used the following variables to explain fatality
rates for 1970 in different states of the US. The per capita death rate, adjusted
for the effects of interstate highway travel was related to:

e the fraction of all cars, of which had been subjected to the new motor
vehicle regulations, or younger

e per capita fuel consumption

¢ speed limit on main rural roads

e ratio of urban to rural driving

e vehicle mile in urban and rural context

e alcohol, youth, accident cost variables as described above
e disposable income per capita

o ratio of earned income per adult to unearned income per capita
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4.4

Problems with regression models

Hautzinger (1986) outlined a numnber of points to be careful of when performing
a linear regression:

o A high value of R? does not necessarily indicate a good model.

® A sound theoretical basis is required for the structure of the model and

the choice of the explanatery variables.
Maulticollineatity between variables should be checked.

Autocgorrelation of errors, and instability of error variance should also be
checked.

High level aggregaticn should be avoided wherever possible as this reduces
the sample size, often to less than twenty.

Standard linear regression models should not be applied to data disaggre-
gated by geographical location; instead multitegression or temporal cross-
section models should be used since they allow for decomposition of error
terms into components. Otherwise, estimation, inference and forecasting
may become inefficient.

In longitudinal studies over time, the significance of terms must be main-
tained even {or different base periods.

Some other criticisms of models, presented by Mahalel (1586) and An-
dreassen (1991) among others:

The risk to an individual driver or passenger is often characterised by
a stmple number of accidents to the amount of exposure ratio. However,
this requires a linear relationship between the numerator and denominator,
which may cause some problems if risk varies with exposure level.

Some systems function more effectively at certain levels of exposure and
less effectively at others. For example, traffic light reduce accidents in
high traffic volume areas but often increase the number of accidents in
low traffic volume areas.

Spurious correlations may be introduced into the model if any two vari-
ables are related to a third varniable.

The number of fatal crashes should be used in preference to the number
of fatalities, since the latter is a function of the former, and most of the
explanatory variables used by reseatchers actually affect the number of
fatal crashes, not the number of fatalities.

The number of crashes should be disaggregated by road user type. Pedes-
trian and motor/pedal cyclist deaths have been shown to behave differ-
ently to motar velicle deaths.



5 Economic relationships

The state of the economy is known to affect many different phenomena. A
number of researchers have included economic variables in explanatory models
for road safety.

Foldvary et al (1971) found a relationship between economic trends and road
accident trends in the Australian context, He stated that ‘stump conditions dis-
couraged inexperienced drivers from entering the dniving population, and these
were the drivers with the worst driving record...the total milage travelled during
a slump would be less.” So, he suggested that an ideal covariate for measuring
the extent of a slump would be the number of teenagers becoming eligible to
drive in a particular year. However, as this was difficult to obtain in practice,
Foldvary used the urbanisation rate, and the number of car registrations, to
explain the number of fatalities in a given year. Here, the urbanisation rate was
simply the percentage of the population which reside in urban areas. He found
that the log of the log of the fatality rate (per vehicle) varied linearly with the
percentage of urbanisation.

Aldman (1980) showed that ‘a curve representing business cycle variations
also fits the accident curve quite well’, when looking at monthly data.

Hedlund et al {1984} compiled results from other studies and FARS data for
1980 and 1982 to explain a 14% decrease in fatalities in the US. The authors
concluded that economic eilects, reflected by VMT, were the main contributing
factors, with driver-education, increased RDU and decrease in number of youths
having little effect.

5.1 Recession impact

A paper by Eshler (1977) related the state of the economy to the fatal accident
rate in the US. The work of Joksch & Wuerdemann (1973} was cited, among
others, as an example where a strong relationship hetween the economy and
fatalities was found.

The genetal econcmic measure considered was the delineation of recession
and non-recession periods as defined by the National Bureau of Economic Re-
search (NBER). Briefly, a recession pericd may be indicated by:

duration a decrease in the real Gross National Product (GNP} for twa consec-
utive quarters, and a decrease in industrial production over six months

depth a 1.5% decrease in real GNP, a 1.5% decrease in nonagricultural em-
ployment, and & 2 point rise in unemployment to a level of at least 6%

diffusion a decrease in nonagricultural employment in more than 75% of in-
dustries as measured over six monthly periods, observed for six months or
longer
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When graphed against the annual fatality rate, it was noticed that the re-
cession periods coincided with a ‘leveiling out' of the fatality rate. The author
also noted that the energy crisis of 1974 and the lowering of the speed limit at
approximately the same time would have affected the fatality rate.

The unemployment rate and the average number of hours worked were cho-
sen as more direct measures of the impact of the economy on drivers.

The resulting niodel was fitted in steps, but was equivalent to fitting a re-
gression model with a nonlinear long-term trend, which accounted for 83% of the
variation; a linear unemploynient term, which was significant; and the average
number of hours worked, which wasn't significant.

5.2 Indirect economic effects

Many suthors have found that the energy crisis in 1974 affected many different
variables which may have affected road safety. For instance, Godwin (1984)
found that gasoline prices increased, reduced speed limits legislation was intro-
duced, and even patriotic fervour may have altered the behaviour of drivers.

5.3 Unemployment

Cooper (1984) and Partyka (1984) found that unemployment was a strong pre-
dictor for the frequency of accidents. Mercer {1985) took this one step further
and incorporated several other variables as well as unemployment into a model
for the number of fatalities. The predictor variables used were:

» monthly unemnployment figures: for the percentage males and [emales,
aged 15-24 and over 24.

» monthly average percentage of passenger vehicle casualty accidents that
were alcohol-related. This was claimed to be more stable and therefore a
superior predictor than just the prevalence of Driving under the Influence
{DUI).

o monthly average monthly percentage of occupants in passenger vehicle
casualty accidents who were using restraint devices. This was claimed to
be underestimating the actual rate of restraint device usage (RDU} by
12-15%.

e monthly average age of drivers in passenger vehicle casualty accidents.
This average reflected the changes in age of the driving population as a
whole, but was considered to be of questionable validity.

» monthly average percentage males as drivers in passenger vehicle casualty
accidents.

o time (lineatr variable)
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Mercer then calculated Pearson’s correlation coefficient for each of the rela-
tionships among the predictor variables and the response variable (the number
of fatalities or the number of casualties.) Also calculated were the pariial corre-
lation matrices, designed to control for the effects of the unemployment variables
and for the effects of unemployment and driver demographics.

The findings were that as unemployment rose, the average age of drivers
in casualty accidents rose, and the percentage of males as drivers fell. This
was easily explained by hypothesising that unemployment incieases removed
young male dtivers from the driving population. The same change in driver
demographics was observed as RDU and DUI rose,

Mercer's conclusions were that

‘... changes in unemployment levels arguably produce changes in

driver demograplics, which then appear to be related more strongly
to changes in accident frequency and severity than are changes in
drinking driving and restraint device use ... changes in traffic ac-
cident figures must be considered within the context of economic
trends and driver demographics tn addition to driver-related be-
haviour such as restraint device use and drinking driving,’

Wagenaar (1984) suggested that there seem to be two different ways in which
unemployment may conceivably affect road safety:

1. High unemployment and the associated reduction in disposable income
could lead to decreased travel by private vehicle, and thus reduce the
number of road crashes, since the exposure to risk is reduced.

2. Alternatively, high unemployment could lead to more stress in the driving
population, which could in turn cause more aggressive driving, leading to
an increase in road crash rates.

Wagenaar alined to establish which of the above hypotheses were supported
by monthly data from Januury 1972 to January 1982 in Michigan, on the number
of drivers injured and killed in road crashes. A Box-Jenkins time-series model
was employed; details and conclusions are presented in the section on Time
Series analysis.

Partyka (1984} regressed the annual number of fatalities in the US on the
number of unemployed woikers. the number of employed wotkers, the size of
the the nonlabor workforce with an intervention variable for the 1974 fuel crisis
and the lowering of the US national speed limit.

The value of R? for this model was very high, 98%. Nevertheless, Partyka
warned us of the following limitations of the model:

1. The effect of omitted variables was not predictable. Some variables that
were omitted, such as improvements in roadway and vehicle design, and
driving habits, were difficult to distinguish from the long-term trend.
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2. The model only showed where a relationship exisied between variables,
and did not imply any cause and effect relationship.

3. Predictions beyond the range of the data would be unreliable.
4, The mode] assumed independent errors,

In a follow-up paper, Partyka {1991) explored how the extra data from 1983~
1889 affected previous results. The value of R? was virtually the same; and the
coefficient estimates varied only slightly and were still significant at the 1% level.

However, the actual fatalities for 1983-1989 were very different to those
ptedicted by the model based on the 1960-1982 data. Omitting the variable for
the number of employed workers gave slightly better results, but the predictive
power of the model was still not good enough. The additional data suggested
that ‘something new' happened in 1983, which could possibly be explained by
the increase in seatbelt use and the decrease in DUL

Reinfurt ef of (1891) also extended Partyka’s 1984 model in several ways.
They considered suicides and homocides as well. They stratified the fatality
data by age (16-24, 25-44, 45-64 and 65+4), race (white vs non-white}, and sex.
Two types of models were investigated: regression models based on Partyka's
1984 model; and structural time series models based on Harvey and Durbin
(1986).

The authors reported parameter estimates and standard ertors, and the value
of R? for a full regression model including Partyka’s unemployment variables.
These values were not reported for a model which did not include the non-
significant variables. They found that the best fits were obtained (0.70 < RB? <
0.95) for the models for the youngest and oldest agegroups, for both races and
both genders.

They found that an ARIMA model based on Harvey and Durbin’s (1986)
structural time series model was better at predicting short-term variation. Two
intervention variables, for the oil embargo and the introduction of the 55mph
speed limit, had a significant effect on fatalities. The only unemployment vari-
able included in this model was the level of employment.

It was interesting to note that the unemployment variables contributed sig-
- nificantly to motor vehicle deaths, but not to suicides and homocides.

5.4 Availability of medical facilities

The definition of a road {atality differs from country to country. It can range
from death at the scene of tlhe accident (in Spain) to death within 30 days of
the accident (in Australia.) In the intervening period between the accident and
death, the casualty is highly likely to be hospitalised, or at least examined by
a physician. Thus, the availability of medical facilities could affect whether 8
serious injury becomes a fatality.
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Jacobs & Hards (1977) found that fatality rates for several countries, in-
cluding the USA, were correlated with the level of medical facilities available,
expressed in terms of population per physician and population per hospital bed.
This model failed for a few developing countries.

The findings were as follows. As the number of vehicles or the vehicular
density increased, the {atality and casualty rates decreased. As the population
per hospital bed increased or the per capita Gross National Product (GNP)
decreased, the fatality rate increased. The fatality index was most significantly
affected by the population per physician, and to a lesser extent by the number
of vehicles and the per capita GNP.

Jacobs & Cutting (1986) extended Smeed’s (1949) paper. For several differ-
ent countries, for three separate years, they modelled log fatality and casualty
rates per registered vehicle, and the log fatality index, the gravity index, the
proportion of all persons injured who are killed. The explanatory variables con-
sidered were: vehicles per km road, road density (km road per km?), vehicles
per person, GNP per capita, population per hospital bed, and population per
physician. Three different response variables were investigated: the log fatality
tate (pet million vehicles), the log casualty rate (per million vehicles) and the
log fatality index.

Vehicles per person were highly significant contributors to the increase in
the three different response accident indicators. In addition, GNP per capita,
vehicle density, and population per hospital bed, were found to be significant
contributors to the fatality rate. Population per hospital bed was also the most
significant contributing factor to the increase in fatality index.

Lave (1985) found a negative, sometimes significant, effect for access to emer-
gency medical facilities on 1cad fatalities, when accounting for other variables.
See section 6.3 for more details on the model used.

5.5 Investment into traffic safety Facilities

The model used by Murata (1989) accounted for the stock of traffic safety
facilities, the annual budget normalised by the Gross National Product (GNP)
and the total trip length {VMT)}.

N
Sy =Sp+ ) Beexp-Xt

t=0

whete Sy = stock of traffic safety facilities after V years from the initial year;
Sp = stock existing in the initial year; B, = yearly budget; A is a parameter to
be estimated. Both stock and budget were expressed as the proportion to the
GNP. Ther, to relate this relationship to the number of accidents every year,
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where ! was the year; E, was the estimated number of accidents; T, was the
total trip length (VMT); 5, was the safety stock as estimated from the equation
above; and k was a constant.

Hence,

11
B =kT/{So+ > Biexp—Ali — to)}
1=tig
where 15 was the initial year, and £ then represented the effectiveness of the
traffic safety {acilities in prevention of accidents,

Frigstram & Ingebrigtsen (1991) calculated monthly indices describing the
relalive increase in road capital by country and national authorities per km road
length in Norwegian countries. Investments in county roads increased safety, but
decreased for nationally-controlled roads. The authors did not expect to obtain
this type of result, and suggested that classification error between county and
national roads may have iniluenced the results.

5.6 Soclioeconomic variables
5.6.1 GNP

Road fatalities are generally expected to rise as GNP increases according to
Havard (1979) and Haight (1980), for example. Wintemute (1985) used an
epidemiological argument to explain this. At specific levels of economic devel-
opment, nations experience: a demographic transition, when infant mortality
rates and fertility rates decrease; apd an epidemiological transition, when in-
fectious and nutritional diseases are less common than chronic, degenerative
conditions. Thus, as nations achieve this level of socioeconomic development,
their use of motor vehicles increases.

Since the per capita GNP is a ‘widely relied upon indicator of development’,
appropriate indicators of the sociceconomic development level were taken to
be: the per capita gross national product (PCGNP); income distribution, which
could be measured by the Gini indicator; and the population. The Giniindicator
is a number between 0 and 1, where higher values indicate a large deviation from
a uniform income distribution.

A direct but weak correlation was found between economic development,
as measured by the PCGNP and motor-vehicle mortality. The relationship
was strongest for low development (low PCGNP). Thus poor and intermediate
countries had rapidly increasing motor vehicle martality rates. It was also found
that for the poorer countries, the income indicator accounted for much of the
variation in fatality rates. Wintemuie suggested that the income distribution
may be related to the level of urbanisation.

The author cited Jacobs & Sayer (1983) who suggested that the model may
be extended by considering geography, climate, level of urbanisation, traffic mix
and flow, infrastructure and development, availability of medical services, and
cultural trends.
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5.6.2 New car registrations

Hautzinger (1986) looked at how the general socio-economic climate could affect
the annual rate of accidents amongst insured people covered by a large insurance
company. It was considered appropriate to use general population measures
since the company’s marketshare was relatively large. The authors considered
a number of socio-economic measures:

o total annual car mileage

e aggregate income variates

e the number of new car registrations
¢ consumption of privale households
e price indices

e labor force data

Finally, two models were chosen. The first modelled the accident rate in
year t as a loglinear regression model incorporating the effects of time and the
seasanal effect of the time series of car registrations (ratio of the number of new
car registrations in year t to the corresponding trend value.)

Two different base periods for estimating the regression coefficients were
used: 1961-1982 and 1970-1982. The coeflicient for the time trend was signifi-
cant in both cases, but the coefficient for the seasonal effect of new car registra-
tions was significant only for the shorter base period. The R? value decreased
from 0.84 to 0.54 as the base period was shortened. The Durbin-Watson statis-
tic for the shorter base period was significant, indicating the possible existence
of autocortelation. This prompted the use of growth rates.

The growth rate of the accident rate was regressed on the growth rate of
the seasonal effect of new car registrations. (The growth rate of ¥; is AY; =
(Y:=Yi.1)/Yeo1.) An R? value of 0.17 was obtained for the longer base period.
However, the coefficent for the change in new motor vehicle registrations was
significant over both base periods. Furthermore, the Durbin-Watson statistie
indicated that the autocorrelation had been reasonably accounted for.

This mode! for accident rates was then used in a supermodel for accident
damage costs.

Fridstrzem & Ingebrigtsen {1991} lound that the proportion of new drivers
adversely affected safety, yet unexpectedly favourably affected the severity of
crashes, This could be due to the reduced speeds of inexperienced drivers, which
would lead to decreased severity of crashes yet possibly cause more crashes,
However, previous studies, such as Wasielewski (1984), found that speed was
inversely related to age and/or experience.
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5.7 Discontent

Sivak (1983) found evidence to support the hypothesis that as violence and
aggressiveness in society rise, the number of injuries in road crashes increases.
The author measured the level of violence by the number of violent and property
crimes, the number of police calls for domestic disputes, suicide rates, and the
number of worker sirikes.

5.8 Youth

Wagenaar (1983) finds that a higher minimum legal drinking age is associated
with lower fatalities amongst young drivets in various US states.
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6 Other explanatory variables

Apart from economic considerations there are a number of other explanatory
variables which have been investigated by various researchers,

6.1 Level of vehicle inspection

A number of studies have considered whether the level of vehicle inspection
has affected the numbers of road fatalities, in varying degrees of sophistication,
One of the first studies in this area, Mayer & Hoult (1963), looked at whether
four different categoties of inspection in different states affected fatalities over
a period of twelve years. Buxbaum & Colton (1966) based their analysis on
Mayer & Hoult, hut included extra variables, namely gasoline consumption per
vehicle, and the nuinber of vehicles.

Fuchs & Leveson (1967) included many more econometric variables: age
of driver, education, median income, fuel consumption per capita, population
density, alcohol consumption per capita, socio-economic variables and a binary
variable for inspection. The result was a non-significant contribution from the
level of inspection.

A more recent study by Loeb & Gilad {1984) used an even more complex
regression on among others, the annual number of deaths, and the death rate per
VMT: time variable as an indicator of technological change, maximum highway
speed, gasoline consumption, the number of licences revoked for DUI, per capita
personal income, population, the number of motor vehicle registrations, the
number of licenced drivers, vehicle mileage GNP price deflator, inspection level,
dummy variable for World War II and the great depression. They found that
time, personal income, population, level of inspection and World War II made
the most significant contributions to the regression.

Garbacz & Kelly (1987) investigated the impact of compulsory motor vehicle
inspection with the inclusion of three explanatory variables representing three
levels of inspection: biannual, annual and spot. The basic model was taken
from Garbacz (1985), where a double-log functional form was used for all of
the variables. Fatality rates for three categories of road user were modelled:
total, occupant and non-occupant. The explanatory variables used were: the
teal disposable income per driver; weighted sum of the medical care and auto
repair services indexes of the CPI; Peltzmann’s youth indicator; per capita con-
sumption of spirits, wine and beer adjusted for alcohol content; ratio of vehicles
equipped with regulated safety equipment; dummy variable for 55mph speed
limit legislation; miles of interstate highways.

Five models were investigated: three separate models for each inspection
level, one model including all inspection level variables, and one model including
the ratio of the vehicles subjected to any inspection level to the total number
of registered vehicles.

The authors found that income, alcohol and youth had a positive effect on
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the fatality rate, whilst accident-cost, ‘safe’ vehicles, speed limit legislation, and
interstate highway variables had a negative effect. Apart from the alcohol and
income variables, all regression coefficients were significant at the 10% level or
less. However, inspection level did not appear to affect the fatality rate.

White (1986) used local variables such as the age of the driver and time
since vehicle was last inspected to explain fatalities. Conflicting results were
obtained.

Fridstrgm & Ingebrigtsen (1991) found that less roadside technical controls
were associated with increasing occupant injuries and decreasing nonoccupant
injuries. This supported the hypothesis that increased perceived safety of drivers
results in lowered safety for other road users.

6.2 Rural and urban speed limits

Godwin (1984) showed that a change in fatality tate varied linearly with a
change in the posted rural speed limit.

This was followed with a study by Fieldwick & Brown (1987) which con-
sidered the relationship between the number of fatalities and the number of
casualties and several regression variables: populatien, the number of vehicles,
and the general urban and rurai speed limits. The urban limits were divided
into three categornes: motorways, roads and others,

The results were as lollows. The number of vehicles was highly correlated
to population and both of these variables were highly correlated to the number
of {atalities and the number of casualties. The three rural speed limits were
moderately correlated (from 0.52-0.553). Surprisingly, rural and urban speed
limits were almost independent, and both were independent of population and
vehicle numbers. The final regression equation, based on the log of fatalities,
included coefficients for pepulation, the urban speed limit, and a combined rural
speed limit.

6.3 Variability of speeds

Hauer (1971) found that it was the vaziability in the speeds of different vehicles
on the highway which increased the probability of an accident, as opposed to
absolute speed. However, as speed increased, driver reaction times decreased
and the force of impact increassd, also contributing to higher accident risk.
Thus Godwin (1984) proposed a model of the chonge in the fatality rate, as
a linear function of the change in posted speed limits. A significant positive
contribution {rom the change in posted speeds to the change in fatality rates
was found.

Lassarre (1986) used a loglinear regression model with an ARIMA error
term to model the monthly number of accidenis and deaths in France. The
model used is described below in section T.1. The study found that as the
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variability in speeds rose, so did the number of fatalities, in accordance with a
study mentioned earlier, Godwin {1984).

This led to the conclusion that homogeneous speeds increase road safety. The
seatbelt wearing variables were found to be insignificant, although the traffic
volume index was found to be significant. A large residual was attributed to
other factors which had not been taken into account: the improvement of roads
and vehicles and emergency lhospital services over time.

Another study investigating the effect of the magnitude and the variability
of speed of fatality data was Lave (1985}. The fatality rate per VMT, for six
different types of road, was linearly regressed on: average speed; speed variance
(85th percentile minus the average); speeding citations per driver; and access
to emergency medical care.

This author also found that average speed had no significant effect on the
fatality rate, although speed variance had a positive and significant effect. Hos-
pital access had a negative effect which was significant for only a small number
of road types.

Hakim et af{1991) couciuded that the independent effects of speed limits and
speed variability still needs to be resolved, after citing the literature following
Lave's controversial findings

6.4 Public transport fares

It seems sensible to suppose that if the public transport fares were fairly rea-
sonable in cowparison to motorization costs, then people would be more lLikely
to use this forin of transport in preference to private means. If not, they may
have to resort to driving their own car, walking, tiding a bicycle, or hitching a
ride with a friend. This would then transfer some of the potential car drivers
to other types of road users (pedestrians, bicyclists, passengers) and may then
affect the overall fatality rute. Alternatively, public transport fares are loosely
connected to the economic climate, which may also have an effect on fatalities.

One of the first papers to look at the effect of fares in the British transport
system was Oldfield {1877}. In another study, Allsop & Turner (1986) modelled
the monthly number of casualties, fatal & serious and slight, from January 1978
to April 1983, The explanatory variables used were:

o the real level of London transport (LT) fares (after adjusting for general
inflation using the Retail Price Index)

o trend over time (a proxy for all other time-varying effects)
e month of year {sensonal eflects)

o lying snow? (since this changed from year to year)

2the number of days in the month when more than & trace of snow was lying in St James'
Park at 9am
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e real level of British (BR) rail fares (as distinet to LT)
o real level of pump prices of petrol

¢ number of working days per month on which there was a large scale strike
in the BR service

e dummy variable for the change of fare in April 1962 onwards. This fare
change was siguificant: double the previous fare levels.

A log-linear regression was used to incorporate all of these explanatory vari-
ables as well as a constant, and a severity and monthly effect, since the effzcts
were deemed multiplicative,

Also considered were lagged variables, interaction between explanatory vari-
ables and the severity or month effects, interaction between severity and month
effects. The response variables considered were the numbers of casualties for
several different types of road user. The findings were as follows:

1. LT fare increase in general led to an increase in casualties to cyclists and
to occupants of other vehicles and of cars and taxis,

2. The general eifect of LT fare changes on pedestrian casualties was weak,
There was strong evidence of an effect after an increase in the number of
casuallies alter March 1982.

3. For users of powered two-wheeled vehicles and occupants of PSVs, there
was strong evidence of a change after March 1982 that contrasted effects
of fare changes in general.

These findings could be explained in part by two factors: the walking as-
sociated with use of public transport was much greater than the extra walking
undertaken as an alternative to public transport together with the increase in
extra-vehicular traffic; and a shift from public transport to cats and cycles.

Some extensions to the model that were suggested by the authors were allow-
ing for the effect of legislation regarding seatbelts, use of powered two-wheeled
vehicles by learners; nonseasonal variation in wet weather; unemployment levels
in the Greater London district; and changes in levels of the LT series.

6.5 Airline deregulation

Bylow and Savage (1991) looked at the effects of deregulation on the airline
model using an econometric ‘structural’ models based on the assumption of
profit maximisation. The explanatory variables they considered were: the total
number of airline departures for commuter and jet aircraft; the number of miles
of interstate highway; the number of licensed drivers; the average speed of au-
tomobile travel; the real per capita GNP; the cost ratio of real air travel price
to real gasoline price.
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The Durbin-Watson statistic indicated that autocorrelation was not a prob-
lem. The authors obtained a high value of R?, although there was a large
degree of multicollinearity between the variables. They claimed that this mul-
ticollinearity did not affect the parameter estimates, and so the model could be
used for prediction purposes only!

An earlier paper, Evans et al (1990), compared the age and sex profiles
of airline passengers to those of the average driver and suggested that airline
passengers have a 24.1% lower fatality rate. This was conservative if these
people were more predisposed to wearing a seatbelt, refrain from drinking and
drive larger motor vehicles.

6.6 Holiday effects

Intuitively, it seems reascnable to suppose that on public holidays there is a
marked increase in the nuinber of people travelling all over Ausiralia to meet
up with relatives, or to go to tourist destinations. Hence with the increase
in people travelling by road, there should be a corresponding increase in the
number of road crashes and therefore fatalities.

The paper by Arnold & Cerrelli (1987) showed that there was indeed an
increase in the number ol road crash fatalities in South Africa during public
holidays, particularly over Easter and at Christmas. Ensenberg (1984) modelled
the number of accidents for holiday periods and normal times separately, using
a log-linear model. He found that the variation from year to year was so great
that no long-term trends were discernible,

6.7 Using a number of explanatory variables

Thomson (1982) identified varous factors which could be contributing to the
annual number of fatalities in NSW and Victoria. These factors included:

vehicle characteristics VKT, % freeways in the road network, vehicle density,
private vs bus travel, passengers per vehicle {total population divided
by the total number of registered vehicles), age of vehicle stock (three
year cumulative new vehicle registrations divided by the total number of
vehicles tegistered), wix of vehicle sizes, rural vs urban travel

government policy police activity, roadwork investment, quality of hospital
services, average speed liruits, number of traffic lights installed annually

driver demographics aicohol consumption, driver age structure, the number
of migerant drivers, seat belt usage and motorcycle helmet usage (as de-
termined by surveys conducted by ABS)

economic variables average household income, annual percent change in real
state GDP
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other variables annual rainfall

Several data sources were suggested.

The alcohol consumption eould be measured in several different ways. The
first is the real per capita spending on beer, wine and spirits deflated by the
aleoholic beverages delator, which is provided annually by the ABS. Alterna-
tively, the sales of beer, wine and spirits could be obtained from the Licensing
Board. Finally, the estimated absolute alcohol content of alcoholic beverages
consumed may also be obtained from the ABS.

Vehicle kilometres travelled could be obtained from surveys of motor vehicle
usage, with an interpolation for between survey years based on fuel (petrol and
diesel) consumption. The NEMA Data Book is cited as a reference here, This
would only be useful for modelling annual data, otherwise the interpolations
would be based on a very small amount of data, and thus be unreliable.

Preliminary findings showed that the best model fits for annual numbers
of fatalities were obtained for VKT, f{reeway effects, seat beli usage, rainfall
patterns and the mix of vehicle sizes.

6.8 TUse of seatbelts

A coverpage story in the Bulletin {Nov 12, 1390) described the introduction of
seatbelt legislation as a ‘pelitical silver bullet' because of the ‘obviocusly’ drastic
effect that it had on the number of fatalities from road crashes.

This effect was not restricted to Australia. A Norwegian, Berard-Andersen
(1978} investigated the use and effects of seatbelts in twenty one countries and
found that ‘serious and fatal injuries are reduced by 65-80%".

Johnson et al. (1980) modelled US monthly fatality data for 1970-79 with
changes in VMT, introduction of safety improvements and the implementation
of the 55mph law.

Fridstrem & Ingebrigisen (1991) found that seatbelt use sighificantly affected
the number of fatal crashes and fatalities amongst motor vehicles, although it
did not significantly affect fatalities amongst pedestrians and cyclists, suggesting
a lack of risk compensation behaviour.

6.9 Blood alcohol concentration (BAC) levels

This topic has been a major focus in highway safety research over the last two
decades, with well over 100 papers in the area which have mostly concentrated
on local effects models, not macro effects models. In the US, Fell (1982) stated
that ‘... aleohol may be involved in 50-55% of fatal accidents, 18-25% of injury
accidents ...’ . In fact, in the US, there is an entire publication devoted to the
discussion of ‘Aleohol, Drugs and Driving.' A paper by Moskowitz et al (1986),
published in this journal, is a collection of abstracts and reviews of papers in
this area.
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The question of whether aleohol consumption per capita is 2 good index
of alcohol-related traffic safety problems was addiessed in a study by Mann
& Anglin {1988). They considered the impact of the availability of alcohol,
indicated by increased hours of sale for example; on-premise avatlability, places
where people would drink and then drive home,

They found a strong relationship between alcohol availability and per capita
consumption and the numbers of alcohol related crashes,

In the longitudinal model used by Fridstrem & Ingebrigtsen (1991}, the
monthly series of fatal crashes and fatalities significantly increased with increas-
ing convictions not due to DUI, yet was not significantly affected by convictions
due to DUL

They also found that the number of accidents was positively correlated with
lignor consumption, but negatively correlated with wine consumption. They
cited two other technical reports {rom Canada and New Zealand, which showed
similar results and suggested that the age composition of liquor consumers and
wine-drinkers was probably different.

Walsh (1987) found that in Ireland, the per capita alechol consumption
increased with increasing annual fatalities per registered wvehicle. He noted,
however, that other economic variables such as real total personal consumption
expenditure and unemployment provided a marginally worse fit for fatality rate.

Joksch (1991) improved Walsh’s model by lagging the alcohol consumption
variable by two years and retaining a dummy variable for the fuel crises in 1979.
The author found that Walsh’s computations were incorrect and the model
incomplete, and even after making allowances for these problems, concluded
that no causal relationship existed between alcohol consumption and the fatality
rate,

6.10 Urban planning

Henning-Hager (1986) used a multiplicative regression model to explain the
number of accidents in different residential areas within German cities. The
explanatory variables were a combination of local and global variables, mostly
concerned with the different road characteristics in each region.

The most significant local explanatory variables were found to be: the length
of the roadwork; the number of four-or-more directional junctions; a through
traffic indicator—the number of possible through routes per thousand inhabi-
tants (pti); lengths of tangential roads pti; and the number of vehicles parked
on public reads pta.

The most significant global variables were found to be: the relationship of
overall motorization to urban motorization; and the overall area pti.

Fridstrem & Ingebrigtsen (1991) investigated several aspects of road net-
works in their compound Poisson-Gamma model of monthly accidents in Nor-
wegian counties. (See section 8.3.) They found that as congestion—as measured
by ratio of length of road network in km to gasoline sales from gas stations—
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increased, the number of crashes decreased. Fatalities decreased more than
injuries, and non-occupant injuries more than occupant injuites, which could be
due to the reduction in speed caused by congestion.

Broughton (1988) regressed the logarithm of the number of annual fatalities
per total traffic volume in Great Britain on a constant trend, the year, and
a dummy variable indicating the onset of seat belt use. The value of R? for
this mode] was very high (99.5%). The coefficient for year was small, negative
and highly significant, indicating a long term gradual decline in the number of
fatalities weighted by traffic volume. The anthor noted that the model only
allowed for a lineat increase (n fatality rate over time,

In a later paper, Broughton (1991), added a quadratic term in year, and an
interaction term between year and whether the year was after 1983 or not.

Oppe (1991) studied traffic safety in the Netherlands, in relation to the entire
transport system. The traffic system was viewed as a production system, with
V;, the VKT being the production units, and R, = F;/V;, the fatality rate per
VKT providing an estimate of the probability of failure per unit of production.
The output of the systemn was thus the total VKT, and the total loss on safety
was Fg.

