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The question addressed in this report is: ‘How can categorical 

road crash data ba better analysed?‘. 
those items measured using the nominal or ordinal scales. 

the nominal scale, numbers are simply used as a classlficatory 

device. 

based trips which do not involve a crash and the number 1 is used 

to denote those trips on which a road crash occurs. 
ordinal scale, rank is established, but the distance between any 
two numbers in the scale is of unknown size. 
scale measurement is the injury classification scheme devised by 

the National Safety Council in the United States. This scale is: 1 

= no injury, 2 = a  non-visible injury - a complaint of pain without 
visible signs of injury or momentary unconsciousness, 3 = minor 
visible injury - an abrasion, bruise, swelling, etc.. 4 = serious 
injury - any condition that requires the victim to be carried from 
the scene of the crash, and 5 = a fatal injury. Continuous 

variables, on the other hand. are measured on the interval or ratio 

scales. 

Categorical data items are 
Under 

An example is when the number 0 is used to signify road 

With the 

An example of ordinal 

When the data item to be analysed is continuous, appropriate 

statistical techniques are regression analysis and analysis of 
variance. Both these techniques have been used extensively in road 
crash research. Until relatively recently, however. there have not 

been an analogous set of techniques to analyse categorical data, at 
least that have been incorporated in widely available software. 
This situation is nom changing, with increasing attention being 
focused on a set of techniques known as quantal response (OR) 
models. Two membexs of this model family, particularly suited for 

the analysis of categorical road crash data are log-linear models 

and latent variable nmdels. 



Log-linear models are useful in establishing a pattern of 

association between a number of variables. 

log-linear models provide information on the form of correlation 

between variables; for example, the form of correlation between 

road crash occurrence (0, I), driver age (say, less than 25 years = 
0. and 25 years or more = 1). and sex of driver (say, male = 0, and 
female = 1). 

More precisely, 

Latent variable models are helpful when a more causative 

structure needs to be established between sets of variables. These 

models take the perspective that underlying the observed categor- 

ical variable measuring the phenomena under study, is an unobserved 

(or latent) continuous variable. Further, from this perspective, 

the categorical variable alters states (e.g. from no crash 

occurrence = 0. to a crash occurance = 1) as the underlying 
continuous variable crosses a threshold. The assumption of an 
underlying continuous variable allows analysis to proceed with 

latent variable models in an analogous fashion to regression 

methods. 

To provide a concrete example, underlying (that is. latent in) most 
road crashes is rislcy driver behaviour. All driving, however, 
involves risks. A crash only occurs (that is. the categorical 
variable measuring crash occurance only switches from 0 to 1) whem 
risks exceed a given threshold level. Moreover. the threshold 

level of risk that must be exceeded for a crash to result will wry 
according to conditions applying at the time. In a statistical 

analysis driver risk might be measured by travel speeds, alcohol 
consumption, and previous driving convictions. Similarly, the 

critical threshold level may be considered as dependent upon 

weather and road conditions. vehicle characteristics and driver 
experience. 

ative information to be obtained on how much each of these factors 
contributes to road crashes. 

The latent variable model framework allows quantit- 



Latent variable models are also useful in analysing data from 

They allow analyses based on a segment of the non-random samples. 

population to be validly applied to the population as a whole. 
This means that economies in data collection can be realised. 

opening up the possibility of profitable utilisation of existing 

data from partisan sources, such as that contained in car insurance 

records. 

Many software packages incorporating the techniques discussed 

above are now available. 

SPSS-X. contains routines to estimate log-linear models. A number 
of specialised econometric and psychometric software packages exist 

for analysing categorical data using latent variable models. 

The latest version of the SPSS package. 

In summary. advances in multivariate statistical techniques 
for analysing categorical data offer a useful addition to the road 
crash researcher's 'toolbox'. Judiciously applied, these 

techniques can provide economies in data collection as well as 

increasing the relevance and accuracy of Information supplied to 
policymakers. 
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This report serves as an introduction to the use of quantal 

response (QR) models in road crash analysis. 
report is to demonstrate the place of QR models within an overall 

approach to statistical data analysis (Section 2). 
in Section 3, is a brief discussion of log-linear models (LLM). a 
particular type of QR model which has received some use in road 

crash analysis. 

These models assume that underlying the observed categorical 

variable under scrutiny is an unobserved, latent, continuous 

variable. Changes in the value of the categorical variable, from 

the perspective offered by this model family, arise as the 

unobserved continuous variable crosses threholds. A member of the 
latent variable model family possessing attractive properties is 

the linear logit model. Variants of the linear logit model form 

the mjor focus of this report. Also in Section 4, a relationship 
is established between linear logit models and log-linear models. 

In Section 5 some extensions to the models considered in Section 4 
are outlined. 

the use of QR models in road crash research. 
reviewed in Section 7. 

The ffrst task of the 

Following this, 

In Section 4 latent variable models are reviewed. 

Section 6 contains three empirical demonstrations of 

Available software is 

Throughout the first 5 Sections of this report. in the main, 

models are presented in a non-specific data context. 
achieved by applying the models to data arranged in the form of 
contingency tables. An advantage of this approach is that 
contingency tables are quite familiar to the road crash researcher. 

Furthermore, most data related to road crashes can be arranged in 

the form of contingency tables. This holds both for the detailed 

psychometric or ergonomic data on driver behaviour collected under 
experimental or real road conditions and for the sketchy but global 

data found in mass crash data records. 

extensively to convey an understanding of the models. 

This is 

Examples are used 

Because the 
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analysis context is as described above, however, these examples can 
easily be generalised. 

The coverage of models reviewed in this report is synoptic. 
Entire books have been written on log-linear models (e.g. Bishop et 

al. 1975. Haberm 1978 and 1979) and on QR models which assume an 
underlying continuous variable (e.g. Hensher and Johnson 1981, 

Maddala 1983. Train 1985 and Wrigley 1985). 

to these works for further details on the models. 

The reader is referred 

2. A CLASSIFICATICN OF HULTIVARIATE STATISI'ICAL TEUlNIm. 

A useful framework for classifying statistical problems has 
been developed by Wrigley (1979. 1981. 1985). An enhanced version 
of Wrigley's classification scheme is shown in Table 1. The basic 

division in Table 1 is between response (or dependent) variables 
and explanatory (or independent) variables. 
the variables of primary interest and can be considered as being 

generated by the explanatory variables which are selected on the 
basis of theory, previous empirical results or a priori reasoning. 
Often the statistical analysis consists of hypothesis testing that 

certain explanatory variables are influential in determining the 

state of the response variable. 

Response variables are 

Table 1 further classifies response and explanatory variables 
as being continuous, categorical or mixed. Categorical variables 

identify individuals, households, etc. as belonging to particular 

categories. They represent a classificatory mechanism. 'Mixed'. 

in the context of explanatory variables, refers to situations where 

both categorical and continuous variables lie within the explan- 
atory variable set. For response variables 'mixed' refers to 

situations where the response variable has both a categorical and 

continuous component. 

reported crashes. 

crash is reported. 

gtuen that they have been reported. 

An example of the latter is the cost of 
The categorical component is whether or not a 

The continuous component is the cost of crashes 



Categorical variables are measured at a low level of precision 

using nominal or ordinal scales. 

exists when numbers or other symbols are used merely as a 

classification aid. 

identify the groups to which various objects belong, the numbers or 

symbols constitute a nominal or classificatory scale (Segal 1956). 
If objects are classified into just two groups the categorical 
variable is referred to as being dichotomous (e.g. a crash has or 

has not occurred). 

and no relation exists between the groups, then the categorical 

variable is referred to as being unordered polytomous. 

of the latter type of nominal scale measurement is the assigning of 

different numbers to denote urban crashes at intersections (say 0). 
between intersections along arterials (say 1) and between 

intersections along local streets and collectors (say 2). 