Oppe’s model was based on the negative learning maodel, which supported
the thecry of social adaptation to traffic put forward by Oppe (1989). {Minter
(1987) also investigated learning theory models.) Oppe found that the number
of fatalities was a function of the derivative of VKT with a shift in time, and
that 95% of the variability in fatlaities could be ‘explained’ by VKT. The model
was used to predict future accident rates.
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6.11 Weather as an explanatory variable
68.11.1 Local effects studies

A number of researchers have investigated the relationship between the weather
conditions for specific accidents, as recorded in accident reports of many coun-
tries,

Foldvary & Ashton (1962) mentioned that, for their purposes, the ideal
weather information would be the maximum and minimum temperature read-
ings for the period in question, humidity, wind, pressure, visibility (foginess),
cloudiness, weather type, existence of other weather phenomena, and rain. Un-
fortunately, such specific information may only be available for isolated locations
within a region, such as large cities. So it is difficult to generalise readings for
specific locations to regions.

Johnson & MeQuigg (1974) used a principal component technique to model
the contribution of rainfall and temperature to average county land prices? in
the US. Also considered was a linear regression model, with a logit link funec-
tion, using various explanatory variables to describe the number of fatalities,
The climatic explanatory variables used were 4- and 7-day precipitation aver-
ages, temperature, log temnperature, various combinations of these, or quadratic
functions of these variables,

They cited a paper by Benson & Johnson (1970} which considered the prob-
lem of measuring economic relationships which include climatie variables, using
the method of principal comnponents.

In general, the findings confirmed some early findings by Tanner (1952a,
1952b, 1967).

Wet weather decreased traffic flow but increased the number of
accidents and casualties, with the resultant effect of increasing the
accident and casualty rates per unit of travel {veh.km). All kinds of
traffic were affected, with the greatest reductions in flow in the case
of two-wheeled vehicles.

Snow and ice also reduced traffic appreciably, the greatest re-
ductions again occurring in the numbers of two-wheeled vehicles.
For accidents, however, the effect depended on the extent of ice
and snow: moderate proportions led to more accidents, while larger
amounts led to fewer accidents than expected under dry conditions.

Fog reduced traffic appreciably, with much greater reductions at
weekends. Accidents overall increased in number, but one class of
injury, namely pedestrian, was reduced in number,

3This is relevant because of the way in which generalised climatic varinbles are used to
model something.
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8.11.2 Global effects models

Foldvary & Ashton {1%62) found that the mean sunset time, the number of rainy
days, the number of holidays, and a long term trend adequately explained some
fortnightly fatality rates from 1960,

Fridstrem & Ingebrigtsen (1991} were surprised to find that snowfal]l had a
negative effect on monthly crashes in Norwegian counties, and suggested that
these results eould be explained by any of the {ollowing:

s People drive more carefully under advetse conditions.
¢ Roadside snow drilts would cushion the impact from single vehicle crashes.

e Less people drive in adverse conditions, reducing the exposure to risk of
those people who do dnive.

All environmental {actors could have a worse effect on crashes when unusual
or unexpected, The authors measured this *surprise effect’ with a dummy vari-
able indicating whether there had been a snowiall in one month but not in the
preceding one. This eifect seemed to be offset by the negative effect of total
snowfall.

Rainfall was assoctated with higher crash rates, suggesting that drivers did
not appreciate the increasing nsk (of snowfall.}

In addition, the authurs [ound that as the number of daylight hours during
rush hours increased, the number of accidents decreased. Note that in Norway,
the number of daylight hours may range from 0 to 24 hours during the year.

6.11.3 Generalised clitnatic variables

There are drawbacks in thie structure of information available from a Burcau of
Meteorology, The Bureau Joes not provide a means to generalise the weather
conditions for many points within a region, such as a state. Nor do they provide
a method for generalising Llie weather conditions for & particular point over a
period of time. The latter problen may be summartised by two types of statistics:
the measure of central tendency (mean, median or mode); and a measure of
variability {range, upper and lower quantiles, or histogram.) Maunder (1974)
considered the problem o leptl.

He formulated pericdic {say wonthly) weighted indices for climatic variables
such as rainfall and temperature. The weightings were based on the contribution
of a region to the national total population or area. Other variables suitable
for our application to road safety would be the number of registered vehicles,
vehicle kilometres travelled, and the kilometres of road in a particular region,
such as a state,

In this study, climatic variables, such as rainfall, were measured at a number
of stations within a region, where long-term (say twenty year) average values
were known for each station. The rainfall for station {, expressed as a percentage
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of the long-term average {or that station, was denoted C;, and the percentage of
the regional road salety parameter (such as population, land area, road length)
in area i, was denoted E;, The regional Climatic Index, I, was defined as:

_ zcaEi
I= —-EE-'

In answer to skeptical meteorclogists, he stated that ‘it could of course be
argued that a weather index for a nation as large as the US has little physical
or practical meaning. Nevertheless, it is strongly believed that if some measure
of nation-wide weather can be computed, and that it can be of use to decision-
makers.’

8.11.4 More receut applications of generalised indices

Scott {1986} used weather variables in regression and Box-Jenkins models of
monthly accident data in Great Britain. The author stated that ‘monthly data
are available, suimnmarising temperature and rainfall throughout Great Britain.’
Unfortunately, we are given no indication of how the summaries were obtained.

In the regression analysis, including several variables, the authors found that
high rainfal} and warmer temperature were related to high accident frequencies,
as was expected. Similar results were obtained when an ARIMA error term was
used in the model.

6.12 Fuel prices

Several authors have studied how fuel prices have affected road crashes. Allsop
& Turner (1988) used the real level of pump prices for petrol to model monthly
{atalities from 1978 to 1983 in Great Britain, disaggregated by road user type.
MacLean (1983) found that a fast increase in fuel prices had a short term ‘shock
effect’ as well as a long term effect which could not have been due to gradual
increase in prices, and suggested that catastrophe theory should be investigated.
Scott (1983) found a strong relationship between crashes and petrol prices.
ARIMA and structural time series models were used by Harvey & Durbin (1986)
to model fatal crashes. They used just two explanatory variables: a car traflic
index, and the real price of petrol in their final explanatory model.

6.12.1 Predicting Fuel Prices

Fuel prices were often used in models used to predict future levels of traffic
safety, so the problem of predicting fuel prices became important.

In the paper of Donaldson, Gillan & Jones (1990), future annual consumption
rates in Australia were estimated as a function of fleet size and average vehicle
fuel consumption. Fleet size is predicted using a regression of population on
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time. Average vehicle fuel consumption is determined ‘econometrically’ from
fuel price.

Wheaton {1982} used component estimation to predict future gasoline con-
sumption from variables such as average Tue] efficiency, fleet size and VMT.
However, Cervero (1985) pointed out that although econometrie models such as
the above model majar structural features and turning-points well, short-term
estimation is difficult since the explanatory variables are themselves difficult to
predict.

Thus, in order to {orecast monthly highway energy consumption in the US,
Cervero {1985) used ARIMA models to avoid including more explanatory vari-
ables. Monthly and biannual seasonal factors were useful in short-term fore-
casting. The oil crises of 1979 were considered but found to have no significant
impact on results. Disaggregated data was also considered.
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7 Time series analysis

The number of fatal crashes or fatalities measured over time may be correlated,
as many variables measured over time often are. ARIMA models take inte
account this antocorrelation of the series, and are specially designed to model
seasonal and long-term trends. The classic volume by Box & Jenkins (1976)
introduced and popularised this particular approach to modelling time series.
Bhattacharrya et al (1979), an Australian study, was one of the first road safety
studies to utilize the Box-Jenkins models.

To analyse the evolution of a road safety indicator aver time, the more com-
mon method employed in the road safety literature is a regression analysis,
using dummy variables to indicate a trend over time, and perhaps a seasonality
factor. See the introductory section on Regression Analyses, §4, for some exam-
ples. However, note that regression models assume independence beiween error
terms.

7.1 Comparison of uncorrelated normal and ARIMA er-
ror structures

Lassarre {1986) conducted a study of the monthly number of accidents and
number of fatalities on roads covered by the Gendarmerie Nationale in France
(mostly nonurban roads) between 1970 and 1977, as related to the introduction
of speed limits and compulsory seatbelt wearing. A major problem with data
collection was obtaining external variables measured during the same time pe-
riod, with the same periodicily, and for the same location. The explanatory
variables considered were: the monthly traffic volume index, an annual series of
speeds for light vehicles aud an annual seatbelt wearing index. Annual series
wete converted to monthly series by fitting curves and interpolating.

7.1.1 The regression tnodel

The model used was a log-linear regression with an ARIMA error term. Assume
that all variables, apart frem the error stiuncture are logged in the following
medel equation.

Dy = vV + a1 + azse(S) + asBe

(wowy B)az,e + walas,e

(1 —6,B)(1 —8;8'?)
1-B)(1-87) -

+

+

where
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D, = number of deaths in month ¢
Vi = traftic volume index
5. = average speed in month ¢
se¢(S¢) = standard error of speed in month ¢

B, = ratio of seatbelt wearing

2nd part =  sum of two duminy variables indicating beginning of

safety measures in June, July and Dec 1973
3rd part = autoregressive structure of remaining error

Another similar study, Scott (1988) examined a monthly accident series in
Great Britain. A basic regression model with log terms was fitted first:

InA=vyInVi+vinVo+pn P+ tT+dD 4+ rR4+ uW + fOF + 58S~k + ¢

where
A = the number of accidents

Vi, Vi traffic volume indicators
the petrol price index, the ratio of average monthiy retail
price to the overall retail price index

i

w
il

= offset in months from the beginning of the time period
temperature {deg C)

1

rainfall (mm)
the number of working days in a month

RV S
0

a dummy representing prescence of the fuel crisis {Dec
T3-Apr 74)

8§ = a dummy representing prescence of legislation f{or lower
speed limits outside built-up arcas {Dec T¢-May 77)

a seasonal factor and

an error terin

[ T o
|

1

7.1.2 Regression results
The main results are described tn more detail in Scott (1983):

» There was strong evidence against a simple linear relationship existing
between accident frequencies and traffic volumes.

o Petrol price was highly related to accident {requencies, except for two-
wheeled vehicles {as to be expected.)

o High rainfall and warm temperatures were associated with higher accident
frequencies.

o The series of most explanatory variables exhibited trends, generally down-
ward and steady over the period.
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An analysis of residuals indicated that a good fit had been obtained. A few
series had autocorrelated residuals, suggesting that time-series models might
perform better.

7.1.3 Model with ARIMA error term

Secondly, an ARIMA model of the error term was considered. All of the variables
remained in the new model, except the time and seasonal factors, which were
incorporated into the error structure:

mA=zInV4+v:lnV; +pinP+dD+rR+wW + f6F + 565 + ¢

where e = ARIMA (¢}, and € 1s white noise or normal error,

7.1.4 Comparison

Similar estimates for coellicients were obtained for both types of model. Al-
though the Box-Jenkins model performed slightly better, the simplicity of the
ordinary regression model avercomes this slight disadvantage.

7.2 Intervention analysis

Votey {1986) discussed the advantages and disadvantages for using various mod-
els for road accident frequencies. Intervention, ARIMA and simultaneous re-
gtession techniques are described in broad detail, with a particular model being
favoured for its ability to relate to the underlying theories and characteristics
of road safety. The models were:

DD = d(ALC,PA. SV,KD,..) PA=pDD RQ,..)

where DD is the level of drunken driving, ALC is alcohol consumption, PA is
the probability of apprehension and sanctioning, SV is the severity of sentence,
KD is the distance driven, RQ is road quality, for some structural models p and
d. Undoing the recursion yizlds the following relation:

ALC = a(DD, KD, VM, RQ,...)

where VM is vehicle mix.

7.3 Identification of unknown intervention times in time
series

The paper by Helfenstein (1090} is a continuation of other papers which use

traditional time series analysis methods, such as Box-Jenkins and structural

time series models. These preliminary papers are: Bhattacharyya et al (1979),
Box & Tiao (1975), Harvey & Durbin (1986), and Lassarre & Tan (1982).
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Helfenstein's paper was slightly different in that the intervention time was
assumned unknown. In the statistical literature, this is known as the change-
point problem. The change-point may be deduced from the data by using a
number of both graphical and numerical techniques. If the actual time of an
intervention is close to that identified by the above techniques, then this may
provide more evidence {or the efficiency of the countermeasure.

The example data used were guarterly numbers of accidents with injury in
Zurich from 1976 to 1985.

The different techniques are outlined below.

Plot of seasonal subseries This is constructed by joining together obser-
vations from each season. Thus, four curves will be prodcued for quarterly
data, twelve for monthly data, etc. The first and last dates that an decrease or
increase occurred will be indicated where each curve begins to ‘drop or bounce’.

Series of seasonal differences For annual or nonseasonal data, the series of
first differences, Vy; = ye — 1 -1 should contain a spike at the time of interven-
tion. For seasonal data

ye =06 + 5+ e
whete §; = J[¢ > T], T is the ‘unknown’ moment of intervention, J is the height
of the step, s, is a periodie function with seasonal fluctuations (s = s;_4) for
quarterly data, and ¢, is ‘unexplained’ variation.

Or alternatively,
Vayr = BV & + Ve,

where V8 = J[T <t < T+ 3
Cross-correlation function The more statistical methods are based on first

fitting a simple ARIMA model (also called Box-Jenkins models) to account for
the long-term trend and any seasonal effects. For example

Vayp =60 + (1 — 6, B ~ 6; B*)(1 — ©BY)q,

takes account of a quarterly seasonal effect, and an autocorrelation of values.

After fitting the ARIM A model, Helfenstein suggested the calculation of the
cross-correlation function between the fitted values (reference signal) and the
series of residuals. If the fitted values were:

{ # t < interveniion time
P

—1 t >=intervention time

then the cross-correlation function ry.(k) between the fitted values and the
residuals a; would be:

Tpa{k) = correlation(p, 2equ)
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The cross-correlation function should be calculated for all possible times of
intervention. The maxiinuin correlation between p¢ and a; will give an estimate
of the intervention.

Residual variances of successive interventional models The interven-
tion analysis presented by Box & Tiao (1975) is of the form y = 3€; + 2;, where
€. = I[t > T, B is the unknown impact of the intervention, and z, is an ARIMA
process.

For each possible intervention time T, an intervention analysis may be per-
formed and the resulting residual variances plotted against the intervention
time.

If, for example, the number of accidents decreases before the actual inter-
vention time, then an anticipatory (pre-intervention) effect may be fitted in
addition to an intervention eflect, involving one more F;€3; term in the model,
corresponding to the second important timepoint.

7.4 ARIMA model, with explanatory variables

Wagenaar (1984) used an ARIMA model, unemployment and VMT to model
monthly numbers of ¢crash involvement in the state of Michigan.

First, negative correlations between unemployment and crash involvement
were found to be significant, a lagged relationship was also found to be signifi-
cant. Then the author fitted the unemployment series with an ARIMA model,
incorporating first and seasonal differences. This model was then applied to the
crash involvement data, and the residuals from the unemployment and crash in-
volvement series cross-correlated. The first and second lag of unemployment and
the seasonal and first difference component of crash involvement were retained
in the resulting model.

The same procedure was followed to analyse the relationship between VMT
and CI (crash involvement.) Although a strong relationship was expected be-
tween the two variables, the extent of the lag required for this to be evidenced
was not expected by the author. The final model included an AR(2), AR(3}
term for VMT, and a seasonal component and fizst difference for CIL

Since unemployment and VMT were independent of each other, as indicated
by cross-correlation calculations, the next step was to include them both in the
model. The final model included first differences and seasonal differences for
CI, trend and first lag of unemployment, and first and second lag of VMT.

7.5 Structural time series models

Harvey & Durbin (1986) considered the use of structural error terms. In a
structural time-series model, the trend, moving average and sutoregressive por-
tions of the model may all involve a stochastic random walk component. Thus
the parameters of the model could vary with time, instead of being fixed, as is
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generally the case. Time-varying parameters enhance the explanatory power of
the model, although they decrease the predictive power of the model, due to
the added ‘randomness’ intreduced. This is discussed in more detail in Volume
2 of this report.

The paper’s primary concern was the effect of seat belt legislation on the
numbers killed and seriously injured {KSI) each month in the UK for different
types of road users. The authors compared structural time series models to
ARIMA models.

The form of their final maodel was

k
Ye = fle + 7 + Zé;ﬂj: + Auwg + €
1=1

where the level and slope of the general trend u, were determined by random
walks:

me = po + 31+ my Be=Bia1+ G
The seasonality was modelled by

1f2

'Tt=Z‘th
=1
where for s even and A; = =+, j=1,...,% -1,

l: Yt } _ f cos Ay sin A; ] [ Ajt-1 ] [ Wit :I
. | = . . + .
T | —simA; cosd, A 1ot wiy
where
s
0 = (oS f\j]”fj,:—l + wje, i= 5
and the {w;.} and {w},} were ud N(0, o).

It was also possible to allow {w;:} and {w},} to vary with j, which permit-
ted the seasonal pattern to vary with time. The value of the jth explanatory
variable at time ¢ was r,, and &, was its coefficient {not time-dependent). The
intervention variable, w, = L, t > 7; 0 otherwise.

The evaluation statistics used by the authors were: &%, the estimated one
step prediction error variance; the usual R?; R?, which is R? adjusted for season-
ality; H, the heterogeneity test statistic; Q(P), the Box-Ljung statistic on the
first P autocorrelations of the standardised residuals; a Normality test stalistic
for the residuals; a Post-sample prediciive test statistic used to test goodness-
of-fit; CUSUM, a test which detects model breakdown; and the Recursive t-test,
which may be used if it is expected that the residuals after the intervention may
all be of the same sign. )

The authors decided to use a log transformation since they were using count
data; they also considered the square root transformation. They considered just
two explanatory variables: {uel prices and a traffic index.
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Finally, they found that for road users who would be directly affected by
seatbelt legislation, the number of deaths decreased: there was an estimated
18% reduction in deaths for drivers, and a 25% reduction in deaths for front
seat passengers. For those not directly affected by the legislation, there was a
highly significant 27% increase in deaths for rear-seat passengers, and not very
significant increases in deaths for passengers (8%) and cyclists (13%).

It is interesting to note, however, that the authors found that a simple ‘air-
line’ model was adequate for prediction purposes, although not for explanatory
purposes. They found that a version of the airline ARIMA model fitted the
data well:.

(1 - B)(1 - B*?)y, = (1 - .684B)(1 — .995B2)¢,, & = 0.075

However, they stated that “The structural approach that we have adopted rep-
resents, we believe, a more direct and transparent technique for time series
madelling.”

Another paper, Wilson {1986), used an airline ARIMA model, and found
little difference between it and a ‘structural’ model. Wilson preferred the strue-
tural model since it used explanatory vatiables to predict the response variable,
to support any cause-effect hypotheses, whereas the ARIMA model merely used
the past history of the response variable to predict its future values. Regression
models with an ARIMA model term were not considered by this authaor.

Martinez-Schnell & Zaidi (1989) investigated the daily, weekly and monthly
time series of deaths due to six different types of injuries: motor vehicles, sui-
cides, homocides, falls, drownings, and residential fires. Motor vehicle deaths,
the major class of deaths, were investigated in more detail, nsing transfer func-
tions and intervention analysis.

They investigated several calendar effects variables: d;, the number of days
in the month; w;, the number of Saturdays and Sundays in the month; h,, the
number of holidays in the month. Other explanatory variables considered were
2, the VMT in the month; I;, an indicator variable for the oil crisis, [; =1 for
the months in 1974-1583, and is 0 otherwise.

An ARIMA model similar to an aitline model was fitted to VMT. This model
for z, was used in a tranfer function to model y,, the number of deaths due to
road crashes in a month.

The best model for y, included a transfer function for z, the intervention
variable for the oil crisis, [;, and two of the calendar effects variables, w, and
h.

The inclusion of 2, in the model reduced the residual vaniation by 32%, and
its coefficient was significant (¢ > 11}, implying that for every 100,000 mile in-
crease in VMT per month, there was a corresponding increase of approximately
3 deaths. The variable d, was dropped from the model after 2, was included.
This can be explained by correlation between VMT and the number of days
in the month—the maore days there were in the month, the more miles were
travelled on the roads.
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The intervention varlable accounted for a 33% drop in the residual variance
after z; was added, and was significant {t = —2.23). The model suggested
that there was a significant drop of 352 deaths during the ol crisis, even after
accounting for VMT and calendar effecys.

Seasonal variables were not found to be significant. The authors used the
mean square error, R?, the Box-Ljung x? statistic, and the Aikeke Informa-
tion Criterion to evaluate the goodness-of-fit of the various models. They also
construcied weekly and daily thme series of the number of deaths. Their week
started on Wednesday and ended on Tuesday so that weekends and Fridays and
Mondays, which were often public holidays, were not split up. The weekly and
daily time series supported the results from the monthly time series.



8 Other statistical models

So far, various regression and time series models have been suggested for the road
crash data. Some alternative models that have been presented are deseribed
below.

8.1 Learning-theory models

Road safety may be viewed as a ‘learning process’ which society is undergoing
according to Minter (1987). Two different models for learning processes were
discussed in this paper, where in learning theory, a certain ‘task’is to be learned
by society. This task is repeated a number of times, and becomes easier as
experience increases,
Wright's model is
tn =tn~"

where ¢, is the time for the nth task performed; n is the cumulative number
of repetitions so far, the measure of experience; b is a measure of the rate of
redyction of time per repetition, usnally 0.7 < b < 1.

Torwill's model is

n
W =po{l—exp(l— 7)) +e

where y, is the measure of performance at time n periods after the start; yg
and c are constants; and t is time.

When these models were applied to road safety data, the measure of per-
formance was the casualty rate, expressed as casualties per distance travelled
for Wright’s model, and its inverse in Torwill’s model. Torwill’s time parameter
and Wright's number of repetitions were the measures of experience. Minter
suggested that vehicles per head of population was a good measure of accumu-
lated experience. Note that Wright's model is analogous to Smeed’s formula,
where the measure of performance is deaths per vehicle.

Finally, Minter found that both learning curves fit the data well, concluding
‘that things will itnprove anyway, and that left to themselves they might even
improve better than with legislation intervention.’

Oppe (1991) also used a model based on learning-theory to explain road
fatalities in the Netherlands. See section 6.10.

8.2 A systems-based model

Blomquist (1986} employed ‘consumer utility theory’ to model motor vehicle
accidents. The thoery is described in more detail in the paper referenced, as
well as Hakim et al (1981} but is described briefly below.

The theory is based on the application of the benefit-cost approach to the
individual driver, who may trade off between reduced risk (more safety} and
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increased utility (more cost or effort]., However, since not all drivers aim to
reduce the risk to every driver, a systemn of penalties, such as Pigorian prescrip-
tion, may be used. This system aims to alters the individual utility function to
account for the safety of society in general.

However, utility i1s difficult to measure, so an indirect measure may be used,
such as accessibility (or mobility) which affects utility. For example, increasing
the price of alcohel, would reduce its availability, or increase the penalties for
DUI, and thus make it more dificult for the driver to drink and drive, which
would therefore increase the utility of DUIL

Accessibility is affected by both society and the individual. Society may
affect accessibility by changing the transport infrastructure, and level of police
enforcernent. Individuals’ beliaviour may affect the level of gasoline consump-
tion, investment in vehicles, nuinber of drivers on the toad, and the time spent
driving. Alternatively, Hakim et al (1991) note that a demand model for acces-
sibility might be based on income (GNP), travel price (price of gasoline) and
relative prices of alternative modes (price of public transport.) See Allsop and
Turner {1986) also for a discussion of this,

Finally, akim et al {1991) conclude that the aim of society is to max-
imise accessibility whilst maxunising safety, by minimising the number of acci-
dents. Accidents in turn may be explained by levels of exposure (VMT, gascline
consumption}, sacial norms and behaviour {rates of crime, suicide), legislation
(speed limits, vehicle inspection. seatbelt laws, police traffic enforcement, pun-
ishment for offences.} Hence, in order to work out how to minimise accidents,
the whole system surrounding the production of accidents and the environment
in which they occur must be modelled.

8.3 Poisson distribution

Although it is fairly comman to maodel the number of accidents per time period
as a Poisson process {see Weed (1986}, Jadaan & Salter (1982} for example),
the number of fatalities or casualties is much harder to medel. MacLean &
Teale (1982) partially investigated a compound model based on the Poisson
distribution of the number of accidents. They defined X to be the number of
accidents and assume that it wuas distributed as Poisson{A). The conclusions
deduced by the authors were that the possible values for ¥ comprised the non-
negative integers, and that the variance of ¥ was larger than that for a Poisson
distribution.

Fridstrem & Ingebrigtsen (1991) applied a compound Poisson-Gamma model,
a special case of the Generalised Linear Models of McCullagh & Nelder {1283) to
several cross-sectional and longitudinal measures of traffic safety. The number
of crashes was modelled as a negative binomial distribution with an expected
value whose logarithin was a linear function of the explanatory variables and
a Gamma random variable. Thus, the variance was larger than the expected
value, which seems to be Lhe property required by MacLean & Teale {1982).
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The form of the explanatory variables was first suggested by Gourieroux et al
(1984).

8.4 Poisson regression

Jovanis & Chang (1986) review samne techniques used to meodel the number of
accidents according to a Poisson distribution and found that:

o If accident frequency is regressed on VMT, and if accident frequency teally
is Poisson, then the variance of accident frequency will increase as YMT
increases.

o If a square root transformation is performed on the accident frequencies,
a commen antidote for Poisson data, then the variance problem will be
addressed, but this is accoinpanied by a bias in the estimates.

o Because accident frequencies are nonnegative by nature, this can create
problems with uncoustrained least squares analysis. Constrained least
squares can overcome this problem, but also results in biased estimates.
Transformation of the accident frequencies to a non-linear form may solve
the nonnegativity, but generally introduces discontinuities; for example,
log 0 is undefined.

8.5 Other distributions

Weed (1986) referred to the method described in the Highway Safety Evalua-
tion Procedural Guude for vomparing the accident count before and after some
countermeasure has been applied. The author used a Poisson, ChiSquare, Bino-
mial and a madified Binomial statistics based on these before and after accident
counts. .
The number ol accidents which oecur afier the countermeasure has been
applied, Oy, and the nuinher of accidents occurring before the countermeasure,
(0, can be compared using the x* goodness-of-fit statistic. The authors set the
expected values of O; and O, to be their average, Q’-‘;&l

Alternatively, the nuuber of accidents before the cauntermeasure is applied
may be modelled as a binomial distribution, with parameter ¥, the total num-
ber of accidents sampled being the number of accidents before and after the
countetmeasure. Under the null hyothesis that the number of accidents before
and after are similarly distributed, the parameter pis 0.5. A modified binomial
method ensures that, with discrete data, the more conservative estimators ate
always used.

Weed performed a thousand simulations of one Poisson process to show that
the standard process suggested by the HSE procedural guide, using regression,
produced highly optimistic estimates of whether the before and after counts
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were equal. The modified binowmual was the most accurate and both the x* and
the binomial methods produced slightly conservative estimates.

The number of accidents before and after some intervention was also mod-
elled with Poisson, ChiSquare, Binomial and modified Binomial statisties by
Jadaan & Salter (1982). Jovanis & Chang {1986} modelled the number of ac-
cidents by a Normal distribution, and noted that the usual regression by least
squares assumes Normal errors as justification for this. They also considered
the use of Bernoulli trials (success if a person completed a trip without injury)
and survival theory as an extension of this.

8.6 Epidemiological approach

One way to look at road crash fatalities is to call them a ‘disease’, like any other
which kills a lot of people. Researchers have utilized methods, or ideas, {rom
conventional epidemiological research, and applied them in this context. An
overall view of Australian mortality is provided in Spencer (1980).

Many naticnal government bodies are interested in the mortality rates due to
different causes, including road crashes. Comparisons of death rates in various
countries attempt to place o particular country’s safety rating within context.

8.6.1 International aggregates

Periodically, countries overseas publish these aggregates, stratified by several
indicators such as road user type, age and sex of driver, etc. Japan, Amer-
ica, Australia, African countries, and the European countries are among those
countries who pubiish these yearly statistics. World Statistics quoted only the
most extreme values for percentage increase in the number of accidents, ca-
sualties and fatalities. Hutchinson {1987) is a very thorough compilation of
international road acaident statistics, which also described both the official and
alternative sources, whence these statistics may be obtained.

8.6.2 Comparing international statistics

Anocther use for international data is to provide a ‘benchmark' to compare the
safety standards in Austialia to various other countries. Several studies have
already attempled to compare the Fatality rates of different countries. For ex-
ample, a study by Berard-Andersen (1978) compared the use and effects of
seat-belts in twenty-one countries.

A method which has been used to compare traffic safety between countries
was first introduced by Smeed (1949). This will be discussed in more detail in
the following section.

54



8.6.3 Risk and exposure

The use of hazard models, and the ideas of risk and exposure are relatively
well-developed within the field of epidemioclogy.

8.7 Discriminant analysis

Neuman (1984) applied discriminant analysis to pick out variables which con-
tributed to high accident sites, as compared to low accident sites. This technique
could conceivably be applied to differences in {atality rates between states, or
regions within states.
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9 List of explanatory variables

This list indicates which variables have been considered in models for fatalities
{or fatality rates) by various authors. It is noted whether the variables con-
tributed significantly to the final model proposed by the author. However, it
is necessary to inspect the variables in context, within the framework of the
model together with companion explanatory variables, to fully understand their
significance.
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Variable Ref Response Sig effect?
Legislation

seat helts [42) local acc in Vie. 1963 negative
seatbelt legislation [122] fat. rate per registered no

dummy var. veh,

change in [31,39] fat. per veh. 1984, coun- negative
urban/rural speed try

limits.

change in posted [39] fat. rate per population  negative
speeds

speed limit dummy [38] annual fat. for negative
variable cars/trucks

maximum speed  [70] 1970 state fat. per VMT, varying
limit per popn, per veh.

ratio inpected vehi- [38] annual  fat. for no

cles cars/trucks

inspection dummy [80] annual fat. New Jersey yes

variable

vehicle inspection [79] annual faf. inconclusive
introduction of [127] fat. rate per tegistered no
breathalyser veh,

dummy var.

police activity [130] annual no
minimum  driving  [70] 1970 state fat, per VMT, varying

age per popn, per veh,

driving age (73,8  annual negative
drinking age (8] annual conflicting
drinking age [80] annual conflicting
liquar taxes [122) annual fat. indirect neg-

ative
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Variable Ref Response Sig effect?
Economic factors
fares (4] fatal-serious  accidents
per month
pump petrol prices 4] fatal-serious  accidents
per month
fuel prices [83] fatalities
recession [29] fatal accidents per reg. negative
veli.
cost of an accident [38] annual  fat. for negative
cars/trucks
accident cost [102.37] annual negative
real dis- 18] annual  fat. for no
posable incolie per cars/trucks
driver {$1972)
income [G8] annual fat. not best
real PC annual in-  {80] annual fat. New Jersey yes
come
real average weakly (117 annual Aust. some
eAININgS
Gini index of in- [130] motor veh. related mor- some
come tality, different countries
income [102,134,130]
annual positive  in
longitudinal
income [102,134,130]
annual negative in
crosssec-
tional
Federal Reserve  [3§] annual fat. best
Board Index of Iu-
dustrial Production
annual % change in  |117] annual Aust. some
real state GDP
PCGNP [130] motor veh. related mor- some
tality, different countries
per capita GNP [130] annual positive
up to a point,
and then
negative




Variable Rtef Response

Sig effect?

Econerie factors, continued

unemployment rate  [G8] annual fat.

unemployment [101,120] annual

automobile produc- [£8] annual fat.

tion rate

motorization rate (90] fat. for one year for dif-
ferent countries

WWII dummy vari- [80] annual fat, New Jersey

able

hospital access [T6] annual

not best
positive
not best

yes
yes

few rds
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Variable Ref Response Sig effect?
Driver demographitcs
strike days {4 fatal-serious  accidents
per month
change in industrial  [G8] annual negative
activity
holiday [32] local fortnightly acc 1960 yes
alcohol [38] annual  fat. for no
consumption cars/trucks
PC aleo-  [85] annual fat. Ontario yes
hol consumption for
persons over 14 yrs
beer consumption 121] serious injuries yes, alsolag 1
alcohol 122 fat. rate per registered yes
consumption PC for veh.
persons over 14 yrs
alechol '102,103,67,25,132,134,37,80)
consumption
annual positive
ratio youths L annual  fat. for positive
cars/trucks
% young drivers 2] moderate injuries yes
youth 122,67,25,8,38]
annual fat. rate positive
male T annual positive
%omale drivers T 1970 state fat. per VMT,
per popnm, per veh. vary-
ihg
seatbelt wearing T4 monthly fat.  1970-T7 yes
France
drivers DUT 85 annual acc Ontario yes
involved in fat. acc.
% and [01] monthly fat. Canada no
alcohol-related acc.
DUI charges per [91] monthly fat. Canada no
month
citations per driver (76, annual, by rcadtype yes most
roads
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Variable Ref Response Sig effect?