Measurement at its weakest level 

When numbers or other symbols are used to 

If more than two classificatory groups are used 

An example 

At a slightly higher level of measurement precision is the 

ordinal scale. 

not only different to each other. but stand in some kind of 
relationship. Typical relations amongst classes are (e.g. Segal 

This scale is useful when categorised objects are 
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1956): higher, more preferred, more difficult, more disturbed, more 

mature, better driving performance, etc. The abbreviated injury 

scale (AIS) devised by the National Safety Council in the United 

States is an example of ordinal scale measurement. With ordinal 

scale measurement the categorical variable is referred to as being 

'ordered polytomous'. 

The interval and ratio scales allow a further enhancement of 
measurement precision. The interval scale retains all of the 

characteristics of the ordinal scale and has the additional feature 

that the distances between any two numbers of the scale are of 
known size. The ratio scale retains all the characteristics of the 
interval scale and in addition has a true zero point. 

of a crash is an example of ratio scale measurement. 

measured using interval or ratio scales are continuous and those 

measured using nominal or ordinal scales are categorical. 

The $ cost 

Variables 

Conventional regression analysis is an appropriate technique 

for situation (a) where the response variable and all explanatory 
variables are continuous. 

dunmy exogenous variables are also appropriate for situation (b). 

Regression models of the type that might be applied to cell (c) 
where all explanatory variables are categorical can be shown to be 
equivalent to traditional analysis of variance models. Situations 

of type (d) - (g) are amenable to analysis by QR models. 
remaining data situations can be analysed using integrated 

regression/QR model systems. 

Regression models which incIude some 

The 

The change in emphasis from cells (d) and (e) to (f) may seem 
slight, but has a fundamental implication for the type of model 
that can be used. 
are categorical the raw data can be aggregated without loss of 

information and the response variable can be transformed into a 
probability estimate. In contrast. when explanatory variables are 

all continuous or mixed. the raw data cannot be grouped (without a 
loss of information) and a probability statement mst be inferred 
directly from the categorical response variable. 

In particular, when all explanatory variables 



To illustrate this point consider data collected from a sample 
of Q car drivers with a dichotomous nominal response variable 
defined as 0 if the individual was involved as a driver in a road 
crash over the course of the survey period and 1 otherwise. 

Suppose also two categorical explanatory variables were defined, 

one denoting the sex of the individual (-1 = male. +1 = female) and 
the other denoting the individual's age (-1 = less than 25 years 
old, +1 = aged 25 years or more). 
can be assigned to one of 4 groups based on the values of the 

explanatory variables: 

With this data each individual 

g = 1 if vale and < 25 years. 
g = 2 if male and 2 25 years. 
g = 3 if female and < 25 years. 
g = 4 if female and 2 25 years. 

A table might then be constructed, such as shown in Table 2 where 
the numbers within the table represent the number of sampled 

individuals falling into each group. The elements of this table 

can be transformed directly into probability terms such as those 

shown in Table 3. The numbers shown in Table 3 represent 

probability estimates of observing an individual with the 

characteristics of group g and that individual being involved (not 
involved) in a road crash during the survey period. 

probability estimates are calculated by dividing the number of cell 

observations by the total number of observations. 
text these probabilities are denoted in a number of ways, most 

comnonly by P 
one variable (say R) and g to the gth level of another variable 
(say G). but tend to be used specifically to refer to the rth 

response and the gth group . 

These 

Throughout the 

where the r can refer generally to the rth level of 
rg 

1 Longer methods of denoting these 

'To be strictly correct, since the probability terms in Table 3 are 

estimates they should be denoted by P 
conventionally used to refer to an estimated value, as opposed to 
the true population value. 

A 

The symbol A is 
rg ' 



-6- 

CONTINGENCY TABLE OF CRASH INVOLVEMENT BY AGE. AND SEX 

Male Female Total 
< 25 years 2 2 5  years < 25 years 2 25 years 

~______ 

crash 

involvement 60 120 52 126 358 
no crash 

involvement 820 3142 1010 4670 9642 

total 880 3262 1062 47% loo00 

TABLE 3 

BASIC PROBABILITY ESTIMATES. FROM THE CONTINGENCY TABLE 
rg ' 

OF CRASH INVOLVEMB4T BY AGE AND SEX 

Male Female Total 

< 25 years 2 25 years < 25 years 2 25 years 

crash 

involvement 0.006 0.012 0.005 0.013 0.036 

no crash 

involvement 0.082 0.314 0.101 0.467 0.964 

total 0.088 0.326 0.106 0.480 1.OOO 
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probabilities are Prob(A,B) which refers to the probability of 

observing particular levels for variables A and B and Prob(A = i, B 
= j) which refers to the probability of observing the ith level for 
variable A and the jth level of variable B. 

Another way of viewing the data in Table 2 is, gluen that an 
individual has the characteristics of group g. what is the 

probability of that individual being involved in a road crash? 

These probability estimates can be calculated from Table 2 by 

dividing the number of cell observations by the column total number 

of observations. 

denoted by P 
"* 
'rg. 

from the P as P = P /I P For example, gtuen that an 

individual is fernale and aged less than 25 years, the probability 

of that individual being involved in a crash, from Table 3 (and 

using 4 decimal places to avoid rounding error), is POsl = 0.0052 / 
(0.0052 + 0.1010) = 0.0490, which is the same as the number 
appearing in Table 4, calculated by dividing the number of cell 
observations by the column total (i.e. by dividing 52 by 1062). 

shorthand method of writing 1 Prg is P 
estimates in Tables 3 and 4 are continuous (but bounded by 0 and 
1). they can be directly used in estimating the impact of age and 
sex on crash occurrence. 

Throughout the text these probabilities are 
* 

For the data of Table 2 the probability estimates, 

These probabilities can also be derived 
rg ' 

are shown in Table 4. 
* 

rg rg rg rg' 
r 

* 

A 

Because the probability 
+g' 

r 

A simpler version of Tables 2 - 4 involving a categorisation 
of crash involvement by only age is shown in Tables 5 - 7. 
2 - 7 are used extensively as examples in this report. 

Tables 

suppose, however, that there was also strong evidence that a 

continuous variable 'distance travelled as driver during the 

previous year' exerted an influence on the likelihood that an 
individual would be involved in a crash. 

accommodating this variable into an analysis of crash involvement 

would be to segment distance travelled into a number of 

One method of 
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TABLE 4 

CONDITIONAL PROBABIL TY ESl'IMATES. ;* FROM THE CONTINGENCY TABLE 
rg ' 

OF CRASH INVOLVEXERT BY AGE AM) SEX 

Male Female 

< 25 years > 25 years < 25 years > 25 years 

crash 

involvement 0.068 0.037 0.049 0.026 
no crash 

involvement 0.932 0.963 0.951 0.9'74 

total 1.ooO 1.ooO 1.ooO 1.ooO 

TABLE 5 

alNTINGENCY TABLE OF CRASH 1NVOLV"T BY AGE 

Age < 25 years Age > 25 years Total 

crash 

involvement 180 
no crash 

involvement 3962 

178 358 

5680 9642 

total 4142 5858 loo00 
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TABU 6 

.. 
BASIC PROBABILITY EXIMATES. Prg, FROM THE CONTINGENCY TABU 

OF CRASH INVOLVEMENT BY AGE 

Age < 25 years Age 2 25 years Total 

crash 

involvement 0.018 0.018 0.036 

no crash 

involvement 0.396 0.568 0.964 

total 0.414 0.586 1.ooO 

TABU 7 

CONDITIONAL PROBABILITY ESTIMATES, $:g, FROM THE CONTINGESCY 

TABLE OF CRASH INVOLVEMENT BY AGE 

Age C 25 years Age 2 25 years 

crash 

involvement 0.044 0.030 

involvement 0.956 0.970 

no crash 

total 1 .ooO 1 .Ooo 
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distinct categories and then proceed along the lines outlined 

above. However, the cut-off points could only be arbitrarily 

determined. Further, we might expect distance travelled (in 

contrast to age, perhaps) to exert a continuously increasing impact 

on the probability of crash involvement. 

then involve a loss of informtion. Ideally the individual 

observations should be retained with the tabular form being of the 

kind shown in Table 8. 

Any categorization would 

In Table 8 the explanatory analysis variables (age, sex and 
now distance travelled) are not shown. This should not, however, 

present any impediment to an understanding of the analysis 
environment. Rather we know that these explanatory variables are 

associated with the individuals we have surveyed. 

summarily describe the data simply by referring to these individ- 

uals. The total number of individuals surveyed is indexed by Q. 
(For Tables 2 - 7. Q = loo00.) 
tend to use the letter 'q' to refer to any particular individual. 

It is likely that each individual surveyed will possess a unique 
set of values for the explanatory variables. One individual, for 

example, might be male. less than 25 years old and have travelled 
15.132 kilometers in the past year: another individual while 

falling into the same sex and age group m y  have travelled slightly 

further, say 15.725 kilometers. There are only two possible 

outcomes for the response variable, however - either the individual 
will have been involved in a crash or will not have been involved. 

When an individual has been involved in a crash a 1 is recorded in 
the 'crash involvement' row of Table 8 and a 0 recorded otherwise. 

A similar recording system applies to the 'no crash involvement' 
row. 
to polytomous response variables as has been done in Table 9. 

the total number of possible response outcomes is indexed by R. 
is clear that to analyse the data of Tables 8 and 9 an estimation 
procedure is required that utilizes the discrete individual 

observations. 

We can therefore 

In the remainder of this report we. 

With this recording system. Table 8 can easily be generalized 
Here 

It 

In this report a family of models is introduced that enable 

sophisticated analysis of data of the type displayed in Tables 2 - 
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TABULAR FORM FOR A E 

TABLE 8 

LXOTQMOUS RESPONSE ‘ARIABLE AND coNT1Nu0us 
OR MIXED MPLANAMRY VARIABLES 

Individual Observations 

1 2 . . .Q 
~~ 

crash 

involvement 1 or 0 1 or 0 

no crash 

involvement 1 or 0 1 or 0 

1 or 0 

1 or 0 

total 1 1 1 

TABLE 9 

TABULAR FORM FOR A DICHOTOWOUS RESWNSE VARIABLE AND aXrrIMIous 
OR MIXED MPLANATORY VARIABLES 

Response Individual Observations 

Categories 

1 2 . . .Q 

1 
2 
3 

R 

l o r 0  l o r 0  

l o r 0  l o r 0  

l o r 0  l o r 0  

l o r 0  l o r 0  

1 or 0 
1 or 0 

1 or 0 

1 or 0 

total 1 1 1 
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9. In the next section one member of this family. log-linear 
analysis, is described. Classical log-linear analysis may be 

thought of as applying to type (g) problems in Table 1. 
because classical log-linear analysis makes no distinction between 

response and explanatory variables. in effect treating all 

variables as response variables. 

log-linear analysis is that all variables are categorical so that 

the data can be reduced to the form shown in Tables 2 - 7. When 

the discrete individual observations must be directly analysed. as 

in data situations described by cells (d) and (e) in Table 1 (and 

by Tables 8 and 9). an appropriate set of statistical techniques 

are the so called 'latent variable' models (LVMs). These models 

originated in the biometrics literature, but were further developed 

by a number of econometricians, particularly McFadden (e.g. 

McFadden 1974. 1978. Manski and McFadden 1981). 

how LVMs m y  be applied to cell (g) type problems. 

problems can be analysed using integrated latent variable / 

regression model systems. An overview of this emerging area with 
potential road crash research applications is provided in Section 
5. 

This is 

A requirement of classical 

It is also shown 

Cell (h) - (j) 

Before concluding this Section on classes of statistical 

problems and accompanying analysis techniques, it is worth noting 

that often a research problem can be approached in a number of ways 

and data selected or manipulated to suit the approach. Essentially 

the approach selected should depend on the required accuracy and 

detail needed to satisfactorily address the problem and the costs 

of data collection and analysis associated with each possible 

approach. 

To provide a concrete example. suppose a need arose to 
A ascertain the effect of seat belt usage on road crashes. 

broadbrush, aggregate data level approach could be conducted along 
the following lines. Firstly, data on individual crashes contained 

on mass crash data tapes might be aggregated over time, 

geographical regions or both. 

render what is a discrete variable at a disaggregate level (i.e. 

The effect of this process is to 
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crash / non-crash defined at some level of severity) into a 

continuous variable at an aggregate data level (i.e. number of 

crashes per year, per State, etc.). Data on aggregated explanatory 

variables such as vehicle kilometers travelled, proportion of the 

population falling into various age categories and proportionate 

use of seat belts are available in survey information provided by 

Government bodies and private agencies. 

might then be applied to the data described above. 

approach the effect of seat belt usage on road crash injuries and 
deaths would be measured by observing the size. sign and 

statistical significance of the parameter attached to the seat belt 

variable in the regression equation. 

A regression analysis 
Under this 

A more detailed disaggregate data level approach is described 
in Figure 1. 

an individual being involved in a road crash at any level of 

severity. 

a road crash, a model is developed of the probability of the 

individual sustaining no injury, a minor injury. a major injury or 

being killed. Both models would contain a binary variable 

indicating whether the individual was wearing a seat belt. 

Level 1 model this variable in effect measures the impact of seat 
belt usage on road crash involvement and thus drives at the heart 

of the risk homoeostasis debate. In the Level 2 model this 
variable measures the role of seat belts in reducing injury 

severity once a crash has occurred. 
modelling framework permits estimates to be made of the effect of 

seat belts on the overall number of crashes, their effect on the 

number of minor injuries, their effect on the number of major 

injuries and their effect on the number of deaths. 

injuries could be broken down by type if desired. 

Firstly, a model is developed of the probability of 

Secondly, given that an individual has been involved in 

In the 

That is. the one integrated 

Major and minor 

From the example provided it may be observed that the 

comparative advantage held by the aggregate data level approach 

lies in its minimal cost. 
disaggregate data level approach lies in the extra information 
provided to the policyimker and circumvention of a number of 

The comparative advantage held by the 
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FIGURE 1 

SCHEMA FOR A PROBABILISTIC MODEL, OF ACCIDENT 
AND INJURY SEVERITY 

Level 1 Model 
(blnary loglt) 

No 
Accldent Accldent 
Occurance Occurance 

no 
vlslble 
w r y  

Level 2 Model 
(ordered loglt) Fatallly 
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These problems may be of such a magnitude to destroy the validity 

of results obtained from aggregated data. 2 

The starting point for a detailed consideration of QR models 
is log-linear models applied to cell (g) type problems. As a 

specific example we use Table 5 and assume that no distinction is 

made between response and explanatory variables. 

reaction of many researchers faced with Table 5 and an assignment 

to test for a relationship between the variables would be to apply 

a chi-square test. 

models embrace the chi-square test of simple independence but m y  

also cover more complex tests of interdependence between variables. 