Vehicle demographics

urbanisation (33 fat, per person Aust positive
states 19567-65

urbanisation [70] 1970 state fat. per VMT, varying
per popn, per veh.

ratio auto- [38) annual  fat, for negative

mobiles with safety cars/trucks

equipment

automobile safety [102,25,41,132,134,37,38]

regilaticn
negative

traffic volume index [74] monthly fat.  1970-77 yes
France

mean speed [74] manthly fat.  1970-T7 yes
France

mean speed [76) annual not some

roads

average speed [102,67,107,8,80,132,134,37,38]
annual not really

se(speed) [74] monthly fat. 1970-T7 yes
France

se(speed) [76] annual yes

speed variability [76] annual positive

vehicle mix [130] annual

motor veh. registra-  [80] annual fat, New jersey  yes

tions

acc. involving sin.  [85] annual ace Ontario yes

gle vehicles

veh.  stopped by [01] monthly fat. Canada no

BATmobiles

highway capacity [T0] 1970 state fat, pert VMT,

per popn, per veh. vary-
ing
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Variable Ref Response Sig effect?

Ezposure

number of vehicles 2]

populatian [2,80] yes

annual %A VMT [68] annual {at. yes

miles highway [38] annual  fat. for negative
cars/trucks

VKT 1117 annoal

VMT i121] property-related crashes  yes

car registrations i51] annual accident rate yes

length road network  [53] annual accident per pop- yes
ulation

possible routes per [55] annual accident per pop- yes

pepulation ulation

area in hectares [55] annual accident per pop- yes
ulation

drunk-driving 91] monthly {at, Canada no

related
paper/magazine ar-
ticles

IIEWS-
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Variable Ref Response Sig effect?
Weather
temperature [65]
annual average tem- [70] state 1970 fat. per VMT,
perature per popn, per veh. vary-

ing
temperature [73,134] annual positive
rainfall [87]
rain [22] local effects yes
rain [32] local hourly ace in 1960  paositive
rainy days [32] local fortnightly acc 1960  yes
days snow (4] fatal-serious  accidents

per month
snow [22] local effects yes
fog (22] local effects no
wet road conditions  [22] local effects yes
wet weather index, [57] local effects on fat. yes
based on skid resis-
tance
icy road conditions  22] local effects no
nighttime fat. acc.  [83] annual ace. Ontatio yes
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NFRC
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Glossary

Number of crash fatalities.
Number of fatal road crashes.
NCF divided by NFRC.

NFRC monthly series for Australia standardised by days in the
month, i.e. average daily NFRC for a given month for
Australia.

NFRC quarterly series for Australia standardised by estimated
population of Australia.

NFRC monthly series for New South Wales standardised by
days in the month, i.e. average daily NFRC for a given month
for New South Wales.

NFRC quarterly series for New South Wales standardised by
estimated population of New South Wales.

NFRC monthly series for Queensland standardised by days in
the month, i.e. average daily NFRC for a given month for
Queensland.

NFRC quarterly series for Queensland standardised by
estimated population of Queensland.

NFRC monthly series for South Australia standardised by days
in the month, i.e. average daily NFRC for a given month for
South Australia.

NFRC monthly series for Tasmania standardised by days in the
month, i.e. average daily NFRC for a given month for
Tasmania.

NFRC monthly series for Victoria standardised by days in the
month, i.e. average daily NFRC for a given month for Victoria.

NFRC quarterly series for Victoria standardised by estimated
population of Victoria.

NFRC monthly series for Western Australia standardised by
days in the month, i.e. average daily NFRC for a given month
for Western Australia.



Glossary of Symbols

B backshift operator, By, = y,_;
B4 annual backshift operator for quarterly data, B“}.rt = Yi-4
Bl2 annual backshift operator for monthly data, B'%y, = y,_,
\Y first difference operator, Vy, = y -y, ,V = 1-B
v, annual difference operator for annual data, V4y, = y,-y,_4 V4 = 1-B*
Vi2 annual difference opeator, V12yt = yi- yt-12
o level parameter for trend
Bt regression parameter for independent variable
& slope parameter for trend
Kt trend parameter
Yt seasonal parameter
et noise parameter
Xt independent explanatory variable
¥yt dependent response, time series data
5
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PART 1

Time Series Analysis

Overview

ARIMA time series models are fitted to the monthly number of fatal road crashes series
for Australia and the states. For all series, it is found that the so-called ‘airline’ model
provides a good fit to the data. For Australia and NSW, the data for the period March
1983 to December 1990 is used, whereas for other states, the period January 1976 until
December 1990 is used. For the Australia and NSW series there is an apparent
discontinuity in average values around February 1983. There is a large amount of
similarity between estimated parameter values for the airline' models fitted to the
Australia and states series. The models are used to predict values for January 1991 to
June 1991 using data up to December 1990 as a base. Predictions are compared with
actual values. Prediction errors are consistent with the inherent variability which is to
be expected to be found in monthly counts such as the number of fatal accidents. That
is, the prediction model is performing as well as any prediction model could perform.
However, there is a consistent overestimate of fatal road crashes for June 1991 across
all states except Tasmania.
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1. INTRODUCTION
1.1 Background

In developing a time series model for NFRC series, there are two basic approaches:

. a model with explicit trend and seasonal components;

. a model with implicit trend and seasonal components defined by autoregressive
linear models and correlated error structures, an example of which is the Box-
Jenkins ARIMA approach (Box and Jenkins, 1970).

The Box-Jenkins approach is adopted in this part of the study while the explicit trend
and seasonal components approach is applied in the section on explanatory variable
modelling. The Box-Jenkins approach has been used extensively in previous studies on
accident data. Section 7 of volume 1 of this report mentions the Australian study by
Bhattacharrya et al (1979), an early study using the Box-Jenkins approach. More
recently Harvey and Durbin (1986) use structural modes for UK data but for prediction
purposes use a Box-Jenkins type model.

1.2 Standardisation

A characteristic of ARIMA modelling is that after applying varying amounts of
differencing the resultant series is assumed to have a constant mean. For monthly
NFRC series, we can assume that

mean = number days in month x daily rate
E(y)= n/,.

Suggesting that monthly count data should be standardised by the number of days in the
month, giving

To ensure that known monthly effects are removed from the series, we have conducted
the time series analysis of the NFRC series using the standardised (by days in the
month) series. For both additive and multplicative models, the effect of the varying
number of days in the month would be accommodated by seasonal effects but we
believe it is wiser to remove this calendar effect first.

If the daily number of accidents is assumed to follow a Poisson distribution, then the
variance of the daily rate for a month is given by

(0
varl — | = —
n 0

For the models fitted here we assume that var(y,/n,) is well approximated by a constant,
that is fitting procedures assume constant variance.

whereas
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Standardisation by a variable dependent on the calendar is standard practice in
economics for example, where trading days per calendar month would be an appropriate
divisor. Dividing by a variable such as days in the month, which are known precisely,
is not problematic; dividing by a variable which is measured with error is problematic.

1.3 Additive or Multiplicative Models

With the NFRC series there is a choice between modelling the series on the original
scale or on the log scale. The former leads to an additive model, whilst the latter leads
to a multiplicative model. If the signal to noise ratio is small, then, typically, there will
be little difference between the two approaches. Additionally, if the range of the values
of the series is small, say max/min < 2, then there will be little difference, generally,
between fitted and predicted values for additive and multiplicative models.

Generally, studies undertaken and reported in Volume 1 tend to model the variation
although on the log scale. Certainly when converting predictions on the log scale to
predictions on the original scale there are problems of unbiasedness, etc. We prefer to
model on the original scale and avoid these problems but alternative analyses on the log
scale have been undertaken for comparative purposes. There is little difference as
suggested above.

1.4 ARIMA Models with Accident Data

Typically for ARIMA modelling of series showing trend and seasonal patterns the so-
called "airline’ model (for monthly data})

(1-B)1-BY)y, = 1-0B)1-8B' )¢,

provides the best model amongst the class of ARIMA models; see Box and Jenkins
(1976, § 9). Here y, is the (standardised - that is the average number of crashes per day

in a given month) monthly series, B is the backshift operator. By, = y,_. B123rt =

¥Y;.12 ©,© are parameters to be estimated, and e, is white noise. Harvey and Durbin

(1986) fitted the "airline’ model to accident data (car drivers killed and seriously injured})
from the U K. for the period 1969 - 1985 and estimated

B = +0.684, & = +0995

using the subseries 1969 - 1982 (note change of sign from their non-standard

formulation to ours). The operator 'l - B’ removes trend from the series and the

operator '1 - B2 removes the seasonal component.

With ® = 1, the operator (1 - B12) cancels on both sides leaving a simpler model
(1-B)y, =7+ -8B)e,

involving only first differences, an autocorrelated error structure and fixed monthly
effects, %= Y-12-

For quarterly data the operator B'? is replaced by B* with BYy, =y, ,.
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The statistical software package STATGRAPHICS (Statistical Graphics Corporation,
1989) was used for fitting ARIMA models to the data. The package provides estimated

values of the parameters © and @, denoted by MA (1) and SMA (12), respectively, in
the package and in what follows. Diagnostic statistics for the adequacy of the fitted
model include the following

- a portmantean goodness-of-fit statistic being the weighted sum of squares of the
terms of the residual (one-step ahead prediction error) autocorrelation function
(acf) and having an asymptotic chi-squared distribution given white noise for the
residual error series (see Box and Pierce, 1970). A modified Box-Pierce statistic
(Ljung and Box, 1978) has its distribution approximated better by the chi-squared
distribution for small samples. For the sample size n = 180 used mainly in these
studies, the correction suggested by Ljung and Box has only a small effect but
for sample sizes less than 100 (alsc used in the study) the values of the chi-
squared statistic printed by STATGRAPHICS should be inflated by 10 percent
for a reasonable correction. The statistic given in the Tables is the Box-Pierce
statistic for n = 180 and the Box Pierce statistic inflated by 10 percent for n < 100.
The statistic is based on the first 20 autocorrelations.

- measures of skewness and kurtosis for the residuals.

These are supplemented by plots of the acf and partial acf against lag, and plots of
ordered residuals against expected normal percentiles (Q - Q plots). These plots are not
given in this report.

2. RESULTS FOR AUSTRALJAN MONTHLY SERIES
2.1 Estimated Model

A plot of the daily average NFRC for the monthly series for Australia (AUSACCM) for
1976 until 1990 is given in Appendix A, Figure A.1 and shows a steady decline overall
with a relatively sharp decline in early 1983.

An ARIMA model was fitted to three series of the AUSACCM data to investigate the
stability of parameters over time:

Jan 1976 - Dec 1990 (n = 180)
Jan 1976 - Feb 1983 (n = 86)
March 1983 - Dec 1990 (n = 94)

Summaries of estimates and diagnostic statistics are given in Tables 2.1a, 2.1b and
2.1c.

In each case the "airline' model gave a good fit to the data with estimates in the range
0.74 to (.84 for MA(1) and 0.66 to 0.73 for SMA(12) for the three series. Residual
analyses showed no unusual features. The noise standard deviation was smaller for the
later series, March 1983 - December 1990 than the earlier series, by about 20 percent.
Typically, a value of AUSACCM in 1990 is about 5.7 fatal accidents per day, so thata
noise standard deviation of about 0.7 gives a relative error of about 0.7/5.7 or 12
percent. If the parameters were known precisely this would be the one step ahead
relative error of prediction for the fitted model.
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2.2 Predictions for 1991

In Table 2.1d we give predictions and confidence intervals for values of the series for
1991 based on the model fitted to the March 1983 - December 1990 series.

Predictions for the first months of 1991 from data up to December 1990 are reasonable
except that the June value is overestimated by 0.98 accidents per day. All actual values
are within the 95% confidence limits. The 95% confidence intervals are wide; typically
the upper value is almost twice the lower value. The six errors of prediction, actual
value minus predicted value, are both negative and positive with an average value of -
0.04 accidents per day, indicating little bias of prediction.

Multiplicative models were fitted to the data by taking logarithms of the standardised
series. Little difference was found between fitted values and predictions for an additive
model and a multiplicative model. On the grounds of simplicity, an additive model was
used.

In Table 2.1e we give prediction errors for data obtained in January 1992 from FORS.
For the year 1991 there are six positive and six negative errors and the average absolute
error is 0.39.
Table 2.1a
AUSACCM : Estimates for 'airline’ ARIMA model

Jan 1976 - Dec 1990

estimate std error t value
MA (1) 0.804 0.046 17.4
SMA (12) 0.734 0.057 12.8
Noise std dev , 0.72
Residuals
skewness -0.079 -0.42
kurtosis 0.63 -1.65
chi squared statistic = 18.12 {p = 045)

Table 2.1b

AUSACCM : Estimates for 'airline' ARIMA model

Jan 1976 - Feb 1983

estimate std error t value
MA (1) 0.84 0.066 12.8
SMA (12) 0.66 0.099 6.66
Noise std devn 0.83
Residuals
skewness -0.093 -0.33
kurtosis -(.89 -1.55
chi squared statistic = 13.00{(p = 0.79)
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Table 2.1c
AUSACCM : Estimates for ‘airline’ ARIMA model

March 1983 - Dec 1990

estimate std error t value
MA (1) 0.74 0.075 995
SMA (12) 0.68 0.098 6.89
Noise std devn 0.67
Residuals
skewness 0.19 0.70
kurtosis -0.59 -1.09
chi squared statistics = 20.6 (p = 0.30)

Table 2.1d

AUSACCM : Predicted values & 95% confidence limits for 1991 using
model in Table 2.1c

month predicted confidence limits actual error
January 4.63 3.29 597 158/31 = 5.10 0.47
February 4.87 3.50 6.27 139/28 = 4,96 0.09
March 5.70 427 7.11 171/31 = 5.52 -0.18
April 4.63 3.16 6.10 152/30 = 5.07 0.44
May 4.91 3.40 6.41 154/31 = 4.97 0.06
June 5.31 377 6.85 130/30 = 4.33 - 0.98
July 5.02 344 6.60
August 4.77 3.15 6.38
September 5.92 427 7.57
October 4.91 323 6.60
November 5.03 331 6.75
December 5.76 4.01 7.52

Table 2.1e

AUSACCM : Predicted values & 95% confidence limits for 1991 using
model in Table 2.1¢

month predicted confidence limits actual* error
January 4,63 3.29 5.97 15731 = 5.06 043
February 4.87 3.50 6.27 137/28 = 4.89 0.02
March 5.70 427 7.11 170/31 = 5.48 -022
April 4.63 3.16 6.10  156/30 = 5.20 0.53
May 491 3.40 641 150/31 = 4.34 0.07
June 531 3.77 6.85  138/30 = 4.60 -0.71
July 502 3.44 6.60  163/31 = 526 0.24
August 4.77 3.15 638 17131 = 5.52 0.75
September 592 4.27 7.57 161730 = 537 - 055
October 4.91 1.23 660  166/31 = 535 0.44
November 5.03 i3 6.75 148/30 = 4.93 -0.10
December 576 4.01 7.52  159/31 = 5.13 - 0.67

average lerrorl = 0.34
* obtained January 1992 from FORS
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3. RESULTS FOR STATE MONTHLY SERIES

3.1 Introduction

The ARIMA modelling approach was used to investigate the NFRC monthly series for
each state. The territories were omitted because monthly rates are too small for analysis
by the ARIMA models used here; similar comments hold for Tasmania. In each case
the ‘airline' model was found to be a good model with parameter estimates similar to
those for the Australian series. Again, the period 1976 - 1990 was considered for
splitting into two periods. The disaggregated state series have distinctive differences
but are all well modelled by very similar ARIMA ‘airline’ models.

3.2 NSW Monthly Data

Appendix A Figure A.3 gives the NSWACCM data plotted, and the plot shows a
distinct change in level near February 1983. Results for the three series, the full period
1976 - 1990, before and after 1983 are given in Tables 3.1a, 3.1b, 3.1c. Estimates of
MA (1) and SMA (12) are similar, close to 0.8 and 0.7 respectively, to those for the
AUSACCM series. For the period 1976 - 1990, the noise standard deviation is (.43,
whereas for March 1983 - December 1990, the noise standard deviation is (.38. This
indicates better predictions for the model fitted to 1983 - 1990 data. The average for the
values in 1990 is about 2.0 fatal crashes per day, giving a relative error of about 20
percent.

Predictions are given in Table 3.1d based on the model fitted to the March 1983 -
December 1990 data.

The predictions for the first months of 1991 are reasonable except for the over estimate
for March. The errors of prediction have an average value of - 0.10 accidents per day.
All actual values are within the 95% confidence intervals.

3.3 Queensland Monthly Data

A plot of the Queensland series, QLDACCM, in Appendix A Figure A.8, shows no
abrupt drop in values which the series for NSW shows in 1983. Consequently, only
the complete series, 1976 - 1990, was analysed. Parameter estimates were not
significantly different from 0.8, for MA (1) and not significantly different from 0.7 for
SMA (12); Table 3.2a. The noise standard deviation is 0.25 whilst the 1990 value of
the series is typically close to 1.0 giving a 25 percent relative error.

Predictions for 1991 based on the model fitted to the January 1976 to December 1990
values of the series are given in Table 3.2b. Predictions are reasonabie with June 1991
being under estimated by an amount 0.38 accidents per day. The average error of
prediction is 0.08 accidents per day while 3 of the errors of prediction are negative and
3 positive. All actual values are within the 95% confidence intervals, which are wide.

3.4 South Australia Monthly Data

Like the QLD series there was no abrupt change in values about 1983 for the SA series
and the level is relatively constant over the period of the series (Appendix A, Figure
A.10). From Table 3.3a, the parameter estimate, 0.67, for MA (1), is significantly
different (t value = 2.2) from the value 0.8 obtained for the Australian series but only
just; the estimate for SMA (12) is not significantly different from the value 0.7 obtained
for the Australian series. The noise standard deviation is 0.21 compared with a typical
value of about 0.4 for value in 1990, giving a 50 percent relative (prediction) error.
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Predictions for 1991 based on the model fitted to the January 1976 to December 1990
values of the series are given in Table 3.3b. There appears to be some under estimate of
values with the average error of prediction being (.06 accidents per day. Both February
and March 1991 are under estimated so that predictions are about 60% of actual values.
The lower values of the confidence intervals for predictions are in each case negative
and this has been replaced by zero. The original confidence intervals are symmetric
about the predicted value and do not take into account the necessary non-negativeness of
the predictions. For SA, the predictions are not particularly good but we comment on
this later.

3.5 Tasmania Monthly Data

The TASACCM series shows no abrupt change in values in 1983 and only one series
{Jan 1976 - Dec 1990) was analysed {(Appendix A, Figure A.10). From Table 3.4a the
MA (1) parameter estimate of 0.92 is significantly different from the value 0.8 (t value =
3.75); the SMA (12) estimate is not significantly different from the value 0.7. The
noise standard deviation is 0.10 and the average value of the series for 1990 is about
0.17, giving a relative error of almost 60 percent.

The kurtosis of the residuals is a little large and positive but a Q - Q plot of residuals is
close to being linear required for normally distributed errors.

Predictions for 1991 based on the model fitted to the January 1976 to December 1990
data are given in Table 3.4b. Conficence intervals are wide, the upper limit being about
twice the predicted value. Values for Tasmania are generally between 5 and 10 accidents
per month and so the appropriateness of the ARIMA approach can be questioned.
Nevertheless, the "airline’ model gives predictions and these tend to be too small, giving
underestimates. Results are included for completeness.

3.6 Yictoria Monthly Data

The Victorian series, VICACCM (Appendix A, Figure A.5, Figure A.10), shows a
substantial change in level at the end of 1979 and beginning of 1980. The full series
Jan 1976 - Dec 1990 was analysed and subseries were considered with little difference
between results, so that the full series was used to estimate parameters. From Table
3.5a the values of the parameters are very close to the values 0.8 and 0.7 and the
'airline' model appears to fit well. The noise standard deviation is 0.29 compared with
an average 1990 value close to 1.4 giving a relative error of about 20 percent.

Predictions for 1991, based on the model fitted to the January 1976 to December 1990
data, are given in Table 3.5b. Predictions, actual values and errors of prediction give an
interesting pattern. The values for the first three months, January, February and March
are underestimated by a small amount, about (.10 accidents per day, whereas
predictions for the next three months, April, May and June are overestimates by about
0.43 accidents per day or, in relative terms, by about 50 percent. This suggests that
there has been a dramatic change in the underlying process from April 1991 onwards,
and that the database up to December 1990 is not adequate to predict the changes seen
from April 1991 onwards.

3.7 Western Australia Monthly Data

The series for WA appears to be somewhat different from that for the eastern states
(Appendix A, Figure A.10). There is no reduction in values towards the end of 1979
and beginning of 1980 as experienced in Victoria; in fact the general level appears to
increase. There is no abrupt reduction in level in early 1983 as seen in the NSW series;
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in fact again the level appears to increase. However, from Table 3.6a, the MA (1) and
SMA (12) estimates are not significantly different from the values 0.8 and 0.7. The
noise standard deviation is 0.17 while the average value of the series for 1990 is about
0.5 giving a relative error of 34 percent. The chi-squared statistic, computed from the
first terms of the residual autocorrelation function (acf), has a p-value of 0.06.
However, on inspection of the residual acf, there is no single value significantly
different from 0 at the 5 percent level. Hence, no alternative model is suggested by the
residual acf.

Predictions for 1991, based on the model fitted to the January 1976 to December 1990
data, are given in Table 3.6b. It should be noted first that predictions for the early
months of 1991 are very similar at 0.50 accidents per day. There is a small deviation
from this value for the predictions for May and June 1991. A large underestimate,
equal to 0.25 accidents per day, or, in relative terms, about 30 percent, occurs for
January 1991. For the remaining months there tends to be an overestimate. The
average error of prediction for the six months is - 0.03 accidents per day, that is an
overestimate on average. All actual values lie in the 95 percent confidence intervals
which tend to be wide.

Table 3.1a
NSWACCM : Estimates for 'airline’ model

January 1976 - Dec 1990

estimate std error t value
MA (1) 0.84 0.043 19.4
SMA (12) 0.74 0.056 13.3
Noise std dev 0.43
Residuals
skewness 0.094 -0.49
kurtosis .49 -1.29

chi squared statistic = 24.7 (p = 0.13)

Table 3.1b
NSWACCM : Estimates for 'airline' model

Japuary 1976 -

estimate std error t value
MA() 0.78 0.089 8.8
SMA (12) 0.70 0.097 7.2
Noise std dev 0.51
Residuals
skewness -0.12 -0.42
kurtosis -0.89 -1.56
chi squared statistic = 17.4 (p = 0.50)

14

ANP 1991/FORS
17.43.92



Table 3.1c
NSWACCM : Estimates for 'airline’ model

March 1983 - Dec 1990

estimate std error t value
MA (D) 0.84 0.06 13.5
SMA (12) 0.67 0.10 6.5
Noise std devn 0.38
Residuals
skewness -0.34 -1.25
kurtosis .56 -1.02
chi squared statistic = 23.3 (p = 0.18)

Table 3.1d

NSWACCM : Predicted values & 95% confidence intervals for 1991
using Model of Table 3.1c

month predicted confidence limits actual error
January 1.46 0.69 221 58/31 = 1.87 0.41
February 1.76 0.99 2,53 44728 = 1.57 -0.19
March 2.06 1.28 2.84 42/31 = 1.35 -0
April 149 0.70 2.29 5030 = 1.67 0.18
May 1.66 0.86 246 53731 = 171 0.05
June 1.83 1.02 264 45730 = 1.50 -0.33
July 1.87 1.05 269
August 1.55 0.72 2.38
September 2.11 1.27 294
October 1.89 1.04 2.73
November 1.68 0.83 2.53
December 1.98 1.12 2.84

Table 3.2a

QLDACCM : Estimates for 'airline' ARIMA model

Jan 1976 - Dec 1990

estimate std error t value
MA (1) 0.72 0.052 13.9
SMA (12) 0.73 0.056 13.1
Noise std devn 0.25
Residuals
skewness -0.021 -0.11
kurtosis -0.26 -0.70
chi squared statistic = 16.07 {(p = 0.59)
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Table 3.2b

QLDACCM : Predicted values & 95% confidence intervals for 1991
values using model in Table 3.2a

month predicted confidence limits actual error
January 0.69 0.19 120 20/31 = 0.65 - 0.04
February 0.80 (.28 132 19128 = 0.68 -0.12
March 0.89 0.35 1.43 34/31 = 1.10 0.21
April 0.76 0.20 132 28/30 = 0.93 0.17
May 0.81 0.24 1.38 3731 = 1.19 0.38
June 092 0.33 151 25730 = 0.83 -0.09
July 091 0.30 1.51
August 1.02 0.40 1.64
September 1.08 0.45 L72
October 0.97 0.32 1.62
November 1.04 0.38 171
December 0.98 0.30 1.66

Table 3.3a

SAACCM : Estimates for ‘airline' model

Jan 1976 - Dec 1990

estimate std error t value
MA (1) 0.67 0.059 11.5
SMA (12) 0.63 0.063 10.1
Noise std devn 0.25
Residuals
skewness 0.39 2.07
kurtosis 0.61 1.61
chi squared statistic = 19.3 (p = 0.37}

Table 3.3b

SAACCM : Predicted values & 95% confidence intervals for 1991 using
model in Table 3.3a

month predicted confidence limits actual error
January 041 0 0.83 10/31 = 0.32 -009
February 0.37 0 0.82 17/28 = 0.61 0.24
March 0.38 0 0.85 19/31 = D.61 0.23
April 0.39 0 0.88 15/30 = 0.50 0.1
May 0.31 0 0.81 11/31 = 0.35 0.04
June 0.33 0 0.85 9/30 = 0.30 - 0.03
July 0.27 0 0.81
August 0.37 0 0.93
September 0.48 0 1.05
October 0.49 0 1.07
November 0.39 0 0.99
December 0.53 0 115
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Table 3.4a
TASACCM : Estimates for 'airline' model

Jan 1976 - Dec 1990

estimate std error t value
MAQD) 0.92 0.033 28.2
SMA (12) an 0.055 130
Noise std dev 0.10
Residuals
skewness -0.06 0.32
kurtosis 1.85 4.87
chi squared statistic = 10.9 (p = 0.89)

Table 3.4b

TASACCM : Predicted values & 95% confidence intervals for 1991
using the model in Table 3.4a

month predicted confidence limits actual error
January 0.20 0 041 431 = 0.13 -0.07
February Q.17 0 0.33 5728 = 018 0.1
March 0.18 0 0.40 8/31 = 0.26 0.08
April 0.16 0 037 6/30 = 0.20 0.04
May 0.12 0 0.32 731 = 0.23 0.09
June 0.16 0 0.37 7730 = 0.23 0.07
July 0.11 0 0.32
Aungust 0.15 0 (.36
September 0.16 0 0.37
October 0.13 0 0.33
November 0.21 0 041
December 0.19 0 0.40

Table 3.5a

VICACCM : Estimates for 'airline' model

Jan 1976 - Dec 1990

estimate std error t value
MA (1) 0.80 0.047 17.0
SMA (12) 0.70 0.058 12.0
Noise std dev 0.29
Residuals
skewness 0.05 0.27
kurtosis 0.14 0.38
chi squared statistic = 16.5 (p = 0.56)
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Table 3.5b

VICACCM : Predicted values & 95% confidence intervals for 1991 using
the Model in Table 3.5a

month predicted confidence limits actual error
January 1.20 0.63 1.77 40/31 = 1.29 0.09
February 1.26 0.69 1.84 37728 = 1.32 0.06
March 1.52 0.93 211 3431 = 1.74 0.22
April 1.19 0.58 1.79  25/30 = 0.83 -0.36
May 1.45 0.84 207 31731 = 1.00 -045
June 1.36 0.73 198  26/30 = 0.87 -0.49
July 1.07 0.44 1.71
August 1.05 0.41 1.70
September 1.33 0.68 1.98
October 0.99 0.32 1.65
November 0.99 0.32 1.69
December 1.29 0.60 1.97

Table 3.6a

WAACCM : Estimates for 'airline’ model

Jan 1976 - Dec 1990

estimate std error t value
MA (1) 0.86 0.038 22.5
SMA (12) 0.77 0.053 14.5
Noise std dev 0.17
Residuals
skewness 0.28 1.47
kurtosis 0.061 0.16
chi squared statistic = 27.9 (p = 0.06)

Table 3.6b

WAACCM : Predicted values & 95% confidence intervals for 1991 using
the Model in Table 3.6a.

month predicted confidence limits actual error
January 0.49 0.16 082 2331 = 0.74 0.25
February 0.50 0.17 0.83 1028 = 0.36 -0.14
March 0.51 0.17 0.84 12/31 = 0.39 -0.12
April 0.51 0.17 0.85 17/30 = 0.57 0.06
May 0.44 0.09 0.78 1131 = 0.35 -009
June 0.54 0.19 0.88 11/30 = 0.37 -0.17
July 0.50 0.15 0.85
August 0.48 0.13 0.83
September 0.57 0.21 0.92
October 038 0.02 0.73
November 0.52 0.16 0.89
December 0.60 0.24 0.97
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4. COMPARISON OF STATES AND AUSTRALIA
4.1 ARIMA Models Fitted to Data up to December 1990

The 'airline' model appears to fit all states well and parameter estimates are close to the
estimates for the national series; see Table 4.1 for a summary of estimates. However,
individual states have substantially different patterns with

- NSW having an abrupt change in level occurring in 1983,

- Victoria having a change in level occurring at the end of 1979 and beginning of
1980;

- WA shows increases when NSW and Victoria are showing decreases (1979).

Thus in terms of explanation, the pure time series model has no merit since the same
model fits all states well. The series ARIMA for the six states could be interpreted as
being realisations of the same stochastic process, showing a degree of independence
which needs to be investigated in further work. From Table 4.1 it is seen there
is a similarity of estimates for states. A formal significance test shows that South
Australia has an estimate MA (1) different from a common value.

4.2 Aggregated Prediction Equations
In general, predictions for the ARIMA model are of the form

RS

where 9[ . s the prediction of y, , | given y,, ¥y, ..., ¥, and the a; y depend on

the values of the MA (1) and SMA (12) estimates. Since there is no reason to consider
the MA (1) and SMA (12) estimates to be different for different states (except, perhaps,
South Australia), the predictions for each state will be the same linear combinations of
the lagged values for that state. These will, of course, be different, because the series
are different from state to state. That is

S
A - 5
Yok - Jg'l LY

S A
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|

= aggregated predictions from individual states,
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where superscript A refers to predictions and values for Australia and superscript S to
those for the states. Thus the airline model with either

[1976 - 1990 data] MA (1) = 0.80, SMA (12) = 0.73
or [1983- 1990 data] MA (1) = 0.74, SMA (12) = 0.68

can be used to estimate future values for each state individually and the aggregated
predictions are the same as those for the Australia series. This has not been investigated
but could be the basis for futher work.

4.3 Models for Jurisdictions with Small Counts

Time series models for series having small values, such as the series for Tasmania,
Northern Territory and ACT, should be developed. The type of problem that needs to
be addressed includes making proper allowance for the positive semi-definiteness of the
observed values (so obtaining confidence intervals, for example, which are bounded
below by 0), and the inappropriateness of a normal distribution approximation for the
distribution of a small value.

4.4 How Good are Predictions for 1991 Accident Data?

The prediction errors for the ARIMA models fitted to the Australian and state data for
the period January to June 1991 are given in Table 4.3. The ARIMA models fitted to
each state are very similar as we noted above. What we note is that for the states, the
pattern of errors is more or less random for the months January to March. All errors for
June, except Tasmania which has a small accident occurrence, are negative, that is the
prediction is an overestimate, suggesting some structural change in the mechanism
generating the data. Predictions for Victoria for April to June 1991 are all too large,
indicating a structural change taking place.

To obtain some external assessment of how good the predictions are and how small the
predictions errors, we can consider the NFRC in a Poisson model presented in
Standardisation, section 1.2. If y is the number of accidents occurring in a month, the

daily rate is A and y follows a Poisson distribution, then the daily observed rate (y/n),

where n is the number of days in the month, has mean A and variance (A/n). In Table
4.3, we give for each of the jurisdictions, the average daily fatal accident rate based on

the first six months data of 1991, i.e. an estimate of A. Based on this value of the

average daily rate, we give the value of 1/}U3() , the standard deviation of (y/30), the

daily rate for a 30 day month, assuming the mean of (y/30) is . We see that these
values are of similar sizes to the average absolute errors of prediction based on the
errors of prediction for the first six months of 1991. What this suggests is that the
errors of prediction are consistent with accurately estimated means for the daily rates
and that the size of the error reflects the intrinsic Poisson variability in the monthly
counts. That is, the ARIMA prediction model is obtaining as much accuracy as one
could expect given the Poisson-like variability.
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‘Table 4.1

Summary of model estimates for states for 'airline' model,
Jan 1976 - Dec 1990

State MA (1) parameter SMA (12) parameter
New South Wales 0.84 (0.04) 0.74 (0.06)
Queensland 0.72 (0.05) 0.73 (0.06)
South Australia 0.67 (0.06) 0.63 (0.06)
Tasmania 0.92 (0.03) 0.71 (0.06)
Victoria 0.80 (0.05) 0.70 (0.06)
Western Australia 0.86 (0.04) 0.77 (0.05)
AUSTRALIA 0.804 (0.05) ) 0.734 (0.06)
(Standard errors in parentheses).

Table 4.2

Summary of model estimates for NSW & Australia for 'airline' model,
1983 - Dec 1990

State MA (1) parameter SMA (12) parameter
New South Wales 0.84 (0.06) 0.67 (0.10
Australia 0.74 {0.075) 0.68 (0.098)
(Standard errors in parentheses).
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Table 4.3

Summary of prediction errors (actual - prediction) for the
first six months of 1991.

Errors are extracted from Tables 2.1d, 3.1d, 3.2b, 3.3b, 3.4b, 3.5b, 3.6d.
Table also gives theoretical standard deviations based on Poisson model.

AUS
January 0.47
February 0.09
March -0.18
April 0.44
May 0.06
June -0.98
average eror - 0.02
average absolute error 0.37
average accident per day 4,99

Poisson model standard deviation 0.41
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NSW QLD
041 -0.04
-019  -0.12
-0.71 021
018 017
0.05 038
-033 -0.19
-010 007
031 0.9
161 090
024  0.17
22

SA

-0.09
0.24
0.23
0.11
0.04

-0.03

0.08
0.12
0.45
0.12

TAS

VIC

0.09
0.06
0.22
-0.36
- D45
- 049

-0.16
0.28
1.18
0.20

WA

0.25
-0.14
-0.12

0.06
-0.09
-0.17

-0.04
0.14
0.46
0.12



PART 2

Models Involving Explanatory Variables

Overview

A two-stage approach is taken to the development of explanatory models for the number
of fatal road crashes (NFRC). A data analytic technique using the Bayesian Analysis of
Time Series (BATS) is initially used to find explanatory variables which have some
explanatory power. Having found these variables, reduced structural models are then
fitted to selected models based on the explanatory variables found from the first stage.
Both monthly and quarterly series were considered for both Australia and the states.
For Australia and monthly data, a model with current month's fuel sales and fuel sales
lagged by a month gave statistically significant results. The model with new motor
vehicle registrations gave marginally statistically significant results. For the larger
states, NSW, Victoria and Queensland, a weather index, based on a weighted average
of rain days per month, gave marginally statistically significant results and, in the case
of Queensland, statistically significant results. For quarterly data, the total sales of
automotive fuel gave a statistically significant result for both the Australia and Victoria
series. Additionally, a model involving both fuel sales and the percentage change in
petrol prices gave statistically significant results for both Australia and Victoria. For
other states with quarterly data, no model involving an explanatory variable gave
statistically significant results which improved upon a pure time series model. The fuel
model for the quarterly Australian series was investigated further and prediction
equations developed which additionally involved forecasts for fuel.

Quarterly Predictions for 1991 based on an explanatory model with fuel using quarterly
data were no better than predictions based on a pure time series model for monthly data.

23
ANP 1991/FORS
27.03.92



5. GENERAL METHODOLOGY
5.1 Introduction

The primary objective of this part of the project is to develop equations to explain and
predict the numbers of fatal road crashes (NFRC). Currently there are two general
methodologies for analysing time series data such as NFRC. The first is based on the
standard regression model but the noise has a time series structure, that is

(5.1)

where y, is the dependent variable at time t,t = 1, ..., T, B; is the regression
t P j

coefficient for the jt explanatory variable which has value x;, at time t, and n, follows a
time series model such as an ARIMA (Box and Jenkins, 1976). The second is based on
a regression model which allows for a stochastic time-varying evolution of trend,
seasonal and regression parameters, which are sometimes called 'structural models’;
see, for example, Harvey and Durbin (1986) for a brief review of these models and
comparison with ARIMA model. To summarise Harvey and Durbin, the statistician
should seek to identify the main observable features of the phenomena under study and
should then attempt to incorporate in his model an explicit allowance for each of these
main features. Visual inspection of graphs of time series usually reveal trends and
seasonals as important observable features of the data, and it seems desirable to model
these features explicitly. By analogy with usage in econometrics this procedure is called
structural modelling. In a structural mode! of an economic system each component or
equation is intended to represent a specific feature or relationship in the system under
study. Sometimes it is convenient to transform the structural model into a particular
alternative form for specific purposes, such as forecasting, and this is called the reduced
form of the model. In the time series case it is possible to transform a linear structural
model into an ARIMA model and this may then be referred to as the reduced form of the
structural model.

The structural model takes the fornn

Ye = TR TG (5.2)

where |, ¥, and g, are the trend, seasonal and irregular components respectively. The
terms L, and v, are allowed to evolve stochastically with time. For example, 1, might be
modelled by a linear trend o, + 6, t but where

a, - o, ; = independent white noise,
0, -8,y = independent white noise,

and the terms g, also follow an independent white noise series.

The term v, represents seasonal effects and can also be modelled to allow for time
varying effects. Methodology follows Harvey and Durbin (1986, §2) and West and
Harrison (1989, Chapter 8). Instead of, say, representing seasonal monthly effects by
individual terms for each menth (a fully specified model), monthly effects are
represented by trigonometric terms, sinusoids with wave lengths 12 months, 6 months,
4 months, 3 months, 2.4 months and a cosine of wavelength 2 months. This approach
gives an opportunity for parsimonious modelling in terms of the harmonics of the basic
12 month sinusoid.
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Explanatory variables can be added to the model to give
Y, = M HY, +jg’l Bj Xy 8 (3.3

In econometric modelling, the xs would be exogenous variables. A further

development of this model is 10 allow the regression coefficients ﬁj to evolve with time
also.

We have the model
yt = },Lt+'\{t+jgl ﬁjl xjt+el (5.4)
with
B. -B. ., = independent white noise
jt -1
for jla:: 1, ..., k. The noise across j = 1, ..., k for given t would have some
correlation structure.

Generally, the model with time varying Bjt can be used for exploratory purposes finding
those explanatory variables for which the regression coefficient takes statistically and
scientifically significant values. Models of this form can, of course, also be used for
explanatory purposes. However, for predictive purposes one would not want to use a

mode! with time varying Bs but use one with time constant Ps, as, obviously, in the
first case, the regression relationship is stochastic and therefore increases, generally
speaking, the variability of forecasts.

Our general method of investigating regression models is as follows.

1. For a given explanatory variable or set of variables, first fit a model with time
varying trend, seasonal and regression coefficients. (This is done using the
package BATS as explained below).

2. Inspect a plot of the estimate of the regression coefficient, B, and 95% confidence

limits against t and determine whether the estimated value is significantly different
from zero and relatively constant. Calculate various diagnostic statistics to
determine the adequacies of the model. (Part of the standard BATS output).

3. For models with significant explanatory variables, estimate time constant
regression effects by using a reduced form structural model. (This is done using
the Genstat program, Payne et al, 1987 as explained below).

In order to determine sets of explanatory variables which would be likely to give
reasonable models, a forward selection procedure was used, investigating sets of
explanatory variables which individually give significant results.
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5.2 Fitting Procedures and Diagnostics

The time varying regression parameter structural model (5.4) was fitted to data using the
package BATS (Bayesian Analysis of Time Series, see West, Harrison and Pole,
1987). A feature of the fitting process is that various statistics are calculated 'on-line’'.

That is, for example, the mean parameter, M, is estimated using data yy, ..., ¥, to the

current time t although, of course, an estimate of i, based on all the data y,, ... y can
be found. Similar comments hold for other parameters and especially the regression

parameters P. i+ Thus inspecting the values of estimated parameters for the entirety of
the series is an important part of the analysis. The PC based package BATS provides a
number of numerical summaries of the fitted models as well as various plots. These
include estimates of time varying parameters (trend, seasonal and regression
parameters) and forecast mean square errors and one-step-ahead predictions.

The analyses are based on a Bayesian paradigm so that posterior means and standard
deviations are found for parameters. Prior distributions need to be specified and these
can be chosen in a 'neutral’ way so as to allow the data to 'speak for themselves'.

The BATS program does not allow for the regression parameter 3 to be time constant so
that an altemative program was used in this case. The Genstat program (see Payne er
al, 1987) can be used to fit reduced form structural models as follows. If the level
parameter, o, the slope parameter, §,, and the seasonal parameter, ¥,, follow the
evolutionary models outlined earlier:

o, - o _; = independent white noise,
8,-8,.; = independent white noise,
Y -Y%-s = independent white noise,

where s is the seasonal period (s = 4 for quarterly data, s = 12 for monthly data) then

models involving time constant regression parameters 3 can be fitted using the 'recipe’
outlined in Table 5.1. There are five basic models which are fitted which allow for
combinations of fixed or random level, slope and seasonal parameters. By fixed it is
meant that the parameter is time constant, that is, formally, the noise increment in the
evolutionary model specification has zero variance. If the parameter is fixed then a term
for it has to be included in the set of explanatory variables. The models allow for a fully
specified set of (s - 1) seasonal parameters with no reduction in model generality. The
Genstat code is given in Appendix C.

5.3 Diagnostics

As a check on model adequacy various diagnostics can be carried out. For the models
fitted using the BATS package, graphical checks were made to investigate the constancy
of regression parameter estimates with time. Other checks include pattemns of residuals
and autocorrelations. Residuals for these models can be defined in terms of one step-
ahead prediction errors. Thus as a measure of the goodness-of-fit of the model, the
estimated variance of the one step-ahead prediction error can be used, which we will

denote by S . For the models fitted by BATS, the parameters are fitted using data up

to and mcludmg the current value (i.e. 'on-line"), so that one step-ahead predictions are
truly based on historical data, and are in themselves an independent check on the
adequacy of the model. There is no need to check the models on independent data
because future (relative to the current) values have not been used in the fitting process.
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Other fitting procedures, such as ARIMA, use all the data to fit the parameters and then
use this fitted model to predict 'future’ values retrospectively from a ‘current’ value and
past data.

The diagnostic statistics we provide include the following

(¥ Sie, the one step-ahead prediction error.
2
(i) R calculated as
2
n, S
1-——E—
Z(YJ. -9

where n,, is the number of degrees of freedom on which Sﬁe is based. Note that

because Spc is calculated 'on-line', that is, using past data to predict a futore
value, it is quite possible for

2 2
nvSpc > Z(yj-ﬂ .

This would occur if there were a spurious relationship between dependent and
explanatory variables and the overall mean were a reasonable predictor of values.

2 . X
Thus this R can be negative! It would indicate a poorly specified model.

(Note the usual R2 is calculated as
_ sum of squares of residuals
2
E(yj -¥)

and is necessarily non-negative).

1

2
(iii) RS calculated as

1-(n, S; / sum of squares of first differences around the
seasonal means of first differences).

This is a modification of a statistic introduced by Harvey (1990, Chapter 5.5.5).

: - 2 .
This statistic refers Sp'e to a sum of squares which has made allowance for a

changing stochastic level (first differences) and fixed seasonal effect (seasonal
means) and thus is a measure of the explanatory power of the model over and
above that given purely by a trend + seasonal components time series model.
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2
Thus the value of RS is particularly important for our study. The larger the value
2 N 2
of RS the better. Large positive values of RS indicate models which are

2
considerably better than pure time series models. The value of RS is zero if the

model fitted is Vy, = seasonal mean + independent error.

2
Again it s possible for R, < 0 and for R > Rey. Models for which Rg < 0

should be discarded because they give worse explanation than a simple time series
model.

5.4 Choice of Explanatory Variables

Traffic accident studies are obviously multidisciplinary and can benefit from the best of
engineering, social and statistical sciences or suffer from the worst. One aspect of
social science studies is that of 'data mining' or data dredging’ to find statistically
significant explanatory modeis. Given a sufficiently rich set of explanatory variables,
serendipity should eventually throw up a significant explanatory effect where in reality
there is none. In this study we have included explanatory variables which, a priori,
were believed to have some effect on accident rates. Relationships found from data then
have to have characteristics consistent with theory, whether it is economic,
psychological or engineering, that 1s, for example, coefficients have to have the correct
sign. Thus our modelling process has been to let the 'data speak for themselves',
allowing for very flexible models in the first step. These models have, when they have
been found to provide statistically and scientifically significant results, been simplified
to provide parsimonious models by taking time dependent regression coefficients to be
time constant.

5.5 Transformations of Data

On empirical and statistical grounds, rather than perhaps theoretical road traffic
grounds, many studies have transformed the dependent variables, NFRC and NCF
(number of crash fatalities), using logarithms or square roots. From a statistical point-
of-view, a first approximation to the distribution of NFRC would be Poisson (see Vol.
1, §8) leading to the relationship (mean = variance) for the distribution and a square
root transformation of the dependent variable would be used to obtain a constant
variance. See also Vo. 1, §4.5 for a discussion of 'Poisson regression' and associated
difficulties. The other transformation frequently used in the literature is the logarithmic
transformation. Here the basic idea generally is to obtain a multiplicative model for the
mean of the original dependent variable because standard linear models are fitted to the
logged dependent vanable.

The recent statistical methodology Generalised Linear Models (sece McCullagh and
Nelder, 1989) allows for the separation of the relationship between mean and variance
of the response (as in the case of Poisson data) and the relationship between the mean of

the response and the linear predictor, that is By x; + ... + Bp Xp- Advanced software

such as BATS also allows for Stochastic evolution of parameters in Generalised Linear
Models (see, also, West & Harrison, §10.6.4, 1989).
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In this study, we feel that the signal to noise ratio is sufficiently small (we deal with
NFRC on a monthly basis for states at the most disaggregated level} that from the data
analysis point-of-view there is little evidence to prefer multiplicative models to additive
models, that is

E(y) = exp(By Xy +... + [ip xp}

E(y) = Byx;+ .. + Bp Xp

Also because the relative ranges (max/min) of the values in the series over the periods of
study do not generally exceed two, there is little to be lost by using statistical methods
which assume that the variance of the response is constant, independent of the mean.
For these reasons we have used additive models fitted by standard normal theory
techniques to the original (or rescaled) responses throughout this study. Sometimes we
have used logarithmic transformations to confirm our views put above about the
insensitivity of the analysis to the choice of additive or multiplicative model.

5.6 Degree of Aggregation for Explanatory Variables

Values of series are available at different levels of aggregation. For example, the period
of the series can be monthly, quarterly, annual or longer. The spatial aggregation of a
series can be regional, state or national. For this study, monthly and quarterly time
periods were used and state and national spatial aggregations used. We have analysed
series using the highest level of aggregation. We have not taken, say, a series which is
collected at three yearly intervals and interpolated values to obtain an annual series. Our
models all include trend terms and when these are stochastic, the interpolated values
would be aliased to a large extent with the stochastic trend. Thus there would be little
explanatory power to be derived from such a variable.

5.7 Variables used in the Study

The dependent variables for the study, the number of fatal accidents and the number of
fatal road traffic accidents in each State and territory, are available from July 1976 until
June 1991 in the first case, from January 1970 until December 1990 in the second case.
Details of the sources are given in the Appendix B.

For monthly analyses we consider the dependent variable to be the monthly count of
fatal crashes divided by the number of days in the month, giving the same dependent
variable as used earlier. For quarterly data we have standardised by population
estimates so as to facilitate comparisons between states (a cross sectional approach).
Where significant regression effects have been found we have carried out analyses
using the raw quarterly count. Dividing by population tends to increase the downward
trend of the series. Dividing by population is mentioned in §2.4, §4.2, §4.3 (cross
sectional studies), §6.9 (through routes per thousand inhabitants) of Volume 1. In
Section 9 of Volume 1, a summary table is given. Fatality rate per head of population is
considered in the Legislation (references [32], [58]), Driver demographics
(reference [58]), Vehicle demographics (references [27], [58]), Exposure
(reference [45]), Weather (reference [58]).

As a summary, Section 9 of Volume 1 gives a list of explanatory variables and
corresponding response variables. The first group is Legislation. When considering
individual states then effects of legislation can be included as explanatory variables.
However, the effects of legislation can be ‘smeared’ in various ways. Publicity about
the political debate over legislation can be effective both on a national basis and prior to
the time of actual enforcement of the legislation. So effects can be smeared across time
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and space. For this reason, in our analyses of both national and state data we have not
included variables in the Legislation group.

The second group is Economic factors. Of this group some are appropriate for
single time cross sectional studies rather than longitudinal studies, and some for annual
rather than monthly or quarterly data. We decided to obtain data on the following

fuel prices, consumer price index

cost of transport (proxy for cost of an accident)
(income, variation too small, omitted)

gross domestic product

unemployment

[hospital access, variation too small, omitted].

The third group is Driver demographics

[strike days, effect in London study only, omitted]

[holiday, confounded with seasonal effects, omitted, although Easter effect was
tried]

alcohol consumption, investigated - see below

[young drivers; information on licensed drivers not readily available]

[seatbelt usage, no reliable data available].

The fourth group is Vehicle demographics

[urbanisation, variation too small]

[safety equipment, data not readily available]
[traffic volume index, no reliable data]
[speed, no reliable data]

[vehicle mix, not investigated]

motor vehicle registrations

[single vehicle accidents, not used]

[effect of RBT, not investigated]

[highway capacity, not used].

The fifth group is Exposure

number of vehicles (new vehicle registrations used)
population

[VKT, no reliable data]

car registrations (investigated)

flength roads, not used}

[routes, not used]

[publicity, not used].

The sixth group is Weather

ftemperature, not used]

rain (weather index, weighted rain days)
[snow, not used]

[fog, not used]

{wet road, not used]

[wet weather index, see rain]

[icy roads, not used]

[nightime, not used].

Variables were not used because either they were thought inappropriate for this study,
or no reliable data source is available.
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Two additional variables were used to those given above. These are sales of fuel for
motor vehicles and the relative change in petrol price. The first variable can be seen as
both a proxy for VKT and an economic indicator. The second variable was considered
because of the increases and decreases in petrol price that have taken place over the last
decade. It might be thought that some discretional travel might be affected by short term
changes in petrol prices. As far as we know changes in petrol price have not been used
in explanatory models before except in first differencing of both response and
explanatory variables i.e.

Vy = Vx + error.

Data for explanatory variables were obtained from various sources. Extra
considerations in addition to those given above to bear in mind when assessing the
possibility of using variables include length and continuity of available series;
obtainability; frequency of measurements; jurisdiction for collection. The economic
variables are

- gross domestic product (GDP),;

- unemployment rate (UNEMP);

- consmer price index (CPI);

- consumer price index for transportation group (CPITRS);

- retail price of petrol (PETROL);

- real price of petrol, that is PETROL/CPI;

- change in price of petrol from one month to the next, calculated for month t as

PETROLt - PE'I'ROLt )

PETROL _
(% CHGPET).

1xIO()

1

The next group involves vehicle demographics.

- new motor vehicle registrations (MVR).

The next group is exposure involving a proxy for vehicle kilometres travelled (VKT).
- sales of automotive gasoline by state marketing area (FUEL);

- sales of inland automotive diesel oil by state marketing area (DIESEL);

- sales of LPG for automotive use by state marketing area (LPG).

The next group involves weather

- the weighted average by population of the number of rain days per month found at
various locations within each state or territory giving a weather index for each state

(RDAYS and WI).

Information on other variables which were investigated but not used is given in the
Appendix B. One important omission from the above list of variables is the level of
alcohol consumption since alcohol is claimed as a cause in many accidents. Alcohol
consumption seems constant and inelastic to economic conditions and therefore offers
no power as an explanatory variable in this study; see additional comments in
Appendix B.
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The categories of variables cpnsidercd here, economic, vehicle stock, weather and
vehicle usage, cover the main types of factors found in the literature which are
appropriate to the study here.

Table 5.1
ARIMA model specifications for fitting various time constant
regression models in Genstat

Model level slope seasonal ARJMA parameters
1 8 ¥ P dq P D QS

1 fixed fixed fixed 001

2 random fixed fixed 01 1

3 random random fixed 02 2

4 (monthly) random random random 02 2 0 1 1 12
4 (Quarterly) random random random 02 2 a 1 1 4
5 (monthly) random - random 01 1 0 1 1 12
5 (quanierly) random - random 011 0 1 1 4

6. RESULTS FOR MONTHLY SERIES
6.1 Australian Monthly Series

The dependent variable was taken to be the daily average fatal accident rate i.e. monthly
NFRC divided by the number of days in the month giving AUSACCM in units of fatal
accidents per day, four explanatory variables were investigated, UNEMP, MVR,
FUEL and DIESEL. Additionally, variables lagged by one month were investigated.
Values and plots of AUSACCM are given in Appendix A (Table A.1, Figure A.1).
Series for all variables were available from March 1981 until December 1990, giving
n = 105 data points.

We consider periods for fitting explanatory models which include early 1983
although this includes an abrupt change in level. Here we are trying to develop
explanatory models using independent variables so this abrupt change provides a
good opportunity for an explanatory variable to show whether it has explanatory power
or not. To some extent, the AUSACCM series shows similar abrupt changes in level at
the beginning of 1983 and at the beginning of 1990.

The preliminary data analysis using BATS was carried out using UNEMP, MVR,
FUEL, DIESEL and lagger versions of these vanables as explanatory terms. The only
variable giving reasonable resulis was MVR. Various other combinations of the
explanatory variables were investigated but no other models reduced MSE to any value

2
close to that for MVR in the two periods considered. Also values of RS were small or
negative.

The value of Rz is also positive for the two periods considered for MYR. The lagged
(by one month) value {(LAGMVR) of MVR was also investigated but had no effect.
Similarly the lagged value of UNEMP was also investigated.

On the basis of this evidence the MVR model appeared to be the best because the MSE
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was smallest, the coefficent was the correct sign, i.e. positive, and the estimate of B,
was more or less constant over the period. A plot of MVR is given in Figure A.2,
Appendix A.

The five reduced structural models for MVR were fitted to the same series. Results are
given in Table 6.2a.

From Table 6.2a, for none of the reduced structural models is the estimated regression
coefficient statistically significant. Structural model 4 gives the largest regression
coefficient but not the smallest innovation variance.

Models involving FUEL were also investigated further. Given that FUEL is a proxy
for VKT there is obviously some delay in fuel sales by the retailer to the vehicle user
and again a delay by the user until the fuel is used. Thus the term LAG FUEL was
included in the model so that both the current month's fuel sales and the previous
month's are represented in the model. Although the BATS analysis was not promising,
giving a large mean square error and unsteady coefficients for LAG FUEL and FUEL
reduced structural models were fitted to the monthly data involving FUEL and LAG
FUEL. The results in Table 6.2b show statistically significant regression effects for
LAG FUEL (Z = 3.1) and FUEL (Z = 2.1) for the reduced structural model 2, which
is the best of the five. Some doubt must be expressed about the consistancy of the
regression coefficient for LAG FUEL over time. This point is investigated later in
§8.5.

Although not suggested as an important variable in the literature, some suggestion has
been made in Australia (Queensland Transport Report, 14 May 1992) of the supposed
importance of the Consumer Sentiment Index (CSI) (IAESR, University of Melbourne
and Westpac). The CSIis compiled monthly by IAESR from a survey of 1200 people
who are asked 5 questions relating to sentiment. The index is an average of the ratios of
the number of favourable to unfavourable replies. The reduced structural model 5 was
fitted with CSI as an explanatory variable and CSI found not to be significant.

6.2 NSW Monthly Series

For NSW, the dependent variable, NSWACCM is the value of NFRC divided by the
number of days in the month. For NSW following explanatory variables were
considered: UNEMP, MVR, WI, FUEL, DIESEL. From the BATS analysis three
models were found to be promising, see Table 6.3.

For these results in Table 6.3, it is seen that the model with WI locks reasonable giving

a large value of Ré, the correct sign for the estimate and the BATS analysis gives an

estimate approximately constant over time. The model with DIESEL also appears
promising but the BATS analysis gives coefficients which show variability with time.

The five reduced structural models were fitted with WI as the explanatory variable.
Results are given in Table 6.4. Plots of NSWACCM and WI are given in Appendix A,
Figures A.3 and A 4.

Model 1 is a particularly simple model with fixed monthly effects, a fixed linear trend
and MA(1) errors, and should be discounted. The other structural models all give
estimated regression coefficients of the correct sign and similar size; WI being a
weighted average of ‘Tain days’ and thus having an expected negative effect on NFC.
The regression estimate for model 3, random intercept and random trend, is most
significant and has the equal smallest innovation variance.
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6.3 Victorian Monthly Series

As for NSW, the Victoria state standardised series, VICACCM, was taken as the
dependent variable. For Victoria the following explanations variables were considered:
UNEMP, MVR, WI, FUEL, DIESEL. Promising models found from the BATS
analyses are given in Table 6.5.

Consequent upon these results, the five reduced structural models were fitted for MVR
and WI individually.

For the MVR model, Table 6.6, the estimated coefficients for models 2 to 5 are of the
‘correct’ sign, that is positive, but no regression coefficient is statistically significant.
In terms of minimising the innovation variance, model 2 is the best. For the WI model
with results given in Table 6.7, the best models appear to be models 2 and 3. Both
have the 'correct' sign, negative, but the coefficients are not statistically significant.
Plots of VICACCM, MVR and WI are given in Appendix A, Figures A.5, A.6 and
AT

6.4 Queensland Monthly Series

As for NSW and Victoria, the state standardised series, QLDACCM, was taken as the
dependent variable. In Table 6.8 we give details of BATS models which were
investigated.

The model given by WI looks promising because the value of Rz 1s reasonably large

taking a value 0.15 in the first period and 0.18 in the second period studied. Recall that
this is a measure of variability which is explained after allowance has been made for

. . . 2,
both trend and seasonality. Other models are not interesting because RS isclose to 0 or
negative.

In Table 6.9, we give the results of fitting the five reduced structured models with WI
as the explanatory variable. It is seen that the regression coefficient is almost
statistically significant (z value = - 1.8) and negative, indicating that the fatal accident
rates decrease with the increase in number of rain days. This appears to be a plausible
relationship in Queensland where rainfall tends to be heavy. The smallest innovation
variance is for model 1, but all innovation variances are similar for the five models as
are the estimated regression coefficients.

This suggests that the simple model with fixed trend and seasonal effects is adequate to
explain the variation in the QLDACCM series. A plot of QLDACCM and W1 is given in
Appendix A, Figures A.8 and A.9.

The variable CSI (see §6.1) was additionally used as an explanatory variable for the
Queensland series and found not to be significant. This is not surprising as CSI is an
Australia wide series and was not significant for the Australia series. However,
Queensland Transport (Report, 14 May 1992) suggests CSI is an important variable, a
finding not substantiated here.

6.5 Conclusions

For Australia, the best reduced structural model is given by FUEL + LAG FUEL with
both regression coefficients being statistically significant and of the correct sign. The
next best model is given by MVR and the regression coefficient for MVR, new motor
vehicle registrations, by itself is found to be the correct sign but statistically not
significant. Typical values of monthly FUEL sales in 1990 are of the order of 1.45
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million kilo litres. The regression coefficient for FUEL is 2.16 x 10-6 and that for LAG

FUEL is 3.16 x 10°®. Adding these two coefficients together gives 5.32 x 106. A
change in FUEL of the order of 10 percent of the typical value, that is 0.145 million

kilolitres, produces a change in AUSACCM of the size 5.32 x 106 x 0.145 x 10% or
(.77 fatal accidents per day. The average rate for the first six months of 1991 (see
Table 4.3) is 4.99 fatal accidents per day. Now (.77 is 15 percent of 4.99 so that a
change of 10 percent of the average of FUEL produces a change of 15 percent of the
average of AUSACCM.

For NSW, the regression coefficient for W1, the weather index based on rain days, is
negative but statistically not significant. For Victoria, two promising models involve
MVR, new motor vehicle registrations, and WI, the weather index. Neither
individually nor together did these variables give statistically significant estimated
regression coefficients. For Queensland, the regression coefficient for W1 was found to
be negative and almost statistically significant. Thus, on a state basis, the variable WI
has some but barely statistically significant explanatory power. It is interesting to
compare the estimated regression coefficents for the three states NSW, Victoria and
Queensland for the WI reduced structural models. They are given respectively by -

11.1 (8.8), - 2.7 (6.5), - 10.7 (5.7) (values multiplied by 103 and standard errors in
parentheses). We note a similarity in the estimated coefficients for NSW and

Queensland taking values close to - 11 x 103, This value corresponds to a reduction
of 0.011 fatal accidents per day for each additional rain day. Given that the average
number of accidents per day for NSW and Queensland are 1.61 and 0.90 for the first
six months of 1991 (see Table 4.3) rain could have a practically significant effect
reducing accidents by as much as about 30 per cent for Queensland (0.9 to 0.6 for a 30
day rain month) and about 20 percent for NSW (1.6 to 1.3 for a 30 day rain month).
On a national basis, WI has no real meaning (a weighted average of rain across major
cities and towns) and was not computed for Australia.