The initial 

It is shown in this Section that log-linear 

Consider the situation where two variables A and B (e.g. crash 
involvement and age in Table 4) are independent. 
probability of an observation belonging to the ith category of 

variable A and the jth category of variable B. Pij. can be 
expressed as the product of two marginal probabilities; that the 

observation falls into the ith category of variable A and that the 
observation falls into the jth category of variable B: 

Then the joint 

Fi j = Prob(A = i) x Prob(B = j) (1) 

Essentially the chi-square test involves computing from equation 

(1) the frequencies to be expected in each cell of the contingency 
table under a hypothesis of independence and comparing these values 
with the observed cell frequencies. The chi-square statistic is of 
the form: 

%lese statistical issues are covered in most texts. 

see Kmenta 1971. pp. 322 - 336 and Maddala 1977. pp. 268 - 274. De 
Donnea 1971 contains a striking example. in the context of travel 

demand. of the pitfalls concomitant with the use of aggregated 

data. 

For example. 
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I J (QPij - QFij)2 
x 2 =  1 1 

i d  j=1 QFiJ 

where F 
1.i 

equation (1). P 
(randomly drawn) sample size. 

are the computed ‘independence’ probabilities from 

are the observed cell probabilities and Q is the 
ij 

The log-linear model provides an alternative method of testing 
the independence hypothesis. 

natural logarithm of both sides we have: 
From equation (1) and taking the 

log (Fij) I log { Prob(A = i)} + log { Prob(B = j)} (3) 

When A and B are dichotomous, taking values +1 and -1,3 equation 
(3) can be re-expressed as (see e.g. Bishop et al. 1975): 

log (F ) = u + uIA + uZB ij 

where: 

(4) 

3From the discussion in Section 2 it is clear that any two numbers 
can be assigned to dichotomous nominally measured variables. 
Elsewhere in this text (Table 8 and Section 6. in particular) 
either dichotomous response variables or both dichotomous response 
and explanatory variables are assigned the numbers 0 and 1. 
it is convenient to use the numbers +1 and -1. That is. for crash 
involvement (variable A) -1 is used to denote crash involvement and 
+1 is used to denote no crash involvement. 
(variable B) -1 is used to denote < 25 years and +1 for )1 25 years. 

Here 

Similarly for age 



1 

J 1J 
u1 = - 1 log (P. .) - u 

1 

I u2 = - 1 log (Pij) - u 
i 

which is conventionally referred to as the log-linear model of 
independence for two variables. The model is reminiscent of an 

analysis of variance model with u fulfilling a similar role to the 

'grand mean', ut to the 'main effects of variable A' and u2 to the 

'main effects of variable B'. 
for the 2 x 2 contingency table can be generalised by adding an 
interaction term between variables A and B so that: 

The log-linear model of equation (4) 

log (P ) = u + U ~ A  + UZB + u~zAB (5) Li 

1 
where ulz = log P 

This is the most general form of model for the two dichotomous 

variable case and is known as the saturated log-linear model. In 

- 
i 

ij 

this model there are as many parameters as cells in the contingency 

table. As a result the model will perfectly predict the observed 

cell probabilities. 

models of equations (4) and (5) is indicative of the traditional 

The difference in predictions between the 

chi-square 'independence' hypothesis. With equations (4) and (5) 
being estimated by maximum likelihood using an algorithm such as 

Newton-Raphson. statistically the acceptability of this hypothesis 

may be determined by applying a log likelihood ratio test.4 Note, 
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%ximum likelihood estimation of log-linear models is discussed by 

Bishop et al. 1975. Chapters 3 and 5 and by Haberman 1978 and 1979. 

The log-likelihood ratio test is detailed in virtually all texts 
which cover maximum likelihood estimation. For example, see Bishop 
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however, that the traditional chi-square test of independence is 

just one of a number of hypotheses that might be considered when 
applying log-linear models to a 2 x 2 contingency table. 
Additional restrictions to ui2 = 0 that might be applied are ui = 
0, u2 = 0, and ui = uz = 0. 
= ui = u, = 0) is equivalent to an hypothesis of equal probab- 
ilities in all cells of the contingency table. while the former two 
correspond, respectively, to categories of the A variable being 
equally probable and categories of the B variable being equally 
probable. 
ical approach be adopted in which the saturated model is first 

estimated. the restriction ui2 = 0 then tested and only if this is 
accepted should further restrictions (in order ut = 0. US = 0 and 
u, = u, = 0) be applied. 

The last set of restrictions (i.e. u,, 

Parsimony of modelling effort suggests that a hierarch- 

The advantages offered by the log-linear approach become ever 

more pronounced as the number of variables considered increases. 

For example Table 10 details the hierarchical set of log-linear 

models relevant for a three dimensional (2 x 2 x 2) contingency 
table - such as that given in Table 2. 

4. A DlXXIITION OF U”T VARIABLE HOIElS. 

In this section a family of models termed in the statistics 
literature ‘latent variable models’ is briefly reviewed. The focus 

of attention is on two members of this family: the binary and 

multinomial logit models. 

To introduce the linear logit model we return to Table 2. but 
in contrast to Section 3 now explicitly view crash / non-crash as 
the response variable and age and sex as explanatory 

~ ~~ 

et al. 1975, pp 
p177. 

125-130. Haberman 1979. pS6. and Maddala 1977. 
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TABLE 10 
THE HIERARCHICAL SET OF LOG-LINEAR MODELS FOR A 

2 x 2 x 2 CONTINGENCY TABLE 

Parameters Number 

Constrained of models 
* 

to equal 0 of this type 

Model specification 

Clog (Pi$ = ... 1 

0 1 u,, + u,A + u2B + u,C + u12AB + u,,AC + u2,BC + u12,ABC 

1 1 UO + u,A + u ~ B  + U ~ C  + u,~AB + u ~ ~ A C  + U ~ ~ B C  
2 3 uo + u,A + u2B + u,C + u12AB + ui,AC 

3 3 uo + u,A + u ~ B  + u ~ C  + u ~ ~ A B  
4 1 uo + u,A + u2B + u,C 

4 3 uo + u,A + u2B + U,~AB 
5 3 u,, + u,A + u2B 

6 3 u,, + u,A 

7 1 uo 

%ate: In some cases the model specification shown is but one of a 
number of models of the general type implied by the restrictions. 

For -le, the restrictions imposed on the third model in this 

table are ula3 = u2, = 0. 
general group, viz. ui2, = u12 = 0 and ui2, = u,, = 0. 
models are contained within this group. 

There are two other restrictions in this 

Thus, three 



variables (i.e. variables determining the probability of being 

involved in a road crash). 

can be refurbished as: given that an individual has the 
characteristics of group g. what is the probability of he or she 

being involved in a crash? 

probability of crash involvement (non-involvement) condttional upon 

knowledge of the individual’s characteristics. 

probability terms are the P introduced in Section 2. By 

predicting these probabilities we can answer questions such as: ‘If 
circumstances a were to occur. what would be the implic-ations for 
b?’ 

With this perspective the analysis task 

That is. we are now interested in the 

The appropriate 
* 
rg 

In addition a different parameterisation is used for the 

probability terms. In particular the binary logit probability 

function is used which has the general form: 

where p can be treated as the mean value of a single variable or be 
d e  a function of a group of independent variables and unknown 

parameters. In the case of the linear logit model this function is 
linear in the parameters. such that: 

where 6 is a vector of parameters (6’ = 6i, 62. 
a vector of independent variables (2’ I zi, za. 

can include simple transformations of the ‘raw’  variable^.^ 
be seen from equation (6) that L(p) is constrained to lie between 

between 0 and 1 (which, naturally, is a desirable constraint for a 

......6p) and 2 is 

....., z ) which P 
It can 

%or those not familiar with matrix algebra 26 = 6,z, + 622, + . . 