Table 6.1

Various BATS models which were fitted to AUSACCM
Period July 1979 - December 1990

X-variable(s)
2
MSE R? R
UNEMP 0.83 <0 <0
MVR 0.71 a.11 0.10
UNEMP MVR 1.37 <0 <0
UNEMP LAGUNEMP 1.30 <0 <0
MVR LAG MVR 1.01 <0 <0
LAGUNEMP 1.09 <0 <0
Period March 1981 - December 1990
MVR 0.54 <0 0.17
FUEL 0.56 <0 <0
DIESEL 0.55 <0 <0
MVR FUEL 0.64 <0 <D
UNEMP FUEL 062 <0 <0
UNEMP MVR FUEL 0.75 <0 <0
FUEL LAG FUEL 0.88 <0 <0

35

ANP 1991/FORS
27.03.92



Table 6.2a

Reduced Structural models; Y = AUSACCM, X = MVR
Period March 1981 - December 1990

6
Model ﬁ x 10 se x 106 innovation
variance
1 -64 10.5 0.41
2 6.8 12.9 0.37
3 6.5 13.1 0.38
4 10.4 13.2 (.46
5 R.2 13.0 0.44
Table 6.2b
Reduced Structural models; Y = AUSACCM, X = FUEL +
LAG FUEL
A 6
Model Term B x10 se x 105 innovation
variance
1 FUEL 1.47 1.13 0.40
LAG FUEL 2.45 1.14
2 FUEL 2.16 1.02 0.33
LAG FUEL 3.16 1.02
3 FUEL - - -
LAG FUEL - - -
4 FUEL 2.20 1.01 0.41
LAGFUEL 2.96 1.01
5. FUEL 2.25 1.01 0.39
LAG FUEL 3.02 1.00
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Table 6.3

Details of various BATS models which were fitted to NSWACCM
Period July 1979 to December 1990

X-variable(s)

MSE  R? R:
UNEMP 0.29 <0 <0
MVR : 0.23 0.06 0.12
WwI 0.18 0.29 0.27
MVR W1 0.23 0.06 0.12
MVR LAGMVR 0.27 <0 <0
UNEMP LAGUNEM 0.38 <0 <0

Period March 1981 - December 1990
UNEMP 0.22 <0 <0
MVR 0.21 <0 <0
W1 0.15 0.02 0.26
FUEL 0.19 <0 0.09
DIESEL 0.19 <0 0.23
WI FUEL 0.19 <0 0.08
Wi FUEL MVR 0.23 <0 0.10
FUEL UNEMP 0.22 <0 0.11
Wi UNEMP 0.23 <0 0.08
W1 MVR 0.21 <0 .16
Table 6.4

Reduced Structural Models: Y = NSWACCM, X = WI
Period March 1981 - December 1990

Fa¥

Model B x 10° se x 103 innovation
variance

1 13.1 9.4 0.14

2 -10.4 8.7 0.14

3 -11.1 8.8 0.14

4 -93 8.6 0.17

5 -9.0 8.6 0.16
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Table 6.5

Details of various BATS models which were fitted to VICACCM
Period March 1981 to December 1990

X-variable(s)

MSE  R2 st
UNEMP 0.103 <{ <0
MVR 0.079 <0 0.07
Wil 0.072 <{) 0.15
FUEL 0.103 <0 < ()
DIESEL 0.102 <{Q <{)
Wil FUEL 0.107 <0 <0
WI FUELMVR 0.114 <} <0
FUEL UNEMP 0.112 <0 < ()
WI UNEMP 0.108 <0 <0
WI MVR 0.083 <0 0.10

Table 6.6

Reduced Structural Models: Y = VICACCM Yictoria, X = MVR
Period March 1981 to December 1990

5

Model ﬁ x 10 se x 10° innovation
variance

1 -0.28 1.17 0.063

2 0.39 1.22 0.060

3 0.41 1.24 0.061

4 0.47 1.24 0.073

5 0.44 1.21 0.070

Table 6.7

Reduced Structural Models: Y = VICACCM, X = WI
Period March 1981 to December 1990

A

Model B x 103 se x 103 innovation
variance

1 -0.19 6.8 0.063

2 -2.64 6.5 0.060

3 -2.77 6.5 0.061

4 -1.25 6.5 0.073

5 - 1.40 6.5 0.070
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Table 6.8

Details of various BATS models which were fitted to QLDACCM

Period July 1979 to December 1990

X-.variable(s)

MSE  R?
UNEMP 0075 <0
MVR 0.067 <0
WI 0.056  0.15
MVR WI 0.066  0.00
MVR LAGMVR 0.080 <0
UNEMP LAGUNEMP 0105 <0

Period March 1981 to December 1990

X-variable(s)

MSE R?
UNEMP 0.078 <0
MVR 0.071 <0
w1 0.056 0.11
FUEL 0.079 <0
DIESEL 0.083 <0
WI FUEL 0.078 <0
WI FUELMVR 0.076 <0
FUEL UNEMP 0.080 <0
Wi UNEMP 0.089 <0
W1 MVR 0.067 <0

Table 6.9

Reduced Structural Models: Y = QLDACCM, X = WI
Period March 1981 to December 1990

Model ﬁ X 103 se x 103 innovation
variance

1 -98 5.8 0.043

2 - 10.7 5.7 0.046

3 -10.7 5.7 0.047

4 - 10.8 5.8 0.048

5 - 10.7 5.7 0.047
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7. RESULTS FOR QUARTERLY SERIES
7.1 Introduction

For the quarterly series, the data were standardised by the number of days in the quarter
and by an estimate of the population of jurisdiction, giving accident rates per day per
100,000 population. Generally, all explanatory variables used are standardised by
population, e.g. unemployment rate (UNEMP), or are dimensionless such as the
change in petrol price (% CHGPET). Standardisation by population also allows
comparisons of estimated regression parameters amongst jurisdictions to be made.
However, standardisation by population or not appears to have little effect on statistical
significance of models.

Because some variables are only available on a quarterly basis, the accident data were
aggregated by quarters and explanatory models fitted. An alternative approach is to
interpolate quarterly series to obtain monthly values but this approach was not pursued
because of the inherent problems of confounding interpolated values with stochastic
trend parameters.

7.2 Australia Quarterly Series

For the Australia quarterly series, both monthly and quarterly series could be used as
explanatory variables, aggregating or averaging as appropriate monthly series to obtain
quarterly series. The variables used were %CHGPET, percentage change in petrol
price, FUEL sales (in volume) of automative fuel, DIESEL sales (in volume) of
automotive fuel, MVR, new motor vehicle registrations standardised by population,
UNEMP, the unemployment rate. The variable %CHGPET is present to reflect short
term economic and behavioural change to petrol price changes, FUEL and DIESEL are
proxies for VKT, vehicle kilometers travelled, MVR is present to reflect short term
economic changes as reflected by renewals of the vehicle stock, UNEMP is an indicator

of general economic activity. From Table 7.1 we see that some models have reasonably

2
large RS values and these are FUEL, %CHGPET + FUEL, FUEL + MVR. These

models were investigated further by fitting the reduced structural models and resuits are
given in Table 7.2. The first model in Table 7.2 involves %CHGPET and gives no
significant results. From Table 7.2 we see that statistically significant results are given
by the FUEL model with Z values in excess of 3 for models 2, 4 and 5. Note that
model 1, a simple regression model with fixed trend and seasonal effects with MA(1)
errors, gives an insignificant regression estimate. The estimates and standard errors for
the estimated regression parameter for FUEL are very similar across models 2, 4 and 5.
For model 3 the estimation procedure did not converge and results are therefore not
given. The estimated regression coefficient is positive indicating the correct sign. The
next model involves FUEL and MVR, and the coefficient of FUEL is little changed for
structural models 2, 4 and 5, from the model with FUEL by itself. This is reassuring.
The estimated regression coefficient for MVR is not statistically significant for structural
models 2, 4 and 5 (Z value equals about - 0.4 to - 0.5). Additionally the value of the
regression coefficient for MVR is negative which is the wrong sign. (It could be argued
that the coefficient for MVR should be negative if one associates MVR with the quality
of the vehicle stock - new vehicles replacing old). This model involving FUEL and
MVR therefore is ambiguous to interpret and is not recommended although statistically
significant.

The last model involves FUEL and %CHGPET. The structural models 1 and 5 have
the smallest innovation variances, however model 5 gives consistency with the model
with FUEL by itself. Model 1 gives an almost zero and statistically insignificant
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regression coefficient for FUEL and almost significant regression coefficient for
%CHGPET (Z = - 1.6) with the correct sign, that is negative. Model 5 gives a
statistically significant (Z = 3.1) regression coefficient for FUEL and statistically
insignificant regression estimate for %CHGPET (Z = - 0.40) which has the correct
sign, negative.

Overall, the best models, in terms of minimising innovation variance and statistically
significant and correctly signed regression coefficients are given below.

-9 -9
X = FUEL, structural model 2, ﬁ = 180x10 , se = 5.2x10 ,Z = 35

. . ] 6
innovation variance = 4.4 x 10

2
R = 0.526
X = FUEL + %CHGPET, structural model 5
-9 -9
FUEL B=180x10 ", se = 58x10 ", Z =3.10
%CHGPET B =-028x10"se = 0.69x10°, Z = 0.40

innovation variance = 4.8 x 10

2
RS = (1.363.

The FUEL only model is better than the FUEL + %CHGPET model in terms of
innovation variance and significance of FUEL. Structural model 2, used with the best
FUEL model, involves a random level and fixed seasonal (quarterly) effects.

In order to confirm that the model with FUEL in it gives a satisfactory fit, we give in
Figures 7.1, 7.2 and 7.3 confirmatory plots and diagnostics from the BATS output.
Figure 7.1 gives the plot of the time dependent regression coefficient estimate against
time and it is seen to be very steady. Figure 7.2 gives the plot of residual standard
deviation which steadily decreases and Figure 7.3 gives the sample autocorrelation
function for residuals; these latter two plots give satisfactory diagnostics indicating an
adequate model.

7.3 Victoria Quarterly Series

For Victoria the results of the BATS analyses are given in Table 7.3. For no model was
the estimated time dependent regression coefficient constant over time suggesting some
lack of stability of relationship. Reduced structural models were then fitted to the better

models (with Rz > 0.2) of Table 7.3 and results for these estimated models are given in

Table 7.4. In Table 7.4 we see that the model with FUEL as the explanatory variable
gives statistically significant and correctly signed estimates for structural models 2 and 3
(Z = 2.4,2.3, respectively). Structural model 2 appears best overall.
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The model with FUEL + %CHGPET provides constrasting estimates when grouping
structural models 1, 4 and 5 and structural models 2 and 3 together. For models 1, 4
and 5, FUEL has statistically insignificant values (Z ~ 0) of the regression parameter,
and 9CHGPET is not significant but with the correct sign (Z = - 0.9, -04, - 0.6)
whereas for groups 2, 3, FUEL is statistically significant (Z = 2.2, 2.1) but
%CHGPET statistically insignificant (Z ~ 0). There is obviously a reasonably complex
relationship between FUEL and % CHGPET but we have not investigated this further.
In microeconomic terms, one would expect the variable %CHGPET to be causing
changes in FUEL. In terms of minimising innovation variance and maximising
significance of regression coefficients, models 2 and 3 are the best.

The model FUEL + MVR gives insignificant results for FUEL whereas MVR gives an
insignificant (Z = (.9) and correctly signed regression coefficient for structural model
3.

The model %CHGPET + DIESEL gives results similar to the model FUEL +
%CHGPET except that structural models 2 and 3 give correctly signed but insignificant
regression parameter estimates for both %CHGPET (Z = - 0.7, - 0.7) and DIESEL
(Z = 12,1.1).

Overall the best models are

X = FUEL structural model 2, B 78x10-%8 se = 33x10-8
Z = 2.4

innovation variance = 1.21x 10 -3

Hon

R’*; = 0.639

X = FUEL + %CHGPET structural model 2,

FUEL B =78x10-8se=35x10-8
Z =22
%CHGPET B =30x10°3 se =85x10-3

= -035
innovation variance = 1.25x 10-3

2
= 0.639.
RS

7.4 NSW Quarterly Series
For NSW the results of the BATS analysis are given in Table 7.5. From this table we

2 .
see that there are no models which are satisfactory as all values of R g e negative. A

positive value of szould indicate some explanatory power of a variable after trend and

seasonality has been allowed for. No reduced structural models were fitted and we
conclude that there is no better explanatory model than a pure time series model.
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7.5 Queensland Quarterly Series

For Queensland, the resuits of the BATS analyses are given in Table 7.6. All values of

Rz are negative, like the results for NSW. No satisfactory explanatory models could be
found and our conclusions are similar to those for NSW.

Table 7.1
Details of various BATS models which were fitted to
AUSACCQ quarterly data
Period 2nd quarter 1981 until 4th quarter 1990

X-variable(s)

MSE x 106 R? R
%CHGPET 11.7 0.32 <0
FUEL 7.3 0.58 0.09
DIESEL 8.5 0.51 <0
MVR 21.1 <0 <0
UNEMP 11.6 0.3 <0
%CHGPET FUEL 5.8 0.63 0.31
%CHGPET DIESEL 8.5 0.46 <0
FUEL MVR 5.7 0.64 0.32
UNEMP FUEL 8.4 0.48 0.01
%CHGPET MVR 10.4 0.30 <0
%CHGPET FUEL MVR 21.2 <0 <0
FUEL MVR LAGMVR 12.7 0.2 <0
%CHGPET FUEL UNEMP 7.0 0.59 0.08
%CHGPET FUEL UNEMP MVR 15.3 <0 <0
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Table 7.2

Australia Quarterly: Reduced structural models Y = AUSACCQ

X variables 1
2
1. %CHGPET Px10 - 130
se x 102 0.94
innovation
variance x 10° 6.5
2. FUEL Bx10° ]
se x 10° -
innovation
variance x 100 -
9
3. FUEL Bx10 0.1
se x 10° 6.7
A
MVR Bx10 0.41
sex 10 6.4
innovation
variance x 106 5.5
9
4, FUEL ﬁ x 10 0.0023
se x 10° 6.6
2
%CHGPET P x 10 14
se x 102 0.9
innovation

variance x 10° 49

2

-098

0.80

6.3

18.0

5.2

44

19.0
58

-248
6.2

4.6

1.40
6.7

-092
0.79

6.2

3 4

-096 -1.02
0.81 0.82

6.5 8.8

18.0
53

5.2

20.0
59

-3.37
6.7

53

18.0
58

-0.25
0.72

54

5

-0.99

0.81

7.1

18.0

52

4.6

19.0
39

-2.53
6.3

4.8

18.0
58

-0.28
0.69

48

Note: where no results are given convergence of the fitting process did not occur.
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Table 7.3
Details of various BATS models fitted to standardised quarterly data for
Victoria, VICACCQ
Period 2nd quarter 1981 until 4th quarter 1990

X-variable(s)

MSE x 105 R2 st
%CHGPET 23 <0 0.19
FUEL 21 <0 0.28
DIESEL 23 <0 0.21
MVR 2.6 <0 0.10
UNEMP 3.1 <0 <0
%CHGPET  FUEL 2.1 <0 0.31
%CHGPET  DIESEL 2.1 <0 0.29
FUEL MVR 21 <0 0.30
DIESEL MVR 22 <0 0.28
%CHGPET  MVR 2.5 <0 <0
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Table 7.4
Victoria Quarterly: Reduced structural models Y = VICACCQ
Structural Model

X variables 1 2 3 4 5
8
1. FUEL B x 10 0.0 78 7.1 0.0 0.0
se x 108 3.6 3.3 3.4 3.9 3.9
innovation
variance x 10° 1.36 1.21 1.26 1.94 1.56
A 8
2. FUEL Bx10 0.00 7.8 7.6 0.2 0.0
se x 108 3.8 35 3.6 4.1 40
A 3
%CHGPET Bx10 -82 -03 - 04 -36 -50
se x 103 9.6 8.5 8.5 9.1 9.2
innovation
variance x 10° 1,37 1.25 1.32 2.02 1.62
A 8
3. FUEL Bx10 0.0 0.2 0.1 0.0 0.0
sex 108 3.7 3.7 38 4.1 4.0
Fa¥
MVR Bx10 -30 33 5.8 6.2 3.7
sex 10 5.8 6.7 6.7 7.0 6.9
innovaton
variance x 10° 1.39 1.49 1.66 1.92 1.58
A 3
4. %CHGPET [x10 -8.1 -63 -6.0 -4.1 -49
se x 10° 9.3 8.8 8.7 9.0 8.9
A 8
_ DIESEL Bx10 -0.1 6.2 5.6 0.0 0.0
se x 108 5.1 5.1 52 5.8 53
innovation
variance x 10° 1.37 1.41 1.48 2.06 1.63
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Table 7.5
Details of BATS models fitted to standardised quarterly data for
: NSW, NSWACCQ
Period 2nd quarter 1981 until 4th quarter 1990

X-variable(s)

MSE x 10° R?2 R
%CHGPET 3.05 <0 <0
FUEL 3.00 <0 <0
DIESEL 2.98 <0 <0
MVR 3.11 <0 <0
UNEMP 3.26 <0 <0
%CHGPET FUEL 2.70 <0 <0
%CHGPET DIESEL 221 0.16 <0
%CHGPET UNEMP 2.53 0.03 <0
%CHGPET MVR 3.82 <0 <0
%CHGPET FUEL UNEMP 3.82 <0 <0
%CHGPET DIESEL UNEMP 2.81 <0 <0

Table 7.6
Details of BATS models fitted to standardised quarterly data for

Queensland, QLDACCQ
Period 2nd quarter 1981 until 4th quarter 1990

X-variable(s)
MSE x 105 R2 st
% CHGPET 3.82 0.28 <0
FUEL 7.35 < <0
DIESEL 11.8 <0 <0
MVR 9.48 <0 <0
UNEMP 8.82 <0 <0
| % CHGPET FUEL 6.69 <{ <0
FUEL MVR 9.60 <0 <0
%CHGPET UNEMP 7.43 <0 <0
FUEL UNEMP 7.87 <0 <(
% CHGPET MVR 4.42 <0 <0
% CHGPET MVR FUEL 8.39 <0 <0
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8. EXPLANATORY & PREDICTIVE MODELS FOR ROUTINE USE
8.1 Introduction

In this section we critically review various models investigated earlier and provide
models for prediction and explanation. In particular we give estimates of reductions in
numbers of fatal crashes for 1990 and 1991 which are due to continuing road safety
measures Or economic conditions; see Section 8.8.

Since carrying out the preliminary work described in earlier sections, revised data for
FUEL was obtained from ABARE and the most recent data available for other variables
is used in analyses in this Section. Thus there are small differences in estimates when
comparing models fitted in this section with those used in earlier sections. FUEL was
available until Q3, 1991, monthly fatal crash figures until December 1991.

In Table 8.1 we summarise the best monthly and quarterly models which have been

found in the earlier sections. The two significant statistics are the ‘Z-value' and the Rs

value. The ‘Z-value' indicates whether the estimated regression parameter is statistically
significant from zero. We would expect a reasonable model to have a 'Z-value' in

. . 2 .o
excess of 2 in absolute size. The R S value indicates how much better the explanatory
model is compared with a pure time series model.

For monthly Australian data, the FUEL + LAG FUEL model has estimated regression

. . . . 2
parameters which are statistically significantly different from zero. The value of RS ,

0.51, indicates a model with superior performance over a pure time series model. The
model for Queensland is close to being significant. The values of the regression
coefficients can be compared for Australia and the states. For MVR, the Australia and

Victoria series give regression coefficients which are similar 6.8 x 106 and 3.9 x 10°6,
respectively. For WI, the regression coefficients for NSW and Queensland are almost

identical, - 1.0 x 102 and - 1.1 x 102 which gives some support to the model although
the monthly series are not standardised by population.

For quarterly data, the FUEL model for Australia gives a highly significant regression

2
parameter (Z-value = 3.5) and a value of RS = (.526 indicating superior
performance over a pure time series model. Victoria gives similar results but the

. . 2. .
significance of the regression parameter is less and R g I8 greater. The models with

2
FUEL and %CHGPET give little improvement in terms of R g over the models with

FUEL only and the regression coefficient for %CHGPET is not significantly different
from zero. The regression coefficients for FUEL for the Australia and Victoria series

are 1.8 x 108 and 7.8 x 10‘8, which are substantially different. The regression
coefficient for %CHGPET, in the FUEL + %CHGPET model, is - 9.2 x 103 for
Australia and - 3.0 x 10" for Victoria, here a larger value for the Australia series.

These systematic differences should not be present if relationships were similar because
of the standardisation by population used for the quarterly series.
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8.2 FUEL model for Australian Quarterly Series

Results presented in the rest of this section use the revised FUEL Series and the most

recent crash figures, unless otherwise indicated.

Of the models presented in §8.1, the model for the Australian Quarterly Series involving
FUEL appears best for both explanatory and predictive purposes. In Tables 8.2 we
give detailed results of the Reduced Structural model 2 fitted to data from 2nd Quarter

2 ]
1981 to 4th Quarter 1989. The value of RS i5 0.54 and is satisfactorily large indicating
a good improvement of the explanatory model over a pure time series model. Also

given are results for the Reduced Structural Model 1.

The fitted Reduced Structural model 2 is

V AUSACCQ, =

with t being an indext=1, 2, ...
Quarter 1981 witht = 1.

In Table 8.3a we give results for the model fitted up to the 4th Quarter 1990. This

model is
V AUSACCQ, =

ANP 193VFORS
27.83.92

- 0.000818 xt
(0.00023)

- 0001212 x V(indicator for quarter 2)
{0.00091)

+ 0.000315 x V(indicator for quarter 3)
(0.00091)

+ 0.000340 x V(indicator for quarter 4)
(0.0013)

+22 x 10® x VFUEL,
(0.56 x 108

+ MA error

indicating the periods in the series starting at 2nd

- 0.000854
(0.000228)

- 0.000868 x V(indicator for quarter 2)
(0.000833)

+ 0.000641 x V(indicator for quarter 3)
(0.000854)

+ 0.00083 x V(indicator for quarter 4)
(0.00124) :

+2.1 x 108 x VFUEL,
(0.54 x 10°8)

+ MA error
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which gives values not statistically different from the previous fit to data up to 1989.

2
Again the value of RS , 0.46, 1s satisfactorily large.

From Table 8.3, the estimated regression coefficient for FUEL is 2.1 x 10'8, the
average value for FUEL is 3.97 x 106 minimum and maximum values are 3.61 x 106
and 4.39 x 105, that is average value of FUEL plus and minus about 10 percent of the
average value of FUEL, which is 0.1 x 4.0 x 10%. A change of FUEL from one quarter
to the next, VFUEL,, of 0.4 x 10° contributes a value of 0.4 x 105x 2.6 x 108 (2.6 x

108 is the estimate of the FUEL term from Table 8.3a) or 1.04 x 102 or 0.0104 to the
explanatory term. Now the average value of AUSACCQ, from Table 8.3, is 0.0409 so
that a change in FUEL equal to 10 percent of the average value of FUEL produces a
change in the accident rate equal to 0.0104/0.0409 x 100 or 25 percent of the average
accident rate. Thus the relationship between the accident rate and FUEL has significant
practical importance with a multiplying effect of 2.5 in terms of changes in average
value of FUEL and accident rate.

Also in analysing the revised FUEL data, we found that structural model 1 gave a large

2
value of RS (0.65 from Table 8.2a, 0.53 from Table 8.3a). Results for the model are
included for interest but it tends to have worse predictions than structural model 2,

. . 2.
although, of course, using retrospective measures such as RS , it appears a good
model.

Table 8.3c gives results of these models fitted to data upto Q3 1991. Results are similar
to data fitted up to Q4 1989 and up to Q4 1990, but the FUEL regression coefficient for

Reduced Structural model 2 is estimated as 1.8 x 108, cf 2.2 x 108 t0 Q4, 1989; 2.1 x
108, Q4, 1990.

In Table 8.2b we give forecasts for 1990 based on the models fitted to data up to the
end of 1989 and the actual values of FUEL for 1990. The forecasts of AUSACCQ for
structural model 2 for 1990 have typically a relative error of 6 percent. Errors of
forecasts are all negative. The confidence limits appear somewhat conservative. In
Table 8.3b forecasts for 1991 are produced based on the model and data up to the end
of 1990 for AUSACCQ. The errors for structural model 2 are 0 to 2 significant figures.
The values of FUEL for each quarter of 1991 are taken to be equal to those for the
corresponding quarter of 1990. This is a simple approach to providing estimates or
forecasts of future values of FUEL to be used in the prediction equation for
AUSACCQ. In the next section we discuss this point further and consider some time
series models for FUEL in order to provide better predictions. However, first we
consider the effect of standardisation by population on the NFC data values. Recall that
standardisation was done to facilitate comparisons across states.

For the raw NFC quarterly data, the reduced structural models were fitted to the series
from 2nd quarter 1981 to the 3rd quarter 1991. For this series, the reduced structural

models 1 and 2 were the best and results are given in Table 8.4a. For model 1, the R;
value is 0.54 indicating good explanation by FUEL in addition to that purely explained
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. Z . .
by a time series model. For model 2, RS is 0.48 and the estimated coefficient of FUEL

is smaller and less significant than for model 1. We prefer model 2 because of its better
predictive power. Using the model 2 FUEL estimate (2.8 x 104), a change in FUEL
equal to 10 percent of the average value of FUEL (4 x 10%) gives a change in raw
quarterly NFC equal to 112 fatal crashes which is about 18 percent of the average
quarterly NFC (630 crashes). The equivalent change for the population standardised
series, AUSACCQ, reported earlier is 25 percent, slightly larger than for the raw data
series.

The Reduced Structural Model 2 uses first differencing so that the model fitted (Table
8.4a) to the series is

V raw NFC, = V FUEL, x 2.78x 10
(0.64 x 10°%)

947 -VQ2x12.4+VQ3x12.6+VQ4x21.2
(3.15) (11.5) (11.9) (14.8)

Forecasts for 1990 and 1991 for NFC are given in Tables 8 4¢ and 8.4d; the former for
1990 using NFC data up to 4th Quarter 1989 and FUEL up to 4th Quarter 1990, and the
latter for 1991 using NFC data up 1o 4th Quarter 1990 and FUEL for 1991 estimated by
the corresponding quarter of 1990. These tables give results for NFC corresponding to
those for AUSACCQ in Table 8.2b and Table 8.3b respectively. Errors of forecasts for
structural model 2 are generally smaller and are all negative and on average have a
relative error of about 7 percent for 1990 forecasts (Table 8.4c) and 5 percent for 1991
forecasts (Table 8.4d). In Table 8.4e, we give forecasts for 1991 based on raw NFC
up to Q4 1990 and FUEL up to Q3 1991. On this occasion errors are both positive and
negative.

8.3 Time Series Model for FUEL for use in forecasts

A brief literature search was carried out to investigate what work had been done to
predict road transport fuel demand in Australia and overseas. Fuel demand is, of
course, of great interest in its own right for economic planning. Donaldson, Gillan and
Jones (1990) presented work describing models for predicting annual fuel demand and
is not useful to our study here. Elsewhere, time series models have been fitted to
overseas data.

Here we explore possible ARIMA time series models in order to predict FUEL for
incorporation into the reduced structural model to predict either AUSACCQ or the raw
quarterly NFC series. A number of models were fitted to FUEL using the
STATGRAPHICS package and a summary of the better models is given in Table 8.5.
All the models fit the series well and diagnostics for model inadequacy are all negative.
Interestingly, FUEL only requires first differencing, and not seasonal differencing as
well, for the better ARIMA models.

Forecasts are given in Table 8.6 for 1991 values based on the model fitted to data up to
the 4th Quarter 1990 and values up to the same time. For Model 2 of Table 8.5,
forecasts for the first two quarters of 1991 are both high with a relative error of about -3
percent.
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For FUEL Model 3 of Table 8.5 forecasts for 1991 are given in Table 8.6. Forecasts
are high but errors are smaller than for Model 2 and it is preferred for inclusion in the
AUSACCQ prediction model.

8.4 Combining the FUEL Explanatory Model with the Time Series
Model for FUEL to give forecasts for Australian Quarterly series.

We can now combine the FUEL explanatory model for fatalities (Section 8.2) with the
FUEL time series model (Section 8.3) to give a prediction model for Australian fatalities
on a quarterly basis.

We consider the following two models for the population standardised series
AUSACCQ and the quarterly NCF series.

AUSACCQ
AUSACCQ modelled by structural model 2 with

X = FUEL (see Table 8.3); FUEL modelled by a SARIMA (0, 1, 1, 1, 0, 0, 4)
TSM (see Table 8.5).

Quarterly NFC

NFC modelled by structural model 2 with X = FUEL (see Table 8.4); FUEL
modelled by a SARIMA (0,1, 1, 1, 0,0, 4) TSM (see Table 8.5).

Predictions for 1991 are given in Table 8.7. On the assessment of errors of prediction
given in Table 8.4c, Table 8.4d and Table 8.7b for the raw NFC quarterly series, all
errors are negative, that is predicions are too large. Table 8.4¢ looks at predictions for
1990 using actual FUEL for 1990, Table 8.4d looks at predictions for 1991 using
FUEL from the corresponding quarter of 1993, Table 8.7b uses a TSM estimate of
FUEL for 1991.

8.5 Forecasts based on the monthly series

It is well known, (see, for example, Box and Jenkins, 1970, §5.1) quarterly forecasts
can be derived from monthly forecasts by merely aggregating the monthly forecasts.
Section 2 of this report considered time series models for the monthly series and some
uniformity of results was obtained across analyses for Australia and the States. Below
we give prediction errors (actual-prediction) for the quarterly forecasts for 1991 derived
from Table 2.1d. The forecast for the 1st Quarter is given by

4.63 x 31 + 4.87 x 28 + 5.70 x 31 or 456.6.

35

ANP 1991/FORS
27.03.92



We also give errors from the quarterly models given in the previous Section, §8.4.

Q1 Q2 Q3
Actual NFC 464 444 495
Error of predictions
Sum of monthly TSM prediction (Table 2.1d) 7 -6 8
Reduced structural model, X = FUEL, -21 -3 -19

FUEL predicted by previous year's value
in same quarter (Table 8.4d)

Reduced structural model, X = FUEL, -32 -43 -23
FUEL predicted by TSM (Table 8.7b)

We note that the quarterly errors for the monthly pure time series model are smaller than
those for the two predictions involving the quarterly reduced structural model and
FUEL. Theoretically one would expect better forecasts to be derived from monthly data
than quarterly data because the quarterly forecasts could be derived as special cases of
the monthly data.

Here we investigate further structural models for monthly data and fuel. We recall from
§6.1 that the BATS analysis for AUSACCM (Table 6.1) suggested that the model with
FUEL and 1LAG FUEL was not a good one although the reduced structural model
analysis of Table 6.2b had both FUEL and LAG FUEL statistically significant.

The BATS analysis, we remind the reader from §5, allows for both a stochastically
evolving trend and seasonal pattern for the dependent variable. If an explanatory
variable is following largely the same stochastic evolution as the dependent variable then
it will have little explanatory power and the regression coefficient will not be
significantly different from zero.

In Figures 8.1 and 8.2 we give on-line estimates (estimate given by the the solid line,
90% confidence limits by the dashed lines) of the regression coefficients for FUEL and
LAG FUEL from the BATS analysis. If the reduced structural model with estirnates

(2.16 x 10" and 3.16 x 10) for FUEL and LAG FUEL were adequate, then the plots

in Figures 8.1 and 8.2 should be horizontal at the values 2,16 x 106 and 3.16 x 106
respectively. This is obviously not the case. We summarise the situation below.

FUEL estimate x 105  LAG FUEL estimate x 106

Reduced structural model 2 2.16 3.16
(1.02) (1.02)
Z =212 Z = 3.10
BATS analysis -2in 1982 -1in 1982
01in 1987 varying about ¢
1 in 6/89 1984 to 1991
to 690

The BATS analysis therefore suggests little explanatory power from fuel sales as the
on-line esamated regression coefficients are never significantly different from zero.

The model with FUEL for monthly data needs further investigation. Preliminary results
when fitting the reduced structural model 2 with FUEL, LAG FUEL and LAG LAG
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FUEL to the revised data up to Q3 1991 give statistically significant coefficients for

FUEL and LAG FUEL, equal to about 3 x 10'6, and nonsignificant coefficient for LAG
LAG FUEL.

This model suggests therefore that some account should be made for the delay in retail
sales of vehicle fuel as compared with wholesale sales of fuel, as measured by FUEL,
which could be up to two months, but unlikely to be longer.

8.8 Conclusion

The Reduced Structural model 2 for quarterly Australian NFC data involving FUEL

2
appears to give a reasonable fit to the data (R s = (.48) with a statistically significant

(Z = 4.35) regression coefficient estimated to be 2.78 x 10 accidents per quarter per
kilolitres of fuel; Table 8.4a. The model can be used to 'explain’ the extent to which
the decrease in crash numbers in 1990 and 1991 are due to economic factors as
accounted for in the model by FUEL. Table 8.4¢ gives predictions of quarterly NFC
for 1990 using the data up to Q4 1989 but the actual FUEL values for 1990. These
predictions are those which the model gives by taking into account actual economic
conditions, We can compare these with predictions made using 1989 FUEL values
used for 1990 FUEL, that is a projection of 1989 economic conditions, as given by
FUEL into 1990. Below we give the predictions made using reduced Structural model
2.

Actual and Predictions for 1990
Q1 Q2 Q3 Q4 Total

Actual 498 510 544 496 2048
*Actual FUEL 561 548 588 506 2203
+ 1989 FUEL 557 545 561 580 2242
1989 actual 2402

*Table 8.4¢; + new predictions.
We can express the totals for each row as a percentage of 1989 actual NFC:

1990 actual 85.3
Prediction using 1990 FUEL  91.7
Prediction using 1989 FUEL  93.4
1989 actual 100%.

Thus the decrease in NFC seen in 1990 compared with 1989, 100 - 93.4 or 6.6%,
could be attributed to continuing trends of road safety; a further 93.4-91.7, or 1.7%,
attributed to the economic conditions of 1990 and 91.7 - 85.3 or 6.4% is unexplained
by the model. The 6.4% difference could be due to road safety measures unaccounted
for, unexplained economic effects or other factors.

Carrying out a similar analysis for the first three quarters of 1991 we obtain these
figures.
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Actual and Predictions for 1991

Q1 Q2 Q3 Total
Actual 464 444 495 1403
*Actual FUEL 446 445 453 1344
+ 1989 FUEL 485 477 514 1476
1989 Total 1786

*Table 8.4¢; + Table 8.4d.
We can now express these totals as a percentage

1991 actual 78.6%
Prediction using 1991 FUEL 75.3%
Prediction using 1989 FUEL.  82.6%
1989 actual 100%.

In this particular case the model predictions using actual FUEL under predict. The
predictions using 1989 FUEL values for both 1990 and 1991 over predict the 1991
actual value by 4%. In this the interpretation is not as straightforward, but the model
suggests that the 1991 total is as bad as to be expected but better than if 1989 economic
conditions had continued. It could be argued from the model that the recession of 19%)
and 1991 has saved lives by reducing NFC by (2402 - 2203) or 199 crashes in 1990
and (1786 - 1344) or 442 crashes in the first 3 quarters of 1991 - a total of 641 crashes.
This and other factors have reduced the number of fatal crashes by, in total, 737
crashes.

Finally we can consider predictions for 1991 using data up to the end of 1989, FUEL
for 1990 and 1991 equal to the values of FUEL for 1989. These predictions for 1991
represent continuing economic conditions of 1989 and road safety trends of 1989. The
predictions are

Q1 Q2 Q3 Total

516 505 520 1541

as a percentage of 1989 figure, the total, 1541, is 86.3% whereas, as above, the actual
for 1991 is 1403 or 78.6% of the 1989 corresponding total.

We now have various predictions for 1991 (Q1 - QQ3) as follows
Base 1989, FUEL = 1989 86.3%
Base 1990, FUEL = 1989 82.6%
Base 1990, FUEL = actual 75.3%

Actual 78.6%.

The drop 100 - 86.3 or 13.7% is what might have been expected given continuing
economic activity and road safety trends from 1989. The further drop 86.3 - 82.6 or
3.7% could represent new road safety trends based on 1990 trends. The difference
82.6 - 75.3 or 7.3% might be the further drop which would have been expected due to
actual economic conditions. In reality, this is an overestimate of the improvement seen
in 1991. 1In all of these predictions, however, the overwhelming message is the size of
the effects due to economic factors as represented by FUEL.
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In summary, we have found models which are both useful for explanation and
prediction. These include for explanation the following.

Australian quarterly data a model involving fuel sales.

Australian monthly data a model involving current and lagged fuel sales; this
model requires further investigation.

Victoria quarterly data a model involving fuel sales.
NSW and Queensland monthly data a monthly involving a weather index.
For prediction time series models for Australian and States monthly data
perform well.
Table 8.1

Summary of Monthly &Quarterly Best Models
(fitted to data up to end 1990)

Monthly Data

Explanatory Structural Regression Z-value R;
Variables Model Estimate of estimated
parameter

Australia

FUEL + 2 22x 100 2.1 0.510

LAG FUEL 32x 106 3.1

MVR 2 68x10° 0.5 0.396
NSW

Wi 2 -10x102 212 0.445
Yictoria

MVR 2,5 39x 1076 0.3 0.363

WwI 3 2.7x103 -04 0.364
Queensland

Wi 2 “1.1x1072 -19 0.387
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Quarterly Data

Australia

Victoria

Explanatory Structural Regression

Variables Model Estimate
FUEL 2 1.8x10°8
FUEL + 2 1.8 x 108
%CHGPET -92x103
FUEL 2 78x10°8
FUEL + 5 78x 108
%CHGPET -30x10%

Table 8.2

Z-value

of estimated
parameter

3.5
3.1
-04

24
22
-0.35

0.526
0.363

0.639
0.639

Detailed Results for the Australian Quarterly Series AUSACCQ with
FUEL as explanatory variable - Reduce Structural Models 1 and 2
(fitted using data up to 4th Quarter, 1989)

Table 8.2a

Model Estimates
SM1
Term ESTIMATE
(standard error)
trend 84x10% 83x10
Q -0.00171  (0.000886)
Q3 -0.00020 (0.00114)
9} -0.00093  (0.00110)
FUEL 28x 108 (3.7x109)
MA(1) -0.708 (0.148)
IMA(1)
R2 0.86
2
Ry 0.65
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SM2

ESTIMATE
(standard error)

-0.000818 (0.000234)
-0.001212 (0.000909)
0.000315 (0.000906)
0.00034 (0.00130)

22x 108 (5.6x 10%)

0.425 (0.175)

0.54



Table 8.2b
Predictions for 1990 based on values of AUSACCQ up to Q4, 1989 and FUEL up to

Q4, 1990.
1990 Quarter Forecast 95% Confidence Limits Actual Error
SM1 Limits
Q1 0.0331 0.0300, 0.0361 0.029 -0.004
Q2 0.0332 0.0294, 0.0370 0.030 -0.003
Q3 0.0364 0.0326, 0.0401 0.032 -0.004
Q4 0.0284 0.0246, 0.0321
SM2
Q1 0.0324 0.0289, 0.0359 0.029 -0.003
Q2 0.0313 0.0273, 0.0353 0.030 -0.001
Q3 0.0340 0.0295, 0.0385 0.032 -0.002
4 0.0282 0.0232, 0.0331
Table 8.2¢
Summary Values up to Q4 1989
Average value of AUSACCQ 0.0409
Minimum value of AUSACCQ 0.0340
Maximum value of AUSACCQ 0.0510
Average value of FUEL 3.97 x 108
Minimum value of FUEL 3.61 x 106
Maximum value of FUEL 439 x 10%
Table 8.3

Detailed Results for the Australian Quarterly Series AUSACCQ with
FUEL as explanatory variable - reduced structural models 1 and 2 (fitted
using data up to 4th Quarter, 1990)

Table 8.3a
SM1 SM2
Term ESTIMATE ESTIMATE
(standard error) (standard error)
trend -0.000857 (0.000080) -0.000854 (0.000228)
Q2 -0.001389 (0.000873) -0.000868 (0.000833)
Q3 0.00005  (0.00117) 0.000641 (0.000854)
Q4 -0.00031  (0.00105) 0.00083 (0.00124)
FUEL 2.6x 108 (3.3x109%) 2.1x 108 (5.4x% 109
MA(D -0.777 (0.124) ~ IMA(QD) 0.407  (0.166)
R? 0.88 0.87
Ri 0.53 0.46
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1991 Quarter

SM1

Table 8.3b

Predictions for 1991.
FUEL for 1991 is taken as same as for 1990.

Forecast 95% Confidence Limits Actual Error
Limits

0.02967 0.02644, 0.03290 0.027 -0.003
0.02853 0.02444, 0.03262 0.026 -0.003
0.03142 0.02733, 0.03551
0.02431 0.02022, 0.02840
0.02697 0.02352, 0.03043 0.027 0.00
0.02616 0.02214, 0.03017 0.026 0.00
0.02871 0.02420, 0.03321
0.02321 0.01826, 0.02816

Table 8.3c

Detailed Results for the AUSACCQ series with FUEL as explanatory
variable - reduced structural models 1 and 2 (fitted using data up to 3rd

ANP 199L/FORS
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Quarter, 1991)

SM1

ESTIMATE
{(standard error)

-0.000780 (0.000064)
-0.001098 (0.000786)
0.00036  (0.00103)
0.000636 (0.000927)

22x 108 (32x109)
0.91

0.56
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SM2

ESTIMATE
(standard error)

-0.000762 (0.000207)
-0.000764 (0.000735)
0.000706 (0.000781)
0.001296 (0.000949)

1.8 x 108 (4.1x 109
0.90

0.50



Table 8.4

Reduced Structural model estimates for raw NFC quarterly data (fitted
using data up to 3rd Quarter 1991)

Table 8.4a
Structural Model
1 2 3 4 5
FUEL (estimate x 16°) 34.3 27.8 27.8 27.7 27.8
(std error x 107) (4.64) (6.39) (6.48) (6.84) (6.50)
Rz 0.54 0.48 0.47 0.42 0.47
Table 8.4b
Detailed Results for Models 1 and 2
SM1 SM2
Term ESTIMATE ESTIMATE
(standard error) (standard error)
trend - 10.04 0.95 -947 3.15
MA(1) -0.666 (0.130)
IMA(1) 0.393 (0.160)
R2 0.87 0.86
2
RS 0.54 0.48
Table 8.4¢

Predictions for 1990 based on values of raw NFC quarterly up to Q4,
1989 and FUEL up to Q4, 1990.

1990 Forecast 95% Confidence Limits Actual Error
Quarter

SMi1

Q1 570.3 523.1, 6174 498 72

Q2 573.2 5154, 631.1 510 63

Q3 6214 563.6, 679.3 544 -77

Q4 506.5 448.6, 564.3 496 -11

SM1

Q1 561.4 507.8, 615.0 408 63

Q2 547.7 486.0, 609.4 510 -38

05) 5884 519.5, 657.2 544 44

0. 506.4 431.0, 581.7 496 -10

63

ANP 1991/FORS
17.03.92



Table 8.4d

Predictions for 1991 based on values of raw NFC quarterly data up to
Q4, 1990. FUEL for 1991 is taken as the same as for 1989, quarter by

quarter. .
1991 Forecast 95% Confidence Limits Actual Error
Quarter
SM1
Q1 536.8 486.0, 587.6 464 -73
Q2 5134 4523, 574.4 444 69
Q3 554.5 4935, 615.6 495 60
Q4 470.8 409.8, 531.9
SM2
Q1 4854 4320, 5389 464 21
QR 476.9 414.2, 539.6 444 33
Q3 513.6 4429, 584 .4 495 -19
Q4 449.5 371.6, 527.5
Table 8.4e

Predictions for Q1, Q2, Q3 1991 based on values of raw NFC quarterly
data up to Q4 1990 and actual FUEL up to Q3, 1991

1991 Forecast 95% Confidence Limits Actual Error
Quarter

SM1

Q1 488.9 438.0, 539.7 464 -25

Q2 4739 4129, 535.0 444 -30

Q3 480.1 419.0, 541.1 495 15
SM2

Q1 446.1 302.7, 499.6 464 18

Q2 444 6 381.9, 507.3 444 -1

Q3 452.5 381.7, 523.2 495 42
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Table 8.5

ARIMA Time Series Models for FUEL, quarterly series from Q2 1981
until Q4 1990

FUEL Model 1 SARIMA (1111004)
AR(1) -0.381 (0.248)
SAR®4) 0.569 (0.150)
MA(1) 0.455 (0.224)

Mean Square Error = 8.27 x 107 on 35 degrees of freedom.

Chi-square statistic for residual autocorrelations = 7.437 on 19 degrees of freedom.

FUEL Model 2 SARIMA (0110014)
MA(1) 0.646 (0.132)
SMA(4) -0.486 (0.170)

Mean Square Error 9.73 x 109 on 36 degrees of freedom.

Chi-square statistic for residual autocorrelations = 15.747 on 19 degrees of freedom.

FUEL Model 3 SARIMA (0111004)
MA(1) 0.698 (0.135)
SAR(4) 0.626 (0.146)

Mean Square Error = 8.46 x 10? in 36 degrees of freedom.

Chi-square statistic for residual autocorrelation = 8.775 on 17 degrees of freedom.
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Table 8.6
Predictions for FUEL for 1991 using models of Table 8.5

Model fitted to data up to end of 1990
(Units millions of Kilo litres)

FUEL Model 2 (of Table 8.5) SARIMA (0110014)

1991 Quarter Forecast 95% Confidence Limits Actual Error
Q1 4.249 4.049, 4450 4.122 -0.127
Q2 4,253 4.040, 4.465 4.189 -0.064
Q3 4.299 4.076, 4.523 4.177 -0.122
Q4 4.175 3941, 4410

FUEL Model 3 (of Table 8.5) SARIMA (0111004)

1991 Quarter Forecast 95% Confidence Limits Actual Error
Q1 4,253 4.066, 4.439 4.122 0.131
Q2 4.280 4,085, 4474 4.189 -0.091
Q3 4.335 4.132, 4,538 4177 -0.158
Q4 4.193 3.982, 4404
Table 8.7

Predictions for AUSACCQ and raw quarterly NFC using reduced
structural model 2 with X = FUEL and FUEL predicted by a TSM

Table 8.7a
Predictions for AUSACCQ for 1991 using data up to the end of 1990

1991 Forecasts 95% Confidence Limits*
Q1 0.0284 (0.0245, 0.0314)
Q2 0.0273 (0.0225, 0.0316)
Q3 0.0291 (0.0237, 0.0344)
Q4 0.0260 {0.0204, 0.0327)
Table 8.7b

Predictions for raw quarterly NFC for 1991 using data upto
the end of 1990

1991 Quarter Forecast 95% Confidence Limits* Actual Error
Q1 496.4 (440.6, 552.2) 464 -32
Q2 486.6 (415.7, 557.5) 444 43
Q3 516.6 (433.3, 599.9) 495 222
Q4 488.4 (394.3, 582.5)

® Confidence intervals include errors of prediction for FUEL.
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PART 3
Fatalities Per Crash

Overview

A simple time series model is suggested for the variable fatalities per crash. Also, the
ACT is found to have an estimate of fatalities per crash which is statistically different
from other jurisdictions.

9. MODELLING OF THE NUMBER OF FATALITIES PER CRASH

Data for the number of crash fatalities (NCF) were investigated for the period April
1975 until December 1990 on a monthly basis for Australia. Initially, the variable
Fatalities per Crash (FC) was derived by dividing NCF by NFC for each month;
summary statistics are given in Table 9.1, indicating an average of 1.129 fatalities per
crash, with an estimated standard error of 0.003. The summary indicates the variation
is quite large, with the lower and upper quartiles given by 1.104 and 1.148 and
minimum and maximum values given by 1.057 and 1.286. We have not standardised
the number of accidents or fatalities by days in the month or population because the
effect would be very small for these analyses, being a second order effect of variance
rather than first order of mean.

An alternative estimate of the average fatalities per crash is given by a regression ratio
estimate. This turns out to have the same precision (standard error 0.003) as the
monthly average of FC values found above. This analysis also investigates differences
between Australia, states and territories. Estimates found by regressing, with no
intercept, the number of crash fatalities (NCF) per month on the number of fatal crashes
(NFC) per month for Australia, the states and territories were obtained and estimates are
given in Table 2. Without making any allowance for multiple comparisons, the Z
value for comparing the largest value of the states and territories (except ACT) with the
smallest (NSW, 1.136 against Tasmania,1.113) is 2.1, just statistically significant at the
5 percent level. It would probably be reasonable to assume no or little differences
between states and territories. The ACT does have a rate which is statistically
significantly different from the other states and territories.

From the plot of Australia FC series against time, Appendix D Figure D1, 1t appears that
there might be a seasonal or monthly effect. The Seasonal Subseries plot, Appendix D,
Figure D2, confirms a strong seasonal (monthly) effect. The Seasonal Subseries plot
depicts the 12 monthly averages as horizontal lines with values from succeeding years
for the given month plotted as vertical lines to the horizontal line. From the plot, there
are local peaks in the monthly effects at May, September and December. There is no
apparent trend in the yearly values since the vertical lines are haphazardly patterned. A
Seasonal Subseries plot is given for the series of seasonal (monthly lag 12) differences,
Appendix D, Figure D3, which shows little pattern whatsoever and suggests purely
monthly/seasonal effects. An ANOVA confirms monthly effects for the Australian data.
Results are given in Table 3 where an ANOVA for between and within months is given
both for the original series and the seasonally differenced series. There are significant
differences between month effects which are indicated by the significance of the
between month effect for the original data and the insignificance of the between month
effect for seasonally differenced data.

In Table 9.4 we give the monthly means for the series, giving the high months as
December (significantly different from an average month) and January (not significantly
different) and the low month as July (significantly different from an average month). A
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simple prediction method would be to use the appropriate monthly average for July and
December and the average, 1.129 (which remains unchanged), for the remaining
months, or extend this method to include February and June, which have marginally
significant effects, and the average of the remaining months, 1.134. This suggests that
a time series approach to predicting the number of fatalities per fatal accident may be
worthwhile. A reduced structural model 2 (see section 5) with explicit trend and
monthly components was fitted to the FC series. The moving average error of order 1
was, however, replaced by moving average error of order 12, and the lag 6 and 11
terms found to be significatly different from zero. All other moving average terms were
not significatly different from zero. Although a time series approach is possible to
implement to provide forecasts, it is doubtful whether such forecasts would be an
improvement over monthly means.

Table 9.1

Summary statistics for Fatalities per crash: Australia
April 1975 to December 1989

Average 1.129 (0.003)

Median 1.127

Standard Devn 0.037

Min, max 1.057, 1.286

Lower, upper quartiles 1.104, 1.148
Table 9.2

Fatalities per Fatal Crash, monthly data.
Results from Regression Analysis

jurisdiction estimate (s.e.)
Australia 1.130 (0.003)
NSW 1.136 (0.004)
Victoria 1.127 (0.005)
Queensland 1.133 (0.005)
South Australia 1.120 (0.006)
WA 1.124 (0.008)
Tasmania 1.113 (0.010)
Northern Territory 1.131 (0.015)
ACT 1.081 (0.013)
70

ANP 1991/FORS
17.03.92



Table 9.3
ANOVA for monthly series for number of fatalities per crash

Original Data

Source Sum of Squares Df F statistic
Between years 0.0304 14 2.05
Between months 0.0395 11 3.38
Within months and years 0.2332 154

Seasonally Differenced Data

Between years 0.0550 14 1.79
Between months 0.0010 11 0.04
Within months and years 0.3316 151(3)

Table 9.4

Monthly means for the number of fatalities per crash and, in
parentheses, the difference from the average 1.129 multiplied by 100

January  1.147 (18) July 1.104 {-25)
February 1.119 (-20) August 1.124 -5
March 1.116 (-13) September 1.139 (10)
April 1.127  (-2) October 1.133 €)]
May 1.136¢ (D) November 1.126 -3
June 1.109 (-20) December 1.158 29

(standard error of difference of monthly means, 0.012).
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AUSTRALIA MONTHLY DATA
TABLE A.1. Number of fatal road crashes by day

ROW

—_ k=

ML =000~ WD -

ROW

[ T T S Y

MSAPWN SO A SN =

YEAR

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
19%0

YEAR

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

JAN

L0323
4516
.3548
9032
LLY
L7419
05645
8045
5484
L1935
7462
64352
L7097
L1290
L9355

PO OO D~ (D

AUG

.2258
LY
0645
8065
.80465
3226
.2581
L9355
.0968
LR677
6452
. 0645
.2903
.8710
.2903

—

Vi~ v~ oo ;e

FEB

7.8966
8.1429
8.1071
7.7143
6.3103
7.5714
8.3571
5.9286
6.206%9
7.3214
7.2500
5.6429
7.2143
6.7857
5.2143

SEP

9.6333
8.1000
8.9000
8.8667
6333
L7667
.5000
.7333
L4333
L4667
.5000
.0000
L0667
.B667
-5000

Ov N0~ O NN N

TABLE A.2. New Motor Vehicle Regist

ROW

—

OO~V NN =

ROW

Y

SO0V W —

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1981
1982
1983
1984
1985
1986
1987
1788
1989
1990

JAN

n*

43847
34924
41610
50568
43481
33339
29686
35435
44212

AUG

51727
56500
54268
56884
56194
48119
35308
46187
54790
50681

FEB

-

45002
40147
49612
56284
41259
34464
35473
45052
48213

SEP

50406
50587
L6768
49256
54547
42137
40672
50071
55232
50261

MAR

B.3548
9.2258
9.6774
g.6452
7.9355
7.2903
6.9032
6.8710
7.2581
6.8387
7.9355
7.0645
7.5484
7.2581
6.41%4

oc

.741
.03

.387

.580
129
451
.741
L4351
-000
.612
.387
.2%90
774

NN N RO Mm O De

rations
MAR

51059
59485
56966
57167
64435
44083
39327
42903
52981
67172

QCT

46963
47940
44284
56770
57599
40510
38947
46066
51183
53345

21613

L3548

APR

9.1000 8
8.8000 8
7.9667 8
9.3333 7
8.8000 7
8.2000 7
B.4333 8
6.7333 6
6.3333 &
6.7667 7
7.6333 7
6.4667 6
6.1000 7
5.5333 6
5.3000 5

T

g
2

1

&
0
)
g
é
0
9
1
3
2

VMO N SNSNNNNRO N0 0w

APR

48948
50111
42216
46277
56576
51955
32015
36745
43987
47284

NOV

48800
45763
49946
53631
58703
35565
35417
52980
53265
47484

NOV

L6667
.5333
.0333
. 7000
.5000
-4333
.9333
L1333
.4000
.7000
L1333
-5000
LPEET7
. 1000
.2000

MAY

51508
54043
49903
60993
64554
47354
35773
44335
52713
60353

DEC

53434
57567
49540
50608
50568
3809
44551
49405
47168
42204

MAY

L7419 B,
.5806 8.

.5484
L8065
.6129
-8387
.0323
.6129
-5806
6452
-3226
.3548
L1613
L1290
.2581

DEC

10.1290
9.8065
8.8387

10.1613
7.9677
7.9355
7.5181
7.0645
8.2581
8.9677
7.2581
7.3548
7.0009
7.6774
§.1935

JUN

56222
55146
50945
57552
57661
44798
40674
46448
54104
52463

O~ OO~~~ 0O

JuL

59278
55565
45697
57603
61673
43787
40335
40240
51427
55863

JUL

7.
8.
9.
B.

VIir DN OO0

5806
1935
1290
4516

L6774
L1935
. 8065
-B387
L4194
.5032
.2903
.2581
L6129
L1613
L9677



NSW MONTHLY DATA

TABLE A.3 Number of fatal road crashes per day

ROW

OGN L

i
12
13
14
15

ROW

MR~V PN

10
11
12
13
14
15

TABLE

ROW

QOO NV W=

—

ROW

OV~ S~ WR —

-

YEAR JAN
1976 2.77419
1977 2.64516
1978 3.16129
1979 2.09677
1980 2.77419
1981 3.12903
1982 3.74194
1983 2.09677
1984 2.54839
1985 2.09677
1986 2.4B387
1987 2.51613
1988 2.51613
1989 1.5483%
1990 1.38710
YEAR JuL
1976 2.67742
1977 3.00000
1978 3.64516
1979 3.16129
1980 3.74194
1981 3.16129
1982 3.09677
1983 2.32258
1984 1.77419
1985 2.41935
1986 2.22581
1987 2.41935
1988 2.45161
1989 2.06452
1990 2.41935
A.4 Weather Index
YEAR JAN
1981 *
1982 ©.2734
1983 5.3910
1984 14.9763
1985 3.9139
1986 10.9606
1987 8.46%92
1988 G.0624
1989 18.8035
1990 11.2031
YEAR JUL
1981 4.9067
1982 13.3983
1983 10.2425
1984 16.0861
1985 8.1170
1986 @.0315
1987 11.9605
1988 6.2037
1989 B.4384
1990 10.2425

FEB

2.41379
2.96429
3.21429
2.50000
1.93103
3.03571
3.50000
1.71429
2.34483
2.89286
2.60714
1.75000
2.39286
2.64286
1.78571

AUG

.50323
. 19355
.61290
.90323
. 538065
77419
. 09677
.35484
. 58065
.35484
.06452
.83871
.16129
.B064S
-90323

= =N =2 WM WN NN

FEB

o

7.2031
10.8824
17.8350
10.2031
10.8508

g.8120
1.102
10.8429
17.6786

AUG

6.1098
4.124%
10.8%02
7.7812
10.1643
12.0703
16.1249
9.2425
6.3831
12.2741

MAR

2.74194
3.19355
3.67742
3.61290
2.80645
2.54839
2.67742
2.58065
2.77419
2.06452
2.870%7
2.38710
2. 77419
2.32258
2.48387

SEP

3.83333
2.73333
3.33333
3.40000
2.80000
3.106000
2.96667
2.66667
2.50000
2.B6667
2.30000
2.50000
2.73333
2.80000
2.30000

MAR

5.1170
16.3674
9.1170
10.2655
1. 6477
7.1873
11.4535
13.0618
18.5459
17.8508

SEP

4.1564
10.124%
$.0000
10.0940
11.2734
11.0388
4.9921%
10.9139
2.2741
10.1003

APR

3.33333
3.36667
2.93333
3.73333
3.66667
3.60000
3.36567
2.63333
2.13333
2.56667
2.40000
2.50000
2.20000
1.33333
1.73333

oCcT

3.35484
3.48387
2.93548
3.03226
3.35484
3.48387
5.06452
2.35484
.22581
L7749
.B3871
09677
09677
16129
. 70968

=MW NNNN

APR

6.9606
B.9527
12.3595
2.1952
15.7884
7.8042
7.1873
17.1952
20.7489
15.2583

ocT

11.9060
11.9369
12.9527
11.2188
15.7884

9.0237
14.2734

0.1019

5.1564
12.9606

MAY

3.51613
2.93548
3.29032
3.29032
3.06452
2.93548
2.93548
2.19355
2.43161
2.64516
3.00000
1.96774
2.35484
2.09677
1.74194

NQV

2.86667
3.30000
3.06667
2.96667
3.83333
3.46667
3.00000
2.60000
2.83333
2.90000
2.33333
2.33333
2.36667
2.10000
1.66667

MAY

12.0703

3.9842
12.9297
10.0151
17.9757
11.0467
10.1406
14.Q703
17.8824
14.0309

NOV

14.2110

3.9842
11,3207
12.8666
10.4692
13.7417

6.9455
12.5616
13.0230

5.0545

JUN

3.00000
2.56667
3.90000
2.73333
3.26667
2.33333
2.93333
2.50000
2.56667
2.30000
2.23333
2.50000
2,30000
2.50000
1.96667

DEC

3.25806
3.354B4
3.38710
3.51613
2.90323
3.38710
2,32258
2.77419
3.12903
3.51613
2.54839
2.32258
2.70968
2.41935
2.03226

JUN

7.9067
15,7568
10.2188

5.4456

7.3049

3.1643
10.0782
11.8981
18.0388
12.0624

DEC

9.3595
8.0940
13.8745
10.1091
12.9763
4.9060
10,9842
17.6865
12.9606
7.1406



VICTORIA MONTHLY DATA
TABLE A.5 Humber of fatal road crashes by day

ROW

WO 00~ OB s

ROW

TABLE A.4 New Motor Vehicle Registrations

OO~ W

ROW

—_

oOVMEB NS WM

ROW

—

SO0~ O R

YEAR

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1789
1990

YEAR

1576
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1981

1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1981
1982
1983
1984
1983
1986
1987
1588
1589
1990

JAN

2.16129
1.80645
2.00000
1.93548
1.41935
1.77419
1.61290
1.03226
1.90323
1.45161
1.58065
1.67742
1.41935
1.96774
1.41935

JUL

.83871
09677
. 12903
. 12903
77419
.83871
41935
.00000
. 29032
.58065
.27032
14194
51613
1.64516
1.19355

N i N R N N AV E S I Y Y

JAM

*

8862
8486
10032
11311
12182
10990
8456
8321
8440

JuL

18013
14529
11704
16171
15475
12603
11078

9237
16435
15627

2
2
1
1
1
1
1
1

Y N SN

2
2
2
2
1
1
2
1
1
1

t
1
1
1
1

FEB

-31034
32143
-89286
71429
79310
96429
64286
67857
.58621
.50000
64286
.32143
.92857
. 14286
32143

N Y TR SR ST S T YY)

AUG

.03226
.51613
.35484
. 19355
.54839
LT749
.00000
.54839

—_- e ) = = PP

FEB MAR

* 11N
9695 15345
9698 13724
11990 14058
16209 17502
11622 10710
9535 11359
9123 9615
10850 13877
12051 19521
AUG SEP
11960 12073
14584 11984

13236 1231
14053 12650

13751 14039
13076 10682
B840 11247
13655 12012
13875 17322
12055 12701

MAR

43161
.61290
7419
.54839
F6774
. 70968
.51613
.58065
77419
48387
.00000
T7419
06452
.35484
67742

SEP

.23333
. 10000
96657
.BEGET
.43333
06687
66667
.83333
41935 1.
45161 1,
64516 1.
48387 1.
.54839 1.
70968 2.
06452 1.

76667
56667
60000
56667
20000
20000
40000

APR

10385
11152
11426
12253
14391
14982

8726
10007
10474
14863

ocT

10068
14162
11903
15128
13766
neié
11151
11169
12090
13310

APR

2.40000
2.20000
1.90000
2.16667
1.90000
1.70000
1.80000
2.00000
1.43333
1.B6667
1.90000
1.56667
1.66667
1.80000
1.20000

ocT

2.16129
1.87097
2.32258
2. 19355
1.64516
1.96774
1.90323
1.322%8
1.41935
1.67742
1.54839
1.77419
1.51613
1.41935
0.96774

MAY

11246
12868
13088
15789
16847
11466
10235
11739
11197
15066

NOV

9053
11765
13395
13193
13236
10135

7343
14441
13306
10543

MAY

2.06452
1.90323
1.93543
1.41935
1.45161
2.03226
1.96774
1.74194
1.58065
2.03226
1.77419
1.80845
2.22581
1.96774
1.64516

NOVY

2.30000
2.63333
2.20000
2.00000
1.80000
1.73333
1.90000
1.63333
1.56667
1.70000
1.83333
1.66667
1.26667
1.13333
1.23333

JUN

13443
17281
12254
13425
13588
13407
10713
10890
13761
12378

13107
14820
13216
11798
11925

8303
12872
12500
13818

84680

JUN

2.43333
2.43333
2.13333
2.00000
1.76667
2.03333
1.43333
1.76667
1.43333
1.53333
1.50000
1.83333
1.56667
2.10000
1.70000

DEC

2.74194
2.93548
1.90323
2.5483%
1.51613
1.54839
1.90323
1.54839
1.74194
1.87097
1.58065
2.32258
1.61290
1.87097
1.32258



TABLE A.7 Weather lndex

g

-

CORNGWUM W

ROW

-

(=00 N RNl R R T L]

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

JAN

*

6.9769
B.9451
12.9538
5.9769
6.9461
8.9692
5.9492
8.9461
3.0000

JUL

14.9846

6.9769
14.9692
15.9615
12.9384
17.9538
11.0000
17.9461
17.9231
18.9384

FEB

*

4.9769
1.0077
6.9615
4.9615
3.9769
6.9692
1.9923
5.9615
13.9154

AUG

19.9384

8.9538
11.9692
19.9538
19.9923
12.9923
15.9461
15.9154
22.8846
23.9308

MAR

9.9461
9.9461
9.9615
9.9615
9.9308
3.9692
9.9461
2.9384
12.9231
6.9615

SEP

7.0000
11.9846
19.9077
15.9308
13.9384
13.9461
13.9384
12.9615
12.9461

9.9338

7.
7.
12.
10.
9.
.9000
9461
5.
10.
13.

15
7

10.
9.
L9615

1

10.
.9615

1

20.

9.
16.
17.
15.

APR

9461
97E9
9461
9538
94561

9923
9308
9231

ocT

9461
9538

9538

9231
9769
8769
8923
9077

16.
12.
15.

3.
1.
16.
16.
13,
10.

9.

12.
4.
14.
9.
15.
8.
12.
14.
9.
9.