. + = 1 LiezC. P 

e 



probability function) and takes the shape shorn in Figure 2. 
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Applying equations (6) and (7) to Table 2 the probability. 

Pyq. of individual q being involved in a crash may be expressed as: 

where p = 6, + 6, AGE + 6= SEXq. 
value -1 if the individual's age is less than 25 years and +1 

otherwise and SEX 
if female. 
be rearranged as in Table 11. 

AGE is a dumny variable with 
9 9 9 

is a dunnny variable with value -1 if male and +1 
9 

With these definitions the information in Table 4 can 

In estimating the model, equation (8) can be rewritten to 
produce a linear expression: 

* 
where Pa 

( = 1 - PT ). 
regression techniques (OLS) or, more appropriately, weighted least 
squares (WLS) to allow for the heteroskedasticity of the error 

terms. 

is the probability of not being involved in a road crash 

9 

9 
Equation (9) can be estimated using ordinary 

6 

For illustrative purposes, the results from applyine; the model 
Such of equation (9) to the data of Table 2 are shorn in Table 12. 

%eteroskedastic error terms arise because the variance between the 

estimted probabilities of Table 4 and the true probabilities will 
not be constant but rather will depend on the probability values 

and sample size in each cell. 



-22- 

FIGURE 2 

FORM OF THE LOCISTIC DISTRIBUTION 
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TABLE 11 
RFARRANGF,MENT OF THE DATA OF TABLE 3 FOR LOGIT MODEL ESTIMATION 

Cons tan t Age Sex 6: 

1 -1 -1 0.068 
1 +1 -1 0.037 
1 -1 +1 0.049 

1 +1 +1 0.026 

TABLE 12 
RESULTS FROM WEIGHTED LEAST WUARES ESTIMATION OF A LOGIT MODFL 

USING THE DATA OF TABLFS 2 AND 11 

Variable Parameter Standard 

Name Estirrate Error 

Constant -3.1166 0.0041 

Age -0.3246 0.0041 
Sex -0.1796 0.0038 

Note: Predicted conditional probabilities from the model of a crash 

occurrence, P,, are: #̂ 

age < 25 years and male. = 0.068 
age 2 25 years and male, z = 0.037 

#̂ age < 25 years and female, PI = 0.049 
age < 25 years and female. = 0.026 

which replicate those of Table 11. Gyg is used to represent the 
conditional probability of crash involvement for an individual 

belonging to group g as estimated from the basic data (e.g. as in 
Table 11). 

crash involvement for an individual belonging to group g as 

estimated from the RlodeL. 

#̂ is used to represent the conditional probability of 
p'g 
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a model, for instance, m y  be used to obtain information of the 

effect of an aging population on the incidence of road crashes. 

4.2. lHE LINEAR LOGIT KIDEL APPLIED To MDIVlDuAL OBSERVATIOA DATA. 

It has been shown in the previous Subsection how the logit 

model can be applied to grouped data. 

world investigations, however, the state of the response variable 

will be affected by the values of both categorical and continuous 
variables. As pointed out in Section 2 where some of the 
explanatory variables are continuous, if there is to be no loss of 
efficiency in analysis. the data must be considered at the 

individual response level. 

In the majority of real 

There may be occasions when consideration of the data at the 

individual observation level is warranted even when all the 
explanatory variables are categorical. 

Tables 2 and 5 reflect a situation where, with a randomly selected 

sample. one of the responses (i.e. crash involvement) is 

infrequently observed. 

road crash research. A consequence is that some cells may have 
zero entries, particularly as the dimensions of the contingency 

table increase. Since the log of zero is undefined, the models of 

equations (4). (5) and (9). based on the proportions observed in a 
contingency table, become difficult or impossible to estimate. 
More generally, the WLS method of estimating logit models and 
methods normally used to estimate log-linear models tend to fail 

when there exist m y  cells with -11 observed frequencies. 

The illustrative data in 

This sort of situation is not uncommon in 

In this Section it is shown how the logit model can be applied 
to individual observation data. The basic tenet of the model is 

that an unobserved continuous variable underlies the observed 

discrete responses. 

regression for the unobserved variable and then relating this 

variable to the observed responses. 

whereas to this point the probabilities have been treated as given, 

Essentially the method involves specifying a 

The net effect is that. 



observation response data to provide an interpretation for the 

mechanisms giving rise to these probabilities. 

Interestingly, this distinction in the treatment of discrete 

response data can be traced to the very foundations of modern 
statistical analysis. Pearson (1900) insisted that it always made 

sense to assume an underlying continuous variable for a dichotomy 

or polytomy. Yule (1900). on the other hand, chose to analyse the 

cross-classified data as they are and can thus be considered as the 

founder of the LL.M school (Feinburg 1975, Maddala 1983). 

4.2.1. The Linear Loeit Model Applied to Dichotomous Individual 
Observation Resuonse Data. 

A convenient starting point to convey an understanding of the 
logit model applied to discrete response data is the data of Table 

8. The response variable contained in this table is dichotomous 

with 0 indicating no crash involvement and 1 indicating that the 

individual was involved in a road crash over the course of the 
survey period. 

by yq. 

continuous variable. y 

an interpretation for the underlying continuous variable: however, 

in the context of crash involvement a reasonable interpretation for 

yq is 'risky driving behaviour'. 

The observed dichotomous response is denoted below 

The logit model assumes that underlying y is an unobserved 
9 

* It is left to the researcher to provide 
9' 

* 

* 
If y were to be observed, a regression relationship could be 

9 
specified as: 

* y = z 6 + €  
9 9  9 

where e is an error term. and other terms are as previously 

defined. 2 should contain the determinants of risky driver 

behaviour or proxy variables for these such as socio-economic 

characteristics. activity time constraints, previous driving 

convictions, etc. 

9 

9 

However, y* is not observed and consequently 
9 
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equation,(lO) cannot be estimated directly using standard 

regression techniques. Nevertheless, it is possible to view the 

observed response (crash involvement) as the outcome of the 

unobserved variable (risky driving behaviour) crossing an 

unobserved threshold value. Since y is measured on an interval 

scale, without loss of generality this threshold value can be 

normalised to zero so: 

* 
4 

if y* > 0 
9 Yq = 1 

Yq = 0 otherwise 

The probability of crash involvement can then be expressed as: 

Prob(y = 1) = Prob(a > - Z96) (12) 9 9 

Where the a are independently and identically distributed (iid) 

extreme value type 1 (Evl) then the RHS of equation (12) through 

integration is equal to (see, for example, Johnson and Kotz 19'70. 
Domencich and McFadden 1975) 1 - L( - Z 6) so: 

9 
7 

9 

Prob(y = 1) = 1 - L( - Z 6) (13) 9 9 

Also, 

Prob(y = 0) = L( - Z 6) ( 14) 9 9 

The likelihood function formed from equations (13) and (14) is: 

71f the e were assumed to be normally distributed then the 
resulting QR model would be a probit model rather than a logit 
model. 

computer tractability when the response is polytoumus and because 

the binary logit and probit models yield very similar results. 

9 

This report focuses on the logit model because of its 
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h = T L (  - Z96) [I - L( - Zq6)] 
y =I 

Yq4 9 

which can be maximized using the Newton-Raphson. Fletcher-Powell- 
Davidson or similar algorithms to obtain estimates for the 

parameter vector. 6. Standard errors for these estimates can be 

extracted from the information matrix in the usual -er and an 

overall 'goodness-of-fit' statistic for the model, p2. which is not 

dissimilar to the Ra regression statistic, has been suggested by 
McFadden (1974). 

The model presented above can be further refined by endogen- 

ising the critical threshold value. Suppose. as before, that a 

regression of risky driver behaviour can be defined by: 

* 
y = Z 6 + 6  
9 9  9 

However, in contrast to the previously developed model. where the 

critical threshold was specified as 0. now assume that the 

threshold is in itself determined by a number of factors of 

interest to the analyst, so: 

* 
t = x p + . .  
9 9  9 

* where t is the critical unobserved threshold value, p is a vector 
of unknown parameters (8' = PI, pa. . . .. . . .&). X is a row vector 

of variables determining the critical threshold value (X 

. . . . . . , %) and 2 In analysing road crash 

occurrence factors likely to determine the critical threshold value 

that, once crossed, results in risky driver behaviour being 

converted into an observed crash, include vehicle character-istics. 

such as braking performance and acceleration profiles. driver 

characteristics, especially reaction time (or 'proxies' for this), 

road characteristics and weather conditions. 

9 

9 = xj, xz. 
9 

is an error term. 
9 

From equations (16) and (17). a crash is observed if: 
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y = o  if z 6 - x p + € q - "  - > o  
9 9 9 q 

Similarly a crash is not observed if the risk element of driving 
does not exceed the critical threshold value. That is: 

y 9 = o  if Z d - X P + a  9 9 9 - " i o  ( 19) 

Once again if the e 
probability expressions can be derived from the cumulative logistic 
function: 

- a are distributed iid EV1 then the 
9 q  

Prob(y = 1) = 1 - L( - Zq6 + XgP) 
9 

Prob(y = 0) = L( - Zq6 + Xqp) 
9 

and maximum likelihood used to estimate the parameter vectors. 

The process described in the previous two paragraphs would 

seem to closely mirror the chain of events that actually gives rise 

to road crashes. More generally, the concept of discrete responses 

arising from an unobserved continuous variable crossing a threshold 
value has achieved wide acceptance in a number of research fields. 

The model described by equations (11) - (14) was first developed in 
biometrics. 

used, namely, level of dosage of insecticide, with the response 

variable being whether the insect died or not. 

application have included union membership (e.g. Lee 1978). 

transport choices (e.g. Domencich and McFadden 1975). purchase of 

consumer durables (e.g. Cragg and Uhler 1970). birth (e.g. Heckman 

and Willis 1975). voting (e.g. Deacon and Shapiro 1975) and horse 
racing (e.g. Figlewski 1979). 

Amemiya (1981). Maddala (1983) and Wrigley (1%). 

A single explanatory variable (i.e. Z variable) was 

Other areas of 

More complete lists are provided by 
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4.2.2. The Linear lovit Model ADDlied to Unordered Polvtomoua 
Individual Observation ResDonse Data. 

The model presented above can be extended to cases where the 

response variable is polytomous and unordered. 

empirically developed later in this report, involves an analysis of 

perceived bicycle safety on commuter mode choice. In this work the 

response variable was mode choice and for individual q is coded as: 

An example, 

y = 1 if car driver, 

yq = 2 
yq = 3 if bus, 

y = 4 if bicycle, 

yq = 5 if walk. 

9 
if car passenger, 

9 

This is an example of measurement using the nominal or classif- 

icatory scale. 

Underlying each value of the y variable, following McFadden 

and 
* 

(1974). assume that there exists a continuous variable, y 

interpret this to be the utility or level of satisfaction to be 

obtained from using that mode. Further, endogenise in a 

regression-like context the five unobserved continuous variables, 

as: 

qr' 

Presuming economic utility mimising behaviour. for mode 1 to be 
chosen by individual q the utility provided by this mode must be 
greater than the utility provided by any of the other modes. 

and is. for car driver to be chosen by individual q then, yql > yqz 

That 
* * 

* * * * 
Yal > yq3 and y:1 > ya4 and y:1 > yS5. To generalise this 
cindition. mode-j nili be choien if; 

* * for r = 1. 2. .... 5. r f j (21 
Ysj > Ysr 
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Here the threshold condition has been cleverly 8 generalised even 

further than that specified in the two logit models previously 

considered. 

* Because a portion of the y are unobservable by the analyst 
qr 

(i.e. the e 

mode : 

s). a probability must be assigned to the use of each 
qi 

Prob(y = j) = Prob(Z 6 - Z 6 > B - e 
9 Sj qr qr sj ’ 

(22) for all r # j) 

Where the e - e 
McFadden’s conditional multinomial logit (MNL) model: 

are distributed ild EVI, equation (22) defines 
qr sj 

which again can be estimated by nraximum likellhood to obtain values 

for the parameter vector. 

In the application developed later in this report, the utility 

yielded by each mode is made a function of 3Keftime taken to travel 

to work by that mode. the travel cost and certain other attributes 

specific to the various modes. One of the Z variables (i.e. one 

of the variables contributing to the utility provided by the use of 
bicycle for commuting) is specified as perceived bicycle safety. 

The statistical significance and parameter value associated with 
this variable indicates the influence of perceived safety on 
conmuting bicycle use. 

q4 

%e word ’cleverly’ is used in relation to the pioneering work of 
h i e 1  McFadden in this area and not to the particular application 

considered in the author’s study. 
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4.2.3. The Linear Loeit Model Amlied to Ordered Polvtomous 

Individual Observation Data. 

Yet another development of the basic model presented in 

Section 4.2.1 concerns application of the principles enunciated to 

ordered polytomous response data. 

research is the injury classification scheme refered to as the 

abreviated injury scale (AIS). An example of this scale is: 

An example of such data in crash 

0 = no injury, 
1 = minor injury, 
2 = moderate injury, 
3 = severe, but not life threatening, injury, 
4 = severe, life threatening injury, but recovery is 

probable, 

5 = critical injury, involving non-imediate death or a 
pe-ent impairment of bodily function such as paralysis, 

and 

6 = death within 24 hours 

From Section 2 this is an example of ordinal scale measurement, 
The categories bear a ranked relationship to one another (e.g. a 

moderate injury is *worse' than a minor injury which in turn is 
*worse' than no injury), but the numbers assigned do not indicate 

distance between categories, as would be the case for interval or 

ratio scale measurement. To emphasize this last point. the 
distance of 3 scale points between no injury and a serious injury 
(e.g. a broken them) should not be taken as equivalent to the 

distance of 3 scale points between a serious injury and death 

within 24 hours. Clearly. when measuring the 'actual' severity of 

injuries. the distance between the latter two points in the scale 

is greater than the former: but this is not indicated from the 

assigned numerical values. 

In reality injury severity does not occur in discrete 
intervals but rather varies continuously: it is only for ease of 

measurement that a limited number of injury classifications are 

created. Consequently it is natural to envisage a continuous 
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variable underlying the discrete measured values of the AIS scale. 
The discrete points of the AIS scale can then be viewed as arising 

from this unseen variable crossing, not one, but a number of 
threshold values. 

Suppose the severity of a crash, 

acting on the vehicle occupants, 

severity will depend on observa't 

expressed in terms of the forces 
* 

is represented by y Crash 

e factors such as the change in 
9' 

vehicle velocity on impact, vehicle size. occupant seating position 
and restraint usage. 

z so that: 
Relevant variables may be placed in a vector 

9 

* 
y = Z 6 + a  
9 9  9 

The process giving rise to the AIS scores may now be viewed in 
* * 

terms of y 
9 

will be the crossing point between no observed injury and a minor 

injury, the second (t,) between a minor injury and a moderate 

injury, and so on. 

crossing 6 threshold values. The first value (say to) 

* 

< t* < t* < * 
It is clear that t* < t* oq d t 2 q  3s 4s 

t;. 