MAY

9538
9308
9231
Pe92
9461
9384
9154
%9615
652
9692

NOV

9384
9692
9384
9615
9231
9615
9231
9384
9461
9538

JUN

15.9846
8.9846
14 .9461
7.9384
14.9308
11.9384
14,9692
12.9538
15.9461
15.9308

DEC

7.9615
5.9692
5.0154
13.9077
17.9231
9.96%2
9.9538
11.9461
9.9615
7.9846



QUEENSLAND MONTHLY DATA
TABLE A.& Number of fatal road crashes by day

ROW

MO0~ O B g —

Lol -B N SR R W N

10
"
12
13
14
15

YEAR

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0
1
1
0
1
1
1
1
0

[ QU QUSRI . I ., T S

1
1
0
1.
¢
0

JAN

77419
.22581
.32258
SETT4
-00000
.12903
. 19355
-06452
.90323
.12903
16129
.90323
29032
. 80645
-612%0

JuL

. 12903
.58065
.38710
. 38065
.54839
.38710
.54839
.B3871
.B3871
Qo000
. 23806
.22581
. 29032
. 12503
96774

TABLE A.9 Weather Index

ROW

OO0~ W -

ey

ROW

OO NN R -

—_

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

JAN

L

14.277

?.049

14.097

9.111
8.821

1.898

17.801
12.311

9.057

JUL

8.359
4.000
9.752
11.878
6.849
10.946
7.786
8,442
7.088
4.111

FEB

1.17241
0.785T1
1.17857
1.21429
0.93103
1.17857
1.28571
1.03571
0.79310
1.25000
1.42857
1.03571
1.35714
0.75000
0.85714

AUG

1.16129
1.45181
1.83871
1.74194
1.35484
1.35484
1.48387
1.67742
1.51613
1.06452
1.06452
1.35484
1.67742
0.90323
1.12903

FEB

15.379
12.635
10.815
16,296
10.097
15.490

7.T44
12.199
13.490

AUG

2.869
13.330
8.195

5.014

9.767
10.151
4.738
4.621

MAR

1.25806
1.61290
1.29032
1.22581
1.38710
1.51613
1.19355
1.00000
1.25806
1.48387
1.29032
1.22581
1.06452
1.06452

0.90323

W oo u ~ o O

SEP

1.60000
1.36667
1.80000
1.63333
1.16867
1.76667
1.50000
1.46667
1.66667
1.40000
1.23333
1.23333
1.46667
1.10000
1.23333

MAR

602
. 384
.296
510
399
171
.830
641
325
.29

SEP

567
17
476
. 387
077
519

.732
.505

10.

"

14.
20.
16.
16.

10.

15.
12.

1

APR MAY
1.33333  1.35484
1.30000 1.61290
1.20000 1.09677 1.
1.63333  1.45161
1.36667 1.5B065 1,
1.23333  1.06452 1.
1.53333  1.61290
1.00000 D.96774
1.43333  1.12%03 0,
1.10000  1.22581
1.33333  0.93548
0.7666T7  0.90323
1.06667 1.41935 1.
0.73333 0.96774 0.
0.86667 0.7741%

ocT NOV
1.64516 1.63333 1.
1.58065  1.40000 1.
1.90323  1.46667 1,
1.45161 1.63333 1.
1.51613  1.63333 1.
1.51613 1,53333 1,
1.45161 1,43333 1.
119355 1.16667 1.
1.48387 1.30000 1.
1.51613  1.06667 1.
0.90323 1.03333 1.
1.19355 1.33333 0.
1.38710  1.63333 1.
1.16129 1.46667
0.96774  0.90000
APR HAY JUN
384 7.641 2.951
.772 10.282 2.131
559 18.971 11.470
462 100243 11,097
L1600 150034 3.136
097 13.020 4.550
875  14.854 13.863
616 4.613 8.605%
399 20.020 8.835
SB6  11.641 9.932
OocT NOV DEC
160 15.932 14,533
.601 B.140  15.504
L7867 14.951 10.481
305 11.023  10.257
330 11.820 10.80
.592 7.995 13.373
.339 B.408  11.057
.2 8.393 18.145
L9567 13.869 10.655
. 704 7.616 -

1.
1.

1.
1.
1.
1.

1.
1.

1.

1.
1.

JUN

33333
20000
26667
76667
90000
83333
56667
36667
93333
40000
16667
13333
06667
20000
16667

DEC

90323
74194
70968
58063
25806
25806
16129
58065
41935
22581
06452
83871
16129
35484
12903



AUSTRALIA QUARTERLY DATA

TABLE A.10. Number of fatal road crashes standardised by
estimated population {'000)

ROW  YEAR MARCH @. JUNE Q. SEPT @. DEC Q.
11981 * 0.043 0.050 0.051
2 1982 0.046 0.048 0.047  0.047
3 1983 0.036 0.040 0.043 0.041
4 1984 0.03% 0.038 0.03%  0.044
5 1985 0.039 0.041 0.039  0.047
& 1986 0.041 0.041 0.037 0.041
7 1987 0.036 0.036 0.038 0.042
8 1988 0.039 0.036 0.041 0.039
g 1989 0.036 0.034 0.036 0.036

10 1990 0.029 0.030 0.032 .

TABLE A.11. Percentage change in average retail price of
petrol over eight capital cities

ROW  YEAR MARCH @. JUNE Q. SEPT @. DEC Q.
1 1987 - 0.101 -0.041 0.025
2 1982 0.002 0.020 g.104 0.021
3 1983 0.037 -0.030 0.053  0.047
4 1984 -0.002 0.014 0.010 0.002
5 1985 0.020 0.085 0.034 -0.031
6 1986 0.015  -0.107 0.065 0.077
7 1987 0.018 -0.017 -0.001 0,020
8 1988 0.014 -0.046 -0.015 -0.019
9 1989 -0.002 0.083 0.014& 0.032

10 1990 0.062 -0.004 0.045 0,206

TABLE A.12. Automotive fuel sales (megalitres)

ROW  YEAR MARCH @. JUNE @.  SEPT Q. DEC Q.
11983 * 3716171 3823972 3839872
2 1982 3499134 38671840 3720533 3904406
3 1983 3607371 3751118 37840560 3882418
4 1984 3802535 3867537 3801619 4014809
5 1985 3839181 3923407 * 4100403
6 1986 3815766  4D644B4 4012536 4110137
7 1987 3872669 4005934 4097943 *
& 1988 4140660 4097406 4217293 *
9 198¢% * 4294497  430B409  43B8B4A3

10 1990 4261324 4303956 4392969 4165786

TABLE A.13. New motor vehicle registrations standardised
by estimated population ('000)

ROW  YEAR MARCH Q. JUNE Q. SEPT Q. DEC q.
1198 * 0.010 0.0117  0.010
2 1982 0.010 0.0M 0.011 0.010
3 1983 0.009 0.009 0.010 0.009
& 1984 0.010 0.01 g.010 0.010
5 1985 0.0 0.011 0.011  0.010
6 1986 0.008 0.00% 0.009 0.007
7 1987 0.007 0.007 0.007  0.007
8 1988 0.007 0.008 0.008 0.009
9 1989 0.008 0.009 0.010 0.00%

10 1990 0.00% 0.009 0.009 hd



VICTORIA QUARTERLY DATA

TABLE A.14. Number of fatal road crashes standardised by
estimated population (*000)

ROW  YEAR MARCH Q. JUNE Q. SEPT @. DEC Q.
11981 * 0.044 0.044  0.041
2 1982 0.036 0.040 0.039 0.044
3 1983 0.032 0.041 0.041 0.034
4 1984 0.039 0.033 0.034 0.035
3 1985 0.032 0.040 0.034 0.039
6 1986 0.038 0.038 0.033 0.036
71987 Q.034 0.038 0.035 0.042
g8 1982 0.038 0.039 0.036 0.031
1989 0.045 0.041 0.03% 0.037

10 1990 0.030 0.032 0.025 *

TABLE A.15. New motor vehicle registrations standardised
by estimated population ('000)

ROW YEAR MARCH Q. JUNE Q. SEPT Q. DEC Q.
11981 * 0.009 0.011  0.008

2 1982 0.60% 0.010 0.010 0.010

3 1983 0.008 0.009 0.009 0.009

4 1984 0.00% 0.010 0.010 0.010

5 1985 o.on 0.0114 0.010 0.010

& 1986 0.008 0.010 0.009 0.007
7 1987 0.008 0.007 0.007 0.007

8 1988 0.006 0.008 0.008 0.009

g 1989 0.008 0.008 0.011  0.00%9
10 1990 0.009 0.010 0.009 *

TABLE A.16. Percentage change in average retail price of
petrol price over eight capital cities

ROW YEAR MARCH Q. JUNE Q. SEPT @, DEC Q.
11981 * 0.092 -0.087 0.040

2 1982 -0.075 0.093 0.137 -0.036

3 1983 0.052 -0.052 0.118 0.043
4& 1984 -0.017 0.042 0.002 -0.010

5 1985 0.023 0.126 0.029 -0.079

& 1986 0.079 -0.%24 0.055 0.068
7 1987 0.033 -0.046 -0,007 0.063

g 1988 -0.037 -0.049 -0.015 -0.031

9 1989 0.032 0.072 0.005 0.043
10 1990 0.066 0.Q00Q 0.053 D.242

TABLE A.17. Automotive fuel sales {(megalitres}

ROW  YEAR MARCH Q. JUNE Q. SEPT 4. DEC Q.
1 1981 * 1034901 1055658 1094359
2 1982 1043062 1079788 1059513 1097663
3 1983 1014437 1073603 1054540 1079659
4 1984 1071671 1081560 1056898 1129183
5 1985 1080998 1106391 * 1159275
& 1986 1066838 1136422 1099522 1171431
7 1987 1080793 1130201 1141458 *
8 1988 1152917 1167708 1146720 *
9 1989 ® 1221478 1193184 1236323
10 1990 1190300 1197615 1191160 1157554



TABLE A.18. Automotive diesel oil sales (megalitres)

ROW

QORI L WHN=

—_

YEAR

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

MARCH Q.

291014
281661
317400
326051
315554
345781
370726

*

429172

JUNE Q.

328063
343115
351201
357880
370044
377508
383533
395168
446903
439017

SEPT 4.

307713
320000
319165
320083

*

347841
360290
384360
405100
399832

DEC Q.

303089
297579
325362
347083
349882
359668

*

*

443322
3vz2ars
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Time Series Plot of Standardised Monthly
Fatal Road Accidents for NSW
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Time Series Plot of Standardised Manthly
Fatal Rpad Accidents for Victoria
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Time Series Plot of Weather Index far
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Time Series Plot of Standardised Momthly

Fatal Road Accidents for Australia
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Time Series Ploct of Standardised
Quarterly Fatal Road Accidents for Aus

(xX 1E-3)
||l'[llll[l!“lTT]Flfl]T]]'\IIWTI'\[ ‘"'—| l]
83 —
. -
] 439 —
C
g L
-u -
]
4] -
1]
T -
[ ]
g L.
4
- L
a 41 —
s
i i
o
ﬁ -
o aTt —
el -
C
T L
T i
c - |
i
by 33 —
28 — . .
ALIIIIJII{IIIILLIrtltllllllllwllll JIILll
a d 8 iz 16 28 24 2B 32 36 449
Quarters (beginning June gquarter 1981)
Figure A.19
Time Series Plot of Fercentage Chanpge
in Petrol Price for Australia
III!'IIII!\I[Tr1[lll]ll||ll{T_|__iT" ITIIIj’
.29 — 1
A 8.19 — .
", L
I
[N L
2
L -
-}- .09 — '
- L
= -
=
I -e.el —
e L
v
-8.,11 — : . ' . ' : '
| SR W A S TS U VO Sh T S N S ST SN SO SH S (SO SN GA TR NG S SR A U S H ST T SRR
] 4 8 12 16 20 24 28 32 36 48

Figure A.11

Quarters (beginning June quarter 1981)




Time Series Plot of aAutomotive Fuel
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Quarterly Fatal Road Accidents for Uic

45 —

41

37 —

33 —

29

Standardised Fatal Road Accidents
T

28 —

Figure A.14

Quarters (beginning June guarter 1981)

Time Series Plot of Standardised New
Motor Ushicle Registratiomns for Uie.

(X 1E-3)
11

o L

1}

1} —

—

U f

e

2 L

[ -

=

L C

4] —

+

U |-

z —_—

3

3 =

z 8 —

b -

w

n —

-

U —

L

L L

J: T

] -

-t

wn -

Figure A.15

Quarters (beginning Jurme gquarter 1981)




Time Series Plot of Percentage Change in

Fetrol Prices for Victoria
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Time Series Plot of Automotive Diesel
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Sources of Data and Definitions of Derived Variables
Response Variables
1. FATACC Number of Fatal Accidents

SOURCE: (i) ABS Publication No. 9401.0
fRoad Traffic Accidents Involving
Fatalities,Australia -’
Monthly; first issue containing Tabkle 2 - Fatal
Road Traffic Accidents - July 1976; last issue
December 1990.

(ii) FORS Publication
fRoad Crash Statistics,Australia’
Monthly; first issue January 1991.

DESCRIPTION: The number of fatal road traffic accidents in
each State and Territory.

2. FATALS Number of Road Traffic Accident Fatalities

SOURCE: (i) ABS Publication No. 9401.0

Monthly; first issue January 1970; last issue
December 1990.

(ii) FORS Publication
‘Road Crash Statistics,Australia’
Monthly; first issue January 1991.

DESCRIPTION: The number of persons killed in road traffic
accidents.

Explanatory Variables

1. CPI Consumer Price Index for all Groups: six state
capital cities and Canberra.

SOURCE: ABS publication No. 6401.0
’Consumer Price Index’
Quarterly: first issue June 1960.

2. CPITRS Consumer Price Index for Transportation Group:
weighted average of six state capital cities.

SOURCE: ABS publication No. 6401.0
Data available for base year 1980-81 from
March quarter 1982.

3. GDP Gross Domestic Product

SOURCE: ABS Publication No. 5206.0
fhustralian National Accounts: National Income
and Expenditure’
December Quarter 1990; Table 42



DESCRIPTION: Gross Domestic Product for Australia at current

prices ($million). Data collected from September
guarter 1975,

4. NEWMVR Registrations of New Motor Vehicles

‘Registrations of New Motor Vehicles, Australia,
Preliminary’

Monthly (Australia) ;first issue September 1953.
State and Territory data available gquarterly
to May 1979 then monthly from June 1979.

Data collected from March quarter 1975.

|
‘ SOURCE: ABS Publication No. 9301.0
i
|
|

DESCRIPTION: Registrations in each State and Territory of new
motor vehicles.

5. PETROL Average Retail Price of Petrol (super grade)

SOURCE: ABS Publication No. 6403.0
'Average Retail Prices of Selected Items, Eight
Capital Cities’
Quarterly; first issue March 1962.
Average petrol prices were published for the first
time in the December quarter 1580 issue.

DESCRIPTION: Average retail prices of super grade petrol for
each of the six State capitals, Canberra and
Darwin. Prices are collected at the middle of the
first month of the quarter.

6. POPN Resident Population Estimates

SOURCE: ABS Publication No. 3101.0
fAustralian Demographic Statistics’
Quarterly: first issue June 1979.
Data collected from June guarter 1971.

DESCRIPTION: Latest guarterly population estimates(’/000) for
Australia, States and territories.

POPNAGE Annual Estimated Resident Population by Age Groups,
States and Territories.

POPNFEM} Annual Estimated Resident Population by age and
POPNMAL} sex groups,States and Territories.

SOURCE: ABS Publication No: 3201.0
‘Estimated Resident Population by Sex and Age:
States and Territories of Australia’
Annual; first issue 30 June 1968.

7. RDAYS Number of Rain Days

SOURCE: Australian Bureau of Meteorology
'Report of Monthly and Yearly Rainfall by N.C.C./
for chosen stations within each State and



Territory. Data was collected from 1970 onwards.

DESCRIPTION: Number of days for which rainfall is recorded at
a chosen station within a given month. The 17
stations chosen were:

NSW: Sydney, Dubbo, Newcastle
ACT: Canberra

QLD: Brisbane, Cairns, Mackay
SA : Adelaide, Port Augusta
WA : Perth, Albany

VIC: Melbourne, Mildura

NT : Darwin, Alice Springs
TAS: Hobart, Launceston

8. SFUEL Sales of Automotive Gasoline by State Marketing Area
(kilolitres)
SDIESEL Sales of Inland Automotive Diesel 0il by State
Marketing Area (kilolitres)
SLPG Sales of LPG for Automotive Use by State Marketing
Area (kilclitres)

SOURCE: (i) Department of Primary Industries and Energy
Bulletin
Major Energy Statistics’/:ISSN 0727-260X
Table 3B.
Monthly Bulletins Available from March 1981
to May 1989,

(ii) Australian Bureau of Agricultural and Resource
Economics (ABARE) Bulletin
fQuarterly Mineral Statistics’
First issue June dgquarter 1989.
Monthly data from June 1989 was provided by
ABARE on regquest.

DESCRIPTION: Sales of petroleum products by States and
Territories (kilolitres}.

9. UNEMP Unemployment Rate

SOURCE: ABS Publication No: 6203.0
‘The Labour Force, Australia’
Monthly; data available monthly for states from

from 1978.

DESCRIPTION: Unemployment Rate (expressed as a percentage) for
the civilian population aged 15 and over for
Australia, States and Territories.



ADDITIONAL VARIABLES INVESTIGATED

Data for additional variables that were sought but not readily
available in the form regquired consists of:

1. The number of fatal road crashes and fatalities broken
down into regions within states.

ABS publications available for regions within States are as
follows:

(i) VICTORIA

9406.2 ‘Road Traffic Accidents Involving Casualties, VIC/;
annual.

(ii) QUEENSLAND
9405.3 ‘Road Traffic Accidents, QLD’; quarterly
9406.3 ‘Road Traffic Accidents, QLD’; annual

(iii) WESTERN AUSTRALIA
9405.5 f‘Road Traffic Accidents involving Casualties
Reported to the Police Department, WA’;
guarterly
9406.5 'Road Traffic Accidents Involving Casualties
Reported to the Police Department, WA‘; annual

(iv) TASMANIA
9405.6 ‘Road Traffic Accidents Involving Casualties,
TAS’; quarterly
9406.6 ‘Road Traffic Accidents Involving Casualties,
TAS’; annual

Quarterly data is provided for Queensland, Tasmania and W.A.

while monthly data is not published for any of the States or
Territories.

2. The number of driver licenses in force.

This data could not be readily obtained for any of the states
except Western Australia for which guarterly data is published
in the publication no. 9406.5.

3. The number of vehicle kilometres travelled (vkt).
This data could only be located in the ABS Publication

9208.0 ‘Survey of Motor Vehicle Use, Australia‘’
three-yearly; first issue September 1971;
last issue September 1988.

The relevant information is contained in Table 15

fTotal kilometres travelled by type of vehicle:
State/Territory of registration twelve months ended 30
September 1988'.

However as only 6 data values are available for vkt over 20
years this variable could not be included in our models
containing monthly and gquarterly data. It is suggested that



the required data be collected monthly by some means other
than survey, if possible, in the future.

4. The level of alcohol consumption.

As alcohol may be a cause of fatal road crashes, data on
alcohel consumption was sought.

Annual data for alcohol consumption are shown 1in the ABS
publication no. 4315.0 ‘Apparent consumption of selected
foodstuffs , Australia, Preliminary’;annual; first issue 1978-
79. In the latest 1989-90 issue, a time series plot of
’'Apparent per capita consumption of selected beverages 1984-85
to 1989-90, Australia, year ended 30 June’ on page 3, shows
that the consumption of wine has been steady while consumption
of low alcohol beer has increased since 1988 and decreased
steadily for other beer. The overall consumption of beer would
appear to have remained fairly constant.

The annual data was not appropriate for inclusion in our
models.

There is an ABS publication due for release in 1991 which
contains national statistics describing the 1levels and
patterns of alcohol consumption and selected demographic and
socio-economic characterisics of consumers.

4381.0 ’National Health Survey: Alcohol Consumption’

VARTABLES DERIVED FROM RAW DATA COLLECTED
For monthly data variables were standardised as follows:

1. STDACC

(i) The number of monthly fatal accidents was standardised by
the number of days in the month. This was done to
eliminate the bias due to the length of the month.

(ii) The variable was then standardised by population size to
eliminate the effect of increasing population size over
time.

So, STDACC = (STANDARDISED MONTHLY FATACC ) /POPN

2. %CHGPET
This variable is a measure of the percentage change in
petrol price from one month to the next.

3. MVR
NEWMVR is standardised by dividing by population size.

So, MVR = NEWMVR/POPN

4. WEATHER INDEX (WI)

The weather index is calculated by weighting the number of
raindays for chosen centres within a State or Territory by
their respective population size (Maunder,1974). Population
sizes for the centres chosen were taken from the ABS 1986
CENSUS ’Persons and Dwellings in legal local Government Areas,



S.L.A.’s and Urban Centres/ Rural Localities’.
Publication numbers 2462.0 - 2469.0,

The State WI is given by
RDs = EE(RDC X Pc)
e
Z. Pc

e s

where c denotes urban centre in state
s denotes state or territory
Pc denotes population size of centre
RDc denotes number of rain days in centre
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Program 1
(Table 8.7a)

" AUSTRALIA DATA

Regress standardised accidents on FUEL SALES,
trend arxl quarters where fuel sales are produced in the
transfer function medel by & SARIMA(D,1,1,1,0,0,4) model.
L]

UNITS[ NVALUES=39]

OPEN "AUSQRY.DAT'; CHANNEL=2

OPEN 'FORFL91.DAT'; CHANNEL=3

READ[ CHANNEL=2) POPN,STDACC,UNEMP,NEWMVR, CHGPET,FUEL ,DIESEL, TREND,\

Q1,02,03,04

READ [CHANMEL=3; SETNVALUES=Y] INTREND,INQ1,I1NQGZ2,INQ3, INQ4, [NFUEL

YARIATE [NVALUES=4) FF

VARIATE DIFFACC, RES1,RES2,RES3,RES4 ,RESS

FACTOR [NVALUES=39; LEVELS=!1(Z,3,4,1)] QUART

GENERATE &, QUART

CALC DIFFACC=DIFFERENCE(STDACC)

TREATMENT QUART

ANOVA [PRINT=A] DIFFACC

AKEEP QUART; VAR]IANCE=RVAR

CALC DSSES=RVAR*33

PRINT DSSS

CALC N=NOBS(STDACC)
CALC TSS=VAR(STDALC)*(N-1)

Using a SARIMA(1,0,1,1,1,0,0,4) model for errors
n
TSM ERMZ; ORDERS=!(¢0,1,1)

TSM FU_ARIM; DRDERS=!1(0,1,1,1,0,0,4)
ESTIMATE {PRINT=ESTIMATES] FUEL; TSM=FU_ARIM
FORECAST [MAXLEAD=4; FORECAST=FF]

TSM [model=t] FU_TSM; ORDERS=!(1,0,1,1,1,0,0,4)
TRANSFER TREND,Q2,Q3,04,FUEL; transfers* * * +* &
ESTIMATE[PRINT=ESTIMATES;constant=f; MAXCYCLE=50] STDACC: TSM=ERM2

FORECAST [MAXLEAD=4] INTREND,INQZ, INQ3, INQ4,FF

TKEEP RESIDUALS=RESZ

CALC N2=NOBS(RES2)}

CALC ESS2=VAR(RESZ)Y*(N2-1)
PRINT ESS2

CALC R22=(T55-ESS2)/T55
CALC R252=(DSSS-ESS2)/DSSS
PRINT R22,R252

STOP



" AUSTRALIA DATA

Regress monthly standardised accidents on FUEL, LAG FUEL,LAG(LAGFUEL),
trend and months, fitting structural models 1 to 5 as defined

below. Models fitted to time series from March 1981 to December

1990 and fatal accidents predicted for months January 1991 to

December 1992. Fuel sales predicted from airline model.

PROGRAM MLAG2.GEN

(1]

UNITST NVALUES=118)

OPEN 'MTHFL.DAT!; CHANNEL=2

OPEN 'MV.DAT' ; CHANNEL=3

READ[ CHANNEL=2] STDACC,FUEL,LAGFUEL,TREND,\

M1,M2,M3 M4, M5 M6, M7, MB, N3, H10,H11,M12

READ [CHANNEL=3; SETNVALUES=Y} INTREND, INM1, [NM2, INM3, INM4, INM5,\
INM6, INM7, INM8, INMS, INM10, [NM11, INM12

VARIATE DIFFACC,RES1,RES2,RES3,RESG,RESS, LLFUEL

VARIATE [NVALUES=24] FF,LAGFF,MVFF,LLAGFF,LLMVFF

VARIATE [NVALUES=24; VALUES=13B6475,23(1)] REP

VARIATE [NVALUES=24; VALUES=14D4254,1386475,22(1)] LREP

FACTOR [NVALUES=118; LEVELS=1(3,4,5,6,7,8,%,10,11,12,1,2)1 MONTH
GENERATE 12, MONTH

CALC LLFUEL=SHIFT{LAGFUEL;1}

Remove trend by differencing and seasons by ANOVA
DSS = deseasonalised sums of squares

H

CALC DIFFACC=DIFFERENCE(STDACC)

TREATMENT MONTH

ANOVA [PRINT=A] DIFFACC

AKEEP MONTH; VARIANCE=RVAR

CALC DSSS=RVAR*105

PRINT DSBS

CALC N=NDBS(STDACC)

CALC TS$5=VAR{STDACC)*(N-1)

n

Predicting fuel sales for 1991 and 1992 from past data,
using a SARIMA(D0,1,1,0,1,1,12) model for errors.
n

TSM FU_ARIM; ORDERS=!(0,1,1,0,1,1,12)

ESTIMATE [PRINT=ESTIMATES] FUEL; TSM=FU_ARIM
FORECAST [MAXLEAD=24; FORECAST=FF]

CALC MVFF=SHIFT{FF;1)

CALC LAGFF=MVREPLACE (MVFF;REP)

CALC LLMVFF=SHIFT(FF;2)

CALC LLAGFF=MVREPLACE(LLMVFF;LREF)

PRINT LAGFF,LLAGFF

Using an MA(1) model for errors
n

TSM ERM1; ORDERS=1(0,0,1)

TRANSFER TREND,M2,M3,Md, M5, M6, M7, M8, M9 ,M10,M11,M12, FUEL, LAGFUEL, LLFUEL
ESTIMATE [PRINT =ESTIMATES] STDACL; TSM=ERM1

FORECAST [MAXLEAD=241 INTREND, INMZ, [NM3, [NM4, [NM5,\

INM6, TNM7, [NMB, INMS, INM10, INK11, INM12, FF, LAGFF , LLAGFF

TKEEP RESID=RES1

CALC W1=NOBSCRES1)

CALC ESS1=VAR(RES1)*(N1-1)
PRINT ES51

CALC R21=(TSS-ESS1)/TSS
CALC R251=(DSSS-ESS1)/DSSS

Program 2
{Section 8.7)



PRINT R21,R281

Using an IMA(O,1,1) model for errors

1]

TSM ERMZ; ORDERS=1(0,1,1)

TRANSFER TREND,M2,M3,M4, M5, M5, M7, M8, M? M10,M11,M12, FUEL , LAGFUEL , LL FUEL
ESTIMATE (PRINT=ESTIMATES; CONSTANT=F] STDACC; TSM=ERMZ
FORECAST [MAXLEAD=24]1 INTREND, INMZ, INM3, INM&, INMS,\
INMB, INM7, INM8, INNG, INM10, INM11, INM12, FF, LAGFF , LLAGFF
TKEEP RESID=RES2

CALC N2=NOBS(RES2)

CALC ESSZ2=VAR(RESZ2)*(N2-1)

PRINT ESSZ2

CALC R22=(TSS-ESS2)/TSS

CALC R252=(DSSS-ESS2)/DSSS

PRINT R22,R252

n

Using an IMA(D,2,2) model for erraors
1]

T5M ERM3; ORDERS=!(D,2,2)

TRANSFER M2,M3,M4,M5,M6, M7, M8, MP,M10,M11,M12, FUEL , LAGFUEL , LL FUEL
ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=50] STDACC: TSM=ERM3
FORECAST [MAXLEAD=24] INM2,INM3, INM&, INM5,\

INM6, INM7, INMB, INMS, INM10, INM11, INM12, FF,LAGFF,LLAGFF

TKEEP RESID=RES3

CALC N3=NOBS(RES3)

CALC ESS3=VAR(RES3)*(N3-1)

PRINT ESS3

CALC R23=(TS5-ESS53)/TSS

CALC R253=(D555-ES5$3)/DSSS

PRINT R23,R253

u

Using an ARIMA(0,2,2,0,1,1,12) model for errors
m

TSM ERM4; ORDERS=1(0,2,2,0,1,1,12)

TRANSFER FUEL,LAGFUEL ,LLFUEL

ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=50] STDACC; TSM=ERM4
FORECAST [MAXLEAD=24] FF,LAGFF,LLAGFF

TKEEP RESID=RES4

CALC N&4=NOBS(RES4)

CALC ESS4=VAR(RES&)I*(N4-1)

PRINT ESS4

CALC R24=(TSS-ESS4)/TSS

CALC R254=(DS55-ES84)}/DSSS

PRINT R24,R2S54

using an ARIMA(D,1,1,0,1,1,12) model for errors
L]

TSM ERM5; ORDERS=1(0,1,1,0,1,1,12)

TRANSFER FUEL,LAGFUEL,LLFUEL

ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=5C] STDACC; TSM=ERM5
FORECAST [MAXLEAD=24] FF,LAGFF,LLAGFF

TKEEP RESID=RESS

CALC N5=NOBS(RESS)

CALC ESSS=VAR(RESS)*(NS-1)

PRINT ESS5

CALC R25=(TSS-ES55)/Tss

CALC RZ2S85=(DSSS-ESS5)/DsS8S

PRINT R25,R2S5

STOP



Genstat 5 Release 2.1

1
2
-3
-4
-5
-6
7
8
g
10
1

" AUSTRALIA DATA
Regress standardised accidents on FUEL SALES,
trend and quarters where fuel sales are produced in the
transfer function model by a SARIMA(0,1,1,1,0,0,4) model.
L1}
UNITS[ NVALUES=39]
OPEN 'AUSGRT.DAT'; CHANNEL=2Z
OPEN 'FORFL91.DAT'; CHANNEL=3
READ[ CHANNEL=2] POPN,STDACC,UNEMP,NEWMYR,CHGPET ,FUEL ,DIESEL,TREND,\
Q1,02,03,04
identifier Minimum Mean Maximum Values Missing
POPN 14927 15985 17149 39 1
STDACC  0.02900 0.04008  0.05100 39 1
UNEMP 5.467 7.709 10.400 39 0
NEWMYR 0.007000 0.00%211 0.011000 39 1
CHGPET -0.10700 0.02336 0.20600 39 0
FUEL 3407371 3985657 4392969 39 &
DIESEL 1658003 2109155 2612561 39 4
TREND 1.00 20.00 39.00 39 0
al 0.0000 0.2308 1.0000 39 0
Q2 0.0000 0.2564 1.0000 39 0
Q3 0,0000 0.2564 1.0000 39 0
Q4 0.0000 0.2564 1.0000 39 0
12 READ [CHANNEL=3; SETNVALUES=Y) INTREND, IN@1,INQ2,ING3, INQ4, INFUEL
ldentifier Minimum Mean  Maximum Values Missing
INTREND 40.00 41.50 43.00 (2 0
INQ1 0.0000 0.2500 1.0000 [ ]
ING2 0.0000 0.,2500 1.0000 (A Q
ING3 0.0000 0.2500 1.0000 4 a
INQ4 0.0000 0.2500 1.0000 &4 0
INFUEL 4202420 4270318 43346290 [ 0
VARIATE [NVALUES=4] FF

13
14
15
16

VARIATE DIFFACC,RES1, RESZ,RES3,RES4,RESS

(Vax/VMs5)

16-0CT-1991 16:16:43.00
Copyright 1990, Lawes Agricultural Trust (Rothamsted Experimental Station)

FACTOR [NVALUES=39; LEVELS=!(2,3,4,1)] QUART

GENERATE

4, QUART

AWk * arning {Code CA 24). Statement 1 on Line 16
Command: GENERATE &,QUART

Number of units of GENERATED factors does not give an exact number of reps

17 CALC DIFFACC=DIFFERENCE{STDALC)
18 TREATMENT QUART
19 ANOVA [PRINT=A] DIFFACC

Skew

Output of
Program 1



whak® Analysis of variance *wxx®

Variate: DIFFACC

Source of variation d.f.(m.v.) S.5. m.s. v.r.
QUART 3 0.292E-03 O0.973E-04 12.76
Residual 33(2) 0.252E-03 0.762E-05

Total 36¢2) 0.537E-03

20 AKEEP QUART; VARIANCE=RVAR
21 CALC DSSS=RVAR*33
22 PRINT DSSS

DsSss
0.0002516

23

24 CALC N=NOBS(STDACC)

25 CALC TSS=VAR(STDACCI*(K-1}

26

27 11

-28 Using a SARIMA(1,0,1,1,1,0,0,4) model for errors
-29 "

30 TSM ERMZ2; ORDERS=!(0,1,1)

n

32 TSM FU_ARIM; ODRDERS=!(0,1,1,1,0,0,4)

33 ESTIMATEIPRINT=ESTIMATES] FUEL; TSM=FU_ARIM



*kkwk Time-series analysis *¥hv¥

*** putoregressive moving-average model **¥

Innovation variance 8.112E+09

ref. estimate
Transfarmation 0 1.00000
Constant 1 15842,

® Non-seasonal; differencing order 1

lag ref. estimate
Moving-average 1 2 0.994

* Seasonal; period 4; no differencing

lag ref. estimate
Autoregressive 4 3 0.4%5

34 FORECAST [MAXLEAD=4; FORECAST=FF]

s.e.
FIXED
2276,

s.e.
0.105

S5.e.