These threshold values may be endogenised by setting, 

* 
9' 

t = X 6 + u  
9 9  

* 
and relating the individual threshold values to t by, 9 

* 
t* = t + kl 
19 9 

* 
t +  

. . .  . .  
. .  

t; = tq * + % 
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with kl < 5 < . . < k5. 

Note that the threshold values are allowed to vary across 

individuals, reflecting different capacities to tolerate automobile 

collision forces without sustaining an (observed) injury. The X 
vector would include variables such as age and sex. 

former, the frailty of the elderly is well known. Given, 

therefore, a fixed level of crash severity, an older person would 

be more likely injured than a younger person (Viano et al. 1978). 
It is also possible that sex may play a part in the body's ability 

to withstand injury. 

9 
Concerning the 

Combining (24). (25) and (26) we have: 

< t* - -  I, Z96+e 9 04 yq = 0 if 

y = 1 if t* I, Zq6 + e < t* 
9 os q 19 

* = 6 if tss < Zq6 + e < + m, 
y9 9 

y9 

or. 
= O  if - a  I, Z 6 - X 6 + e  - u  < 0 

9 9 9 4  

9 9 9 9 9  < kl 0 I, Z b - X b + e  - U  y = I  if 

% < Z q 6 - X 6 + e  - u  < +a. 
9 9 9  

y = 6  if 
9 

The probability of observing an injury of severity level j is: 

Prob(y = j) = Prob(k - z 8) - Prob(k - zq8). (27) 9 j s  3-1 

where 2 is a row vector containing all variables in vectors Z and 
9 9 

, 8 is to be similarly interpreted in parameter space, and ko = 
x9 
0. k-l = - m and kJ = + a. 
ently and identically logistically distributed the probabilities 

are defined by an ordered logit model: 

With the error terms e - u independ- 
9 9  
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1 
Prob(y = j) = - 

9 1 + exp(z 8 - k ) 1 + exp@ 8 - kJ-l) q 9 

The model presented above is more detailed and realistic than 

other models of injury severity that have appeared in the general 
road crash literature. 

scale data, but retains many of the advantages of regression 

analysis. 

occurring at the various scale levels in individual crashes. Also 

an index of the continuous underlying variable y 

recovered once estimates have been obtained for p and 6. 

It recognizes the ordinality of injury 

The model provides probability estimates of injury 

* * - t 
9 q  

can be 

The model presented here is considered in more detail later in 

this report. It is. however, just one of a set of probabilistic 
models that may be applied to ordinal data. 

of some members of this set of models is contained in McCullagh 

(1980) and the comments by discussants of that paper. 

An excellent overview 

The log-linear model presented in Section 3 makes no 
distinction between response and explanatory variables, in effect 
treating all variables as response variables. 

consideration is given to how the parameters of log-linear models 

may be estimated using a series of logit models, and the concept of 
model systems is introduced. 

In this Section 

To demonstrate the close relationship between logit models and 

log-linear models we take the example data of Table 2 which 
contains three dichotomous variables - crash involvement (A), age 

173) and sex {C). 
shown as the first model of Table 10. The first task of this 

Section is to show how the parameters of this model could have been 

generated by a series of logit models. 

The saturated log-linear model for this table is 

To facilitate this demonstration it is convenient to introduce 
a further set of notation. The probability of observing a 
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particular combination of values for the variables A.B. and C is 
denoted Prob(A.B,C). The conditional probability of observing a 
particular value of variable A given values for variables B and C 
is written as Prob(AIB,C). 

Prob(C1A.B) for the conditional probabilities of variables B and C 
respectively, given values for the remaining variables. Following 

conventional use for log-linear models the dichotomous values 

assigned to variables A. B and Care -1 and +l. 

Analogously we write Prob(B1A.C) and 

From Table 10 the saturated log-linear model for the 

dichotomous 3 variable case is: 

log[Prob(A.B,C)] = uo + ulA + UZB + U& + UIZAB + u,.AC 
+ uz,Bc + UlZ.ABC 

Also it follows that9: 

(29) Prob(A 1B.C) = Prob(A, B . C) 
Prob(-1,B.C) + Prob(+l.B.C) 

Combining equations (28) and (29) yields, after simplification: 

(30) 
exp(ulA + ulzAB + ul,AC + uiz,ABC) Prob(A1B.C) = 

noting that the u terms must sum to 0 over all categories of the 
variable. which for a dichotomous variable means that they are 

equal in value but opposite in sign. 

The logit expression corresponding to equation (30) is the log 

of the ratio of the two probabilities associated with variable A. 
By setting k = exp(u, + ux2B + ui& + UIZ~BC) + exp(- ui - ulzB - 
ul& - ulz3BC) this expression can be derived from equation (30) 
as: 

* 'This equation is simply a re-expression of the P terms. 
rg 
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By a similar process, 

$IAC + 2ui.A + + hizdc 

and. 

Equations (31) - (33) permit the estimation of 7 parameters (ui. 
UZ. UJ. U ~ Z .  U13. U Z ~ .  ~ 1 2 3 )  which is the number of free parameters 
in the saturated log-linear model (the parameter uo is determined 

automtically from the other parameters to ensure the probabilities 

sum to 1). 
logit models will be exactly twice the estimates of the corres- 
ponding LLX. 

The parameter estimates obtained from the conditional 

The equivalence in parameter estimates between a series of 

conditional logit models and LLMs estimted from the same 
contingency table does not necessarily hold for unsaturated model 

forms. 

logit models so that they all imply the one LLM. the resulting 
estimates will possess the equivalence established above and will 

be efficient. Some 
restrictions, however. will mean that the set of conditional logit 
models will imply more than one LLM. For example. by restricting 

uiS3 I uz3 = 0 the set of conditional logit models is: 

When a restriction can be imposed across all conditional 

An example of such a restriction is uiz3 = 0. 

Whereas the latter two of these equations imply an LLM: 
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the former implies an LLW: 

1% PiJ = UO + u ~ A  + uZB + U& + u~ZAB + u~ZAC + UZ& (36) 

In this case matching and efficient estimates will only be obtained 
through jolnt estimation of equation system (34). 

The models presented above have been taken a step further by 
Nerlove and Press (1973) and Schmidt and Strauss (1975) by 

specifying the main effects in the conditional logit models as a 

function of explanatory variables. Their model can be written as: 

Note again the equality of the parameters attached to A and B In 
the two equations. This suggests that the model. as mtth the LLH 
framework in general. is more a wrrelatton rnodeL than a m a l  

d l  (Maddala 1983). 
logit model systems, but this is beyond the scope of the current 

report . 

It is possible to construct recursive causal 

In summry. the intent of this rather comlicated and detailed 

section on the relationship between U s  and logit models has been 
to establish two points: 

1. Firstly, to substantiate the close relationship between 
LLMs and logit models. 
estimated using logit software. treating the explanatory variables 

as exogenous. 

The parameters of many U s  can be 
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2. Secondly, to distinguish between the essentially correl- 
ative role of LLMs from the more causative function of logit models 
as typically formulated. Heckman (1978). in particular. has argued 

that U s  are not sufficiently rich in parameters to discriminate 

structural association among discrete variables from purely 

statistical association. 

It should also be recalled that the introduction of continuous 
variables in U s  is difficult. in contrast to their ready 
embodiment in a logit framework. 

Finally. we note the words of Maddala (1983. p146): 

‘.....the focus of analysis in the Log-linear model and that 

of the latent wriable model are different. 
model we are interested in knowing which of the explanatory 
uariables are significant determinants of the different main 
effects and interactions. In the latent uariable model we are 

interested in the effects of different exogenous variables on the 
unobserued latent uartables, as wll as which of the obserued 

dependent (1.e. response) wriables are significant indicators of 

the unobserved latent wriables. 

more interesting’. 