0.197



kR

Forecasts ***

Maximum lead time: 4

35
36
17
38

Lead time forecast
1 4323477 .
2 4352584,
3 4404657.
4 4300163.

lower limit wupper limit
4175333,
4204438,
4256508.
4152012.

4471621,
4500731.
4552806,
4448315,

TSM FU_TSM; ORDERS=1(1,0,1,1,1,0,0,4); PARAMETERS=1(1,0,0,0.1)

TRANSFER TREND,Q2,03,04,FUEL; ARIMA=*, * * * FU_TSM

ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=50] STDACC; TSM=ERMZ



7 Faeeaaren Crenaaaaaas “iraaaa L e nraaarsiassrreseserrarteasaa s taranan

*kkww Time-series analysis **vv*

*** Transfer-function model 1 ¥%¥¥

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

estimate
-0.000812

lag ref.
Moving-average 0 1

**% Trangfer-function model 2 ®**

Delay time 0

ref. estimate
Transformation 1} 1.00000
Constant 1} 0.

* Non-seasonal; no differencing

estimate
-0.000624

lag ref.
Moving-average 0 2

*** Transfer-function model 3 ww+

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

estimate
0.001238

lag ref.
Moving-average 0 3

**% Transfer-function model & *¥*

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 4 0.00149

**% Transfer-function model 5 ***

s.e.
FIXED
FIXED

S.e.
0.000308

s.e.
FIXED
FIXED

s.2.
0.000807

s.e.
FIXED
FIXED

5.e.

0.000891

S.e.
FIXED
FIXED

5.e.
0.00124



Delay time O

ref. estimate 5.e.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate s.e,
Moving-average 0 5 0.18E-07 0.52E-08
**%k Autoregressive moving-average model *m®

Innovation variance 0.000004417

ref. estimate s.e.
Transformation 0 1.00000 FIXED
Constant 1] 0. FIXED

* Non-seasonal; differencing order 1

lag ref. estimate s.e,
Moving-average 1 6 0.154 0.199

39
40 FORECAST [MAXLEAD=4] INTREND,INGZ,INQ3, ING4,FF; METHOD=0,G,0,0,F



*¥* Forecasts ***

Maximum lead time: 4

Lead time forecast lower limit upper limit
1 0.02794 0.02448 0.03140
2 0.02704 0.02251 0.03156
3 0.02904 0.02365 0.03443
4 0.02657 0.02044 0.03270

42 TKEEP RESIDUALS=RES2

43 CALC N2=NDBS(RES2)

44 CALC ESS2=VAR(RES2)*(N2-1)
45 PRINT ESs2

ESS2
0.0001193

46

47 CALC R22=(TSS-ESS2)/TSS

4B CALC R252=(DS55-ES52)/0SSS
49 PRINT R22,R252

R22 R252
0.8834 0.5259
50 STOP

*xxxxrakx End of job., Maximum of 19152 data units used at line 43 (30562 left)



Genstat 5 Release 2.1

1
2
-3
-4
-5
-6
-7
-8
-9
-10
11
12
13
14
15

Regress monthly standardised accidents on FUEL, LAG FUEL,LAG(LAGFUEL),

(Vax/VNs3)

30-0CT-1991 09:21:35.62
Copyright 1990, Lawes Agricultural Trust (Rothamsted Experimental Station)

trend and months, fitting structural medels 1 to 5 as defined
below. Models fitted to time series from March 1981 to December

1990 and fatal accidents predicted for months January 1991 to

December 1992. Fuel sales predicted from airline model.

; CHANNEL=3

READ [ CHAMMEL=21 STDACC,FUEL,LAGFUEL,TREND,\
M1,M2,M3 M4, M5, ME, M7, M8, M9, M10,M11,M12

Mean
6.960
1330823
1330331
5¢@.50
0.07827
0.07827
0.0847%
0.08475
0.08475
0.08475
0.08479
0.0847%
D.08475
0.08475
0.08475

" AUSTRALIA DATA
PROGRAM MLAG2.GEN
n
UNITS[ NVALUES=118]
OPEN 'MTHFL.DAT'; CHAKNEL=2
OPEN 'MV.DAT!
ldentifier Minimum
STDACC 4774
FUEL 1118114
LAGFUEL 1118114
TREND 1.00
M1 0.00000
M2  0.00000
M3  (.0000Q
M4 0.00000
M5  0.00000
M&  0.00000
M7  0.00000
M8  0.00000
M®  Q,00000
M10  Q.0000C
M11  0.00000
M1Z2  0.00000

0.08475

Max i mum

8.9468
1639366
1639366
118.00
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1-.0000Q
1.00000
1.00000
1.00000
1.00000
1.00000

Values
118
118
118
118
118
118
118
118
118
118
118
118
118
118
118
118

Missing

OO OoOC OO0 o WMESDO

Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew

16 READ [CHANNEL=3; SETNVALUES=Y] INTREND, INM1, INM2, INM3, [NM&, INMS,\
INM&, TNM7, TNM8, INMS, THM10, INM11, INM12

17

18
19
20
21
22
23

ldentifier
INTREND
INM1
INM2
INM3
INM&
1NMS
INME
INM7
INM8
INM?
[NH1D
INM11
INM12

Minimum

11%.0
0.0C000
0.00000
.0000C
.00000
goeeo
.oonon
.0aooe
Rilsle{iy
.00o000
.00000
0.00000
0.00Q0Q0

OO0 ocoo0oo o

Mean
130.5
.08333
.08333
.08333
.08333
.08333
.08333
.08333
.08333
.08333
.08333
.08333
0.08333

CODOODOoOO0OO0ODOO0D

Max imum

142.0
1.00000
1.00000
1.00Q00
1.00Q09
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

Values
24
26
24
24
24
24
26
24
24
24
24
24
24

VARIATE DIFFACC,RES1,RESZ,RES3,RES4,RESS, LLFUEL

VARIATE [NVALUES=24]
VARIATE [NVALUES=24;
VARIATE ([NVALUES=24;
FACTOR [NVALUES=118;

GENERATE 12,MONTH

FF,LAGFF MVFF LLAGFF,LLMVFF
VALUES=13B6475,23(1)] REP

VALUES=1406254 ,1386475,22(13] LREP
LEVELS=1(3,4,5,6,7,8,9,10,11,12,1,2)1 MONTH

*kkkkwkd arning {Code CA 24). Statement 1 on Line 23
Command: GENERATE 12,MONTH

Number of units of GENERATED factors does not give an exact number of reps

Missing

[arien I o B o B o o O el o e [ o B o ]

Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew
Skew

Output of
Program 2



24

25 CALC LLFUEL=SHEIFT{LAGFUEL;1}

26

27 u

-28 Remove trend by differencing and seasons by ANOVA
-29 DSS = deseascnalised sums of squares

-30 o

31 CALC DIFFACC=DIFFERENCE{STDACL)

32 TREATMENT MONTH

33 ANOVA [PRINT=A] DIFFACC



KX T titaeiasiiaisneanennaarannn P
whEE* Analysis of variance *we¥w

Variate: DIFFACC

Source of variation d.f.(m.v.) 5.8. m.s. v.r.
MONTH 11 28.4730 2.5885 4.30
Residual 105¢1) 63.1615 0.6015

Tetal 116¢1} 91.4123

34 AKEEP MONTH; VARIANCE=RVAR
35 CALC DSSS=RVAR*105
36 PRINT DSSS

Ds8s
63.16

38 CALC N=NDBS({STDACC)
39 LCALC TSS=VAR(STDACC)*(N-1)
40 W
-41 Predicting fuel sales for 1991 and 1992 from past data,
-42 wusing a SARIMA(0,1,1,0,1,1,12) model for errars.
n

44 TSM FU_ARIM; ORDERS=)(D,1,1,0,1,1,12)
45 ESTIMATE [PRINT=ESTIMATES] FUEL; TSM=FU_ARIM



[ N e eseraaaaeeeemaseasseeraaEEaEEiATsAesreseaaeenmruasntasatetssennna i an

whdukknd Yarning (Code TS 21). Statement 1 on Line 43
Command: ESTIMATE [PRINT=ESTIMATES] FUEL; TSW=FU_ARIM

The iterative estimation process has not converged
The maximum rumber of cycles is 15

*RAnd Time-series analysig whowr

*** Aputoregressive moving-average model ***

innovation variance &.097e+09

ref. estimate s.e.
Transformation 0 1.00000 FIXED
Canstant 1 154. 178.

* Non-seasonal; differencing order 1

lag ref, estimate s.e.
Moving-average 1 2 0.9988 0.0564

® Seasonal; peried 12; differencing order 1

lag ref. estimate s.e.
Moving-average 12 3 0.650 0.116

46 FORECAST [MAXLEAD=24; FORECAST=FF]



*** Eprecasts w**

Maximam lead time: 24

Lead time forecast lower limit wupper limit
1 1457263, 1351977. 1562549,
2 1373949, 1268663 . 1479235,
3 1507727. 1402440, 1613013.
4 1426119, 1320833. 1531405,
5 1516573. 1411287. 1621860,
[ 1468163, 1362877. 1573450,
7 1482711, 1377424, 1587997,
8 1563090, 1457804 1648377,
9 1424702. 1319415, 1529988,

10 1472606. 1367319 1577892.
1" 1481660. 1376373. 1586947,
12 1499614, 1394327. 1604907,
13 1489660, 1378075. 1601246.
14 1406502. 1294916. 1518087.
15 1540433, 1428847. 1652019.
16 1458980. 1347394, 15705646,
17 1549589, 1438003, 1661175,
13 1501334. 1389747. 1612920.
19 1516035. 1404449, 1627622.
20 1596570, 1484983, 1708156.
21 1458335, 1346749. 1569922,
22 1506394 . 1394807. 1617981,
23 1515603 1404016. 1627190.
24 1533711, 1422124. 1645298.

47 CALT MVFF=SHIFT(FF;1)

48 CALC LAGFF=MVREPLACE(MVFF;REP)

49 CALC LLMVFF=SHIFT{(FF;2)

50 CALC LLAGFF=MVREPLACE(LLMVFF;LREP)
31 PRINT LAGFF,LLAGFF

LAGFF LLAGFF
1386475 1406254
1457263 1386475
1373949 1457263
1507727 1373949
1426119 1507727
1516573 1426119
1468163 1516573
1482711 1468163
1363090 1482711
1424702 1563090
1472606 1424702
14816460 1472606
1499614 14816460
1489660 1499614
1406502 1489660
1540433 1406502
1458980 1540433
1549589 1458980
1501334 1549589
1516035 1501334
1596570 1516035
1458335 1594570
1506394 1458335



52
-53
-54

25

56

57

1515603 1506394

L1
Using an MA({1) model for errors
n

TSM ERM1; ORDERS=!1(0,0,1}
TRANSFER TREND,M2,M3 MG, M5, M6, M7,MB,H?,H10,H11,M12, FUEL, LAGFUEL , LLFUEL
ESTIMATE [PRINT =ESTIMATES] STDACC; TSM=ERM!



*Rakd Time-series analysis w¥dwk

*** Transfer-function model 1 ***

Delay time O

ref. estimate 5.8.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Mon-seasenal; no differencing

lag ref. estimate 5.e.
Moving-average o] 1 -0.02700 0.00577
**% Transfer-function model 2 *%*

Delay time 0

ref. estimate S.e.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving-average 0 2 0.766 0.335

*** Transfer-function model 3 *=*

Delay time 0

ref. estimate S.€.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate 5.€.
Moving-average 0 3 1.351 0.391
*** Trapnsfer-function model & **=

Delay time O

ref. estimate 5.8,
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate 5.e.
Moving-average Q 4 0.557 0.356

*%¥% Trangfer-function model 5 *¥*



Delay time O

ref. estimate
Transformation 0 1.00000
Constant t] 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 5 0.848

*** Transfer-function model & ***

Delay time 0O

ref. estimate
Transformation o 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 6 0.782
**% Transfer-function model 7 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 Q.

® Non-seascnal; no differencing

lag ref. estimate
Moving-average 1} 7 0.733

*** Transfer-function model 8 %**

Delay time 0

ref. estimate
Transformation i} 1.00000
Constant 0 G.

® Non-seasohal; no differencing

lag ref. estimate
Moving-average 0 8 0.650

*¥% Transfer-function model 9 ***

Delay time 0O

ref. estimate
Transformation a 1.00000
Constant 0 0.

* Neon-seasonal; no differencing

lag ref. estimate
Moving-average 0 g 1.459

s.e.
FIXED
FIXED

s.e.
0.325

s.€.
FIXED
FIXED

s.e.
0.318

s.e.
FIXED
FIXED

s.e.
0.322

S5.e.
FIXED
FIXED

s.e.
0.326

s.e,
FI1XED
FIXED




*#** Transfer-function model 10 ***

Delay time

ref. estimate
Transformation qQ 1.0000D
Constant Q 0.

* Non-seasonal; na differencing

lag ref. estimate
Moving-average 0 10 1.140
**w Transfer-function model 11 %+

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 N 1.144

*%* Transfer-function model 12 ***

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 12 1.447

*k% Transfer-function model 13 %**

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 Q.

® Non-seasonal; nc differencing
lag ref. estimate
Moving-average 0 13  0.00000260
*** Transfer-function model 14 ***
Delay time 0
ref, estimate

Transformation 0 1.00000
Constant 4} a.

5.e.,
F1XED
FIXED

S.e.
0,337

s.e.
FIXED
FIXED

S.e.

0.326

5.¢€.
FIXED
FIXED

s.e.
0.303

s.e.
FIXED
FIXED

S5.€.
0.00000115

s.e.
EIXED
FIXED



® Non-seascnal; no differencing

lag ref. estimate s.e.
Moving-average 0 14 0.00000377 0.00000126

*%* Trangfer-function model 15 ***

Delay time 0

ref. estimate s.e.
Transformation o 1.00000 FIXED
Constant 1] 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving-average 0D 15 -0.00000037 0.00000119
*Mh putoregressive moving-average model ***

Innovation variance 0.3763

ref. estimate s.e.
Transformation 4} 1.00000 FIXED
Constant 16 -0.37 3.48

* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving-average 1 17 -0.236 0.104

58 FORECAST [MAXLEAD=24] INTREND, INM2,INM3, INM4, INMS,\
59 INM&, INM7, [NMB, INMO, INM10, INM11, INM12, FF, LAGFF, LLAGFF



*%* Forecasts w**

Maximum lead time: 24

Lead time forecast lower limit wupper limit
1 4.924 3.915 5.933
2 5.709 4,873 6. 744
3 6.274 5.238 7.311
4 5.777 4.741 6.814
5 5.919 4,882 6.955
6 6.071 5.035 7.108
7 5.818 4.781 6.854
8 5.9%0 4,953 7.026
9 6.709 5.672 7.746

10 5.935 4,898 6,972
1 6. 169 5.132 7.205
12 &.508 5.471 7.544
13 5.072 4.035 6.109
14 5.550 4.513 6.587
15 5.146 5.110 7.183
16 5.650 4.613 6.686
17 5.792 4.756 6.829
18 5.946 4.909 6.982
19 5.693 4,656 6.730
20 5.866 4,829 £5.903
21 6.586 5.550 7.623
22 5.813 4,777 5.850
23 6.048 5.011 7.085
24 6.388 5.351 7424

60

61 TKEEP RESID=RES1

62 CALC N1=HOBS(RES1)

63 CALC ESST=VAR(RES1)*(N1-1T)
64 PRINT ESS1

ESSi
33.49

65 [CALC R21=(TS5-ESS1)/1SS
66 CALC R2S71=(DSS5-ESS1)/0558
67 PRINT R27,R2S1

R21 RZS1
0.6158 0.4658
68 n
-69 Using an IMA(Q,1,1} model for errars
=70 M

71 TSM ERM2; ORDERS=!(D0,1,1)
72 TRANSFER TREND, M2 M3 Wi, M5,MG,M7,M8,M9 H10,M11,M12, FUEL, LAGFUEL , LLFUEL
73 ESTIMATE[PRINT=ESTIMATES; CONSTANT=F] STDACC; TSM<ERMZ



*xk%* Time-series analysis Wwiv*s

*** Transfer-function model 1 *%*

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seaschal; no differencing

lag ref. estimate
Moving-average 0 1 -0.0282
*** Transfer-function model 2 *¥*

Delay time O

ref. estimate
Transformation Q 1.00000
Constant 0 a.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 2 0.646

*** Transfer-function model 3 ***

Delay time O

ref, estimate
Transformation § 1.00000
Constant Q 0.

* Non-seasonal; no differencing

lag ref, estimate
Moving-average 0 3 1.153
=k Transfer-function model & ***

Delay time D

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 A 0.346

**% Transfer-function model 5 *%¥

s.e.
FIXED
FIXED

s.e.
0.309

S5.e.
FIXED
FIXED

s.e.
0.338

s.e.
FIXED
FIXED

s.e.
0.3

...............................



Delay time 0

ref, estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 1} 5 0.742

*** Transfer-function model & ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 6 0.660
*** Transfer-function model 7 ***

Delay time O

ref, estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 7 0.639

**% Transfer-function model B ***

Delay time C

ref, estimate
Transformation Q 1.00000
Constant 0 C.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 8 0.612

*** Transfer-function model @ v

Delay time 0O

ref. estimate
Transformation ] 1.00000
Constant 0 0.

* Non-seascnal; no differencing

lag ref. estimate
Moving-average 0 9 1.414

S.e.
FIXED
FIXED

S.€.
0.278

5.e.
FIXED
FIXED

s.e.
0.273

§.€.
FIXED
FIXED

5.e.
0.275

5.e.
FIXED
FIXED

sS.e.
0.277

5.e.
FIXED
FIXED

s.e.
0.276



**% Transfer-function model 10 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constent 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 10 1.099

**% Transfer-function model 11 ***

Delay time Q

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 1 1.032

wik Transfer-function model 12 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

layg ref. estimate
Moving-average 0 12 1.483
*xx Transfer-function model 13 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing
lag ref. estimate
Moving-average 0 13  0.00000172
*** Transfer-function model 14 ***
Delay time 0
ref. estimate

Transformation 0 1.00000
Constant 0 0.

s.e.
FIXED
FIXED

5.e,

0.288

s5.e.
FIXED
FIXED

0.274

sS.e.
FIXED
FIXED

S.8.

0.277

S.e.
FIXED
FIXED

s.e.
0.00000112

S.2.
FIXED
FIXED



* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving-average 0 14 0.00000277 0.000007118
w** Transfer-function medel 15 ***

Delay time 0

ref. estimate s.e.
Transformation 0 1.00000 FIXED
Constant a 0. FIXED

*® Non-seasonal; no differencing

lag ref. estimate s.e.
Maving-average 0 1% -0.00000131 0.00000115
*** Autoregressive moving-average model ¥
Innovation variance 0.3289

ref. estimate 5.e,

Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

® Non-seasonal; differencing order 1

lag ref. estimate 5.e.
Moving-average 1 16 0.7422 0.0758

74 FORECAST [MAXLEAD=243 INTREND,INM2, INM3, INM&, INMS ,\
75 INM&, INM7,INMB, [NMS, INM1G, INM11, INM12, FF, LAGFF ,LLAGFF



*** Forecasts ***

Maximum lead time: 24

Lead time forecast lower Limit upper limit
1 4.512 3.569 5.456
2 5.209 4.234 6.183
3 5.595 4.59 6.599
4 5.098 4.065 6.132
5 5.221 4.159 6.282
6 5.385 4.296 6.474
7 5.108 3.993 6,224
8 5.295 4.153 6.437
9 6.034 4.867 7.202

10 5.285 4.092 6.477
1 5.519 4.301 6.736
12 5.935 4.694 7.176
13 &.445 3.180 5.709
14 4.868 3.581 6.156
15 5.361 4.050 6.671
16 4. 865 3.532 6.198
17 4.988 3.633 6.343
18 5.152 3.775 6.529
19 4.876 3.478 6.274
20 5.063 3.645 6.482
21 5.803 4.363 7.243
22 5.054 3.594 6.514
23 5,288 3.808 6.769
24 5.705 4.205 7.205

76 TKEEP RESID=RES2

77 CALC N2=NOBS(RES2)

78 CALC ESS2=VAR(RES2)*(N2-1)
79 PRINT ESS2

ESSZ
29.27

80 CALC R22=(TS5-ESS2)/TSS
B1 CALC R252=(DSSS-ESS2)/D55S
B2 PRINT R22,R2S2

R22 R252
0.6642 0.5365
81 o
-84 Using an [MA(D,2,2) model for errors
_85 11

B6 TSM ERM3; ORDERS=1(0,2,2)
B7 TRANSFER M2,M3,MG,M5,M6,M7,M8,M9,M10,M11,M12, FUEL , LAGFUEL , LL FUEL
BS ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=50) STDACC; TSM=ERM3



**dd¥ Time-series analygis *¥ww¥

*** Transfer-function model 1 ***

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 1] 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 1 0.422
*** Transfer-function model 2 ***

Delay time 0

ref. estimate
Transformation V] 1.000Q00
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 2 0.730

*%** Transfer-function model 3 **~

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 3 0.075
*k% Transfer-function model 4 ***

Delay time 0

ref. estimate
Transformaticn 0 1.00000
Constant 0 0.

* Nan-seasonal; no differencing

lag ref. estimate
Moving-average a 4 0.567

wik Transfer-function model 5 ***

s.e.
FIXED
FIXED

s.e.
0.3I1

s.2.
FIXED
FIXED

s.e.
0.345

S.8.
FIXED
FIXED

s.e.
£.320

5.,
FIXED
FIXED

5.e.
0.284



Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seascnal; no differencing

lag ref. estimate
Moving-average 0 5 0.508

*k% Transfer-function model & *»*

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 ] 0.482
*** Transfer-function model 7 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant o] 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 7 0.497
*** Transfer-function model 8 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 8 1.285

*** Transfer-function model § #*%*

Delay time O

ref. estimate
Transformation 1] 1.00000
Constant 0 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average v} 9 0.894%

s.e.
FIXED
FIXED

0.279

S.€.
FIXED
FIXED

s.e.
0.281%

S.e.
FIXED
FIXED

s.e.
0.284

s.e.
FIXED
FIXED

s.e.
0.282

s.e.
FIXED
FIXED

s.e.
0.293



i+t Transfer-function model 10 **=*

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

* Non-seascnal; no differencing

lag ref. estimate
Moving-average 0 10 0.841

wa* Transfer-function model 11 *¥*

Delay time O

ref, estimate
Transformation 0 1.00000
Constant 0 0.

®* Non-seascnal; no differencing

Lag ref. estimate
Moving-average [ R 3 1.400

*** Transfer-function model 12 **%

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant a 0.

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 12 0.00000052
*** Transfer-function model 13 **¥

Delay time O

ref. estimate
Transformation 0 1.400000
Constant 0 0.

® Non-seasonal; no differencing
lag ref. estimate
Moving-average 4] 13 {0.00000034&
*** Transfer-function model 14 ***
Delay time 0
ref. estimate

Transformation 0 1.006000
Constant 0 .

S5.e,
FIXED
FIXED

s5.e.
0.279

s.e.
FIXED
FIXED

s.e.
0.278

5.6,
FIXED
FIXED

s.e.
0.00000115

5.e.
FIXED
FIXED

5.8.
0.00000122

s.e.
FIXED
FIXED



* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving~average 0 14 -0,00000255 D.000DOOD120
*** puytoregressive moving-average model **+*

Innovation variance 0.3496

ref. estimate s.e.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

® Non-seasonal; differencing order 2

lag ref. estimate s.e.
Moving-average 1 15 1.6900 0.0851
2 16 -0.6909 0.0850

89 FORECAST [MAXLEAD=24] INMZ,INM3, INM&, TNM5,\
90 INM&, INM7,INMB, INM?, INM10, INM11, [NM12,FF , LAGFF,LLAGFF



#4t Forecasts **»

Maximum lead time: 24

Lead time forecast lower limit upper limit
1 4,683 3.710 5.655
2 5.115 4.097 6.134
3 5.262 4.200 6.324
[ 4,802 3.698 5.907
5 4,951 3.805 6.097
-] 5.085 3.85%9 6.270
7 4,798 3.573 6.022
B 4.961 3.700 6.223
g 5,648 4 .349 6.946

10 5.008 3.673 6.343
" 5.307 3.937 &.677
12 5.735 4£.330 7.140
13 4.292 2.B54 5.731
14 4,601 3.130 6.073
15 4.953 3.449 &6.458
16 4,494 2.957 6.030
17 4 642 3.074 6.210
18 4.776 3.176 6.375
19 4_4B8 2.858 6.118
20 4.65 2.99 £.31
21 5.34 3.65 7.03
22 4.70 2.98 6.42
23 5.00 3.25 6.75
24 5.42 3.65 7.20

91 TKEEP RESID=RES3

92 CALC N3=NOBS(RES3)

93 CALC ESS3=VAR(RES3I)*(N3-1)
94 PRINT ESS3

ESS3
30.77

95 CALC R23=(TSS-ESS3)/TSS
96 CALC R253=(DSSS-ES$S3)/D5SS
97 PRINT R23,R253

R23 R2S3
0.6471 0.512¢
g8 v
-99 Using an ARIMA(0,2,2,0,1,1,12) model for errors
-100 o

101 TSM ERM4; ORDERS=1¢0,2,2,0,1,1,12)
102 TRANSFER FUEL,LAGFUEL,LLFUEL
103 ESTIMATE [PRINT=ESTIMATES; CONSTANT=F: MAXCYCLE=S50] STDACC; TSM=ERMé



*kxR* Time-series analysis wiwwx

*** Transfer-function model 1 ***

Delay time 0

ref, estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 1 0.00000053
*%% Transfer-function model 2 ***

Delay time 0

ref. estimate
Transformation 0 1.00000
Constant 0 0.

® Non-seasonal; no differencing

lag ref. estimate
Moving-average D 2 0.00000013
w*% Transfer-function model 3 ***

Delay time O

ref. estimate
Transformation 0 1.00000
Constant 0 a,

* Non-seasonal; no differencing

lag ref. estimate
Moving-average 0 3 -0.00000286

s.e.
FIXED
FIXED

S.e.
0.00000113

L
FIXED
FIXED

S.e.
0.00000119

5.e.
FIXED
FIXED

s.e.
0.00000117

ek Autoregressive moving-average model **¥

Innovation variance 0.4355

ref. estimate
Transformation 0 1.00000
Constant 0 0.

*® Non-seasonal; differencing order 2

lag ref. estimate
Moving-average 1 4 1.6318
2 5 -0.6451

S.€.
FIXED
FIXED

5.e.
0.0887
0.0898

* Seasonal; period 12; differencing order 1



lag ref. estimate

Moving-average 12 [} 0.&00

104

FORECAST [MAXLEAD=24] FF,LAGFF,LLAGFF



e D

*** Forecasts ***

Maximum lead time: 24

Lead time forecast lower Limit upper Limit
1 4.204 3.119 5.289
2 4.46% 3.313 5.626
3 5.1 3.882 6.339
4 3.977 2.675 5.278
5 4.209 2.835 5.584
6 4,649 3.200 6.098
7 4.327 2.803 5.850
8 3.997 2.398 5.597
9 5.14 3.46 6.82

10 4.0 2.25 5.76
1" 4.00 2.17 5.84
12 4.97 3.06 6.88
13 2.90 0.74 5.05
14 3.03 Q.75 5.30
15 3.88 1.49 6.28
16 2.73 a.21 5.25
17 2.95 0.31 5.59
18 3.37 0.61 6.13
19 3.03 0.14 5.92
20 2.68 -0.33 5.70
21 3.81 0.68 6.95
22 2.66 -0.60 5.92
23 2.64 -0.75 6.03
24 3.5¢ 0.08 7.10

105 TKEEP RESID=RES4

106 CALC N4=NOBS{RES4)

107 CALC ESS4=VAR{RES4)*(N&-1)
108 PRINT ESS4

ESS4
37.37

109 CALC R24=(TSS-ESS4)/TSS
110 CALC R2S4=(DSSS-ESS4)/DSSS
111 PRINT R24,R254

R24 R2S4
0.5713 0.4083
112 »
-113 using an ARIMA(0,1,1,0,1,1,12) model for errors
-114 ®

115 TSM ERM5; ORDERS=1¢0,1,1,0,1,1,12)
116 TRANSFER FUEL,LAGFUEL,LLFUEL
137 ESTIMATE [PRINT=ESTIMATES; CONSTANT=F; MAXCYCLE=50] STDACC; TSM=ERMS



L P Ceeeasatr e nenaas vennus Cmressessenaie s r et aaaareean, S

xw** Time-series analysig **v+¥

*** Transfer-function madel T **+

Delay time 0

ref. estimate S.8.
Transformation Q 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate 5.8,
Moving-average 0 1 0.00000176  0.0000011Q
*** Transfer-function model 2 ***

Delay time Q

ref. estimate s.€.
Transformation a 1.00000 FIXED
Constant 0 a. FIXED

* Non-seasonal; no differencing

lag ref. estimate s.e.
Moving-average 0 2 0.00000249  0.0C000116

*** Transfer-function model 3 *¥*

Delay time D

ref. estimate s.e.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; no differencing

lag ref. estimate S.e,
Moving-average 0 3 -0.00000156 ©.00000112
*** Autoregressive meving-average mode| v

Innovation variance 0.3927

ret. estimate s.e.
Transformation 0 1.00000 FIXED
Constant 0 0. FIXED

* Non-seasonal; differencing order 1

\ag ref. estimate s.k.
Moving-average 1 4 0.7079 0.080%

* Seasonal; period 12; differencing order 1

lag ref. estimate s.e.



Moving-average 12 5 0.455

118 FORECAST [MAXLEAD=24) FF,LAGFF,LLAGFF

0.106



w*%® Forecasts ™w*

Maximum lead time: 24

Lead time forecast lower Limit upper limit
1 6.252 3.2 5.282
2 4,803 3.730 5,877
3 5.642 4.527 6.757
4 4,615 3.459 5.770
5 4.891 3.697 6.08%
B 5.306 4.075 6.537
7 5.028 3.760 6.295
8 4 _807 3.505 6.110
9 5.926 4,389 7.263

10 4. 914 3.543 6.284
11 4,994 3.591 6.397
12 5.919 &_4B4 7.354
13 3.933 2.355 5.512
14 4,226 2.596 5.855
15 5.19 3.51 .87
16 4.16 2-44 5.89
17 4.44 Z2.67 6.22
18 4 .86 3.04 6.68
19 4,58 2.71 6,44
20 4.36 2.45 6.27
21 5.48 3.53 7.43
22 4. 47 2.47 &.46
23 4,55 2.51 6.58
24 S.47 3.40 7.54

119 TKEEP RESID=RESS

120 CALC NS5=NOBS(RESS)

121 CALC ESSS=VAR(RESS)*(N5-1)
122 PRINT ESSS

ESS5
34.52

123 CALC R25=(TSS-ESS5)/T5%
124 CALC R285=(DS$5-ES35)/DSSS
125 PRINT R25,R255

R25 R2S5
0.6040 0.4534
126
127 sTOP

wrwkwwr® Fnd of job. Maximum of 34228 data units used at line BE (13486 left)



APPENDIX D

Figures for Fatalaties per crash
Analyses

ANP 1991/FORS
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AUSFRATE.var3

Number of fatalities per fatal accident
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AUJSFRATE. var3

Number of fatalities per fatal accident

Seasonal Subseries Plot
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AUSFRATE.varg
Number of Fatalities

Plot of AUSFRATE.uvar2 us AUSFRATE.varl
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