In the log-Linear 

Very often the latter question is 

In this Section three extensions to the basic LVMs outlined in 
Section 4 are examined. The extensions were chosen on the basis of 

their high potential for profitable application in road crash 

research. Two of the extensions address sampling issues. In 

Sections 5.3 and 5.4 it is shown how LVMs can be used to correct 
results obtained from non-random samples so that the results 
reflect the population as a whole. In turn, LVMs themselves can be 
estimated using non-random samples and simple correction mechanisms 
applied to permit population inferences to be drawn. These matters 

are discussed in Section 5.1. Material contained in Section 5.2 
covers the introduction of endogenous variables into LVMs. in 
effect amplifying on the concept of a causal model system alluded 



to in Section 4.3. 
mathematics to a minimum. preferring instead to convey an intuitive 

feel for the models. 

Throughout this section we attempt to keep the 

The tables used as examples throughout this report exhibit two 

characteristics that pervade m y  road crash research problems. 

Firstly, the phenomena under study may seldom occur. 

7 road crashes are studied directly and these are (fortunately) 
relatively rare events. 

more acute when types of crashes (e.g. pedestrian or front-on car / 

truck collisions) are being studied. 

studying some forms of deviant driver behaviour which are of 
interest to a road crash researcher. Secondly, often the 

researcher is especially interested in a minority group - e.g. 
drivers with a previous drink driving conviction. 

little information will be collected on these groups in any random 

sample based on the population of road users. 

younger drivers are not well represented, but these drivers may be 

central to reducing the road toll. 

alternatives to random samples are considered. 

sampling and choice-based sampling. 

In Tables 2 - 

This problem of infrequency becomes even 

It is also a problem in 

By definition 

In Tables 2 - 7 
In this Section two sampling 

They are stratified 

5.1.1. E stimatine Lat ent Variable Models with Stratifi edsallm les 

To demonstrate the effect that stratified samples exert on the 

parameter estimates from LWs. the emmple cross-tabulation of 
crash involvement by age is used. Rather than treating the 

probability terms contained in Tables 6 and 7 as estimates of the 
true probabilities, here it is assumed that they exactly represent 

the true population probabilities. To avoid confusion, Table 6 is 

repeated as Table 13. with this change in status explicitly 

recognised. In this Section another table of age Vs crash 

involvement is constructed based on a stratified sample. 

parameter estimates obtained from Table 13 and this other table are 
then compared. 

L W  
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TABLE 13 

POPULATION PROBABILITY DISTRIBUTION (Prg) FOR 

CRASH 1NVOLVF.MENT BY AGE 

Age < 25 years Age 2 25 years Total 

crash 

involvement 0.018 0.018 0.036 
no crash 

involvement 0.396 0.568 0.964 

total 0.414 0.586 1 .Ooo 

Before considering stratified sampling two characteristics of 
Tables 6 and 13 should be highlighted. 
sampling we would expect the sample distribution to equate with the 

population distribution. That is. we would expect that Tables 6 

and 13 would be the same. as indeed they are (by coincidence!) in 

actuality. A more fonnal way of writing this is E(P ) = P [in 
ij 

words, the expected values of the probability estimates (P ) 
obtained from the sample equate to the true population probab- 

ilities]. Secondly, from Table 13. given that an individual is 

less than 25 years old, the probability of he or she being involved 

in a crash is": 

Firstly. under random 

n 

A 
1.i 

1.l 

Probability of age < 25 years and being involved in an accident 
Probability of age < 25 years and being involved in an accident 

+ Probability of age < 25 years and no accident involvement 

"Note that the expression below is a 'long hand' version of 

equation (29). 



or, O.OlS/(O.OlS + 0.396) = 0.044. 
years or more the probability of crash involvement is 0.018/(0.018 

+ 0.568) = 0.030. 
but their current use is as population values. 

Similarly. for those aged 25 

These are just the probability terms in Table 7, 

In stratified sampling the population under study is segmented 

into groups based on values of the explanatory uartabLes and each 

group is then sampled separately. 

from each of the strata, however. this is not necessary and the 

sample drawn from each stratum can be of any size. 

that a stratified sample was drawn based on the defined age groups. 

with equal samples (5.000 observations) being drawn from both 
groups. The expected numbers of observations in each cell from 

this stratified sample are shown in Table 14. 
calculated by multiplying the conditional probabilities of Table 7 
(now treated as conditional probability terms for the population) 

by 5OOO. 
more crashes, the number of crashes observed in the stratified 

sampling scheme will tend to be greater than the number observed in 
the random sample (cp. Tables 14 and 5). 

Often a uniform sample is drawn 

Suppose then 

These were 

Because inexperienced drivers are involved in relatively 

The probability terms. P calculated from Table 14 are shown 
These terms could have been derived directly from the 

As an example, given that 50% 

rg' 
in Table 15. 
population probability distribution. 

of the observations are characterised by an age of less than 25 

years, the probability from the stratified sample of observing an 

age < 25 years and a crash involvement is 0.5 x 0.018/(0.018 + 
0.396) = 0.022. 

It has long been known that stratified samples do not effect 

the parameter estimates obtained from logit models and other LVMs 
(e.g. Bishop 1975). This result is relatively easy to demonstrate. 

Recall that the logit probabilities are defined by P* 
Referring to the example of Tables 5 and 14. in the random sample 
if an individual is aged less than 25 years the probability of 

being involved in 8 crash is 0.018/(0.018 + 0.396) = 0.044 and 

= P /P 
rg rg +g' 

-41- 
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TABLE 14 

MPFETED NUMBER OF OBSERVATIONS IN UBI CELL FROM A STFATIFIED 
SAMPLE FOR CRASH I " T  BY AGE 

Age < 25 years Age 2 25 years Total 

crash 

involvement 220 

no crash 

involvement 4780 

150 370 

4850 9630 

Total m 5ooo loo00 

TABLE 15 

N 

BASIC PROBABILITY ESTIMATES. Prg. OBTAINED FROM THE 

SIXATIFIED SAMPLE SHOWN IN TABLE 14 

Total 

I 
Age < 25 years Age 2 25 years 

crash 
involvement 0.022 0.015 0.037 

involvement 0.478 0.485 0.963 
no crash 

total 0.500 0.500 1.ooO 



in the stratified sample this probability is 0.022/(0.022 + 0.478) 

= 0.044. 
sample are shown in Table 16. 

ities used to estimate the logit model are unaffected by stratified 

sampling. Consequently. the parameter estimates from a logit model 

will be the same regardless of whether the sample was drawn on a 

random or stratified basis. 

Other conditional probability terms for the stratified 

It can be seen that the probabil- 

5.1.2. Estimatine La tent Variable Models with Choice-Based SamDles, 

The major problem with applying random sampling to a 

population with the characteristics displayed in Table 13. however, 

is not related to the amount of information collected on individ- 

uals aged less than 25 years. Rather, very little information Is 

collected on crashes across all age groups. 

sample size was restricted to 1000 individuals. rather than the 
10,000 individuals used in Tables 2 and 5, we would expect to 

observe only 36 crashes including only 11 crashes by persons aged 

less than 25 years. Clearly, once more realistic. multiple. levels 

of categorization were applied, many cells with zero entries would 

emerge. 

For example, if the 

In response to this type of problem in recent years methods 

have been devised to estimate LVMs using choice-based samples. In 

choice-based sampling the population under study is segmented into 

groups based on values of the response uartable and each group Is 

then sampled separately. 

group is random. 
each group can be of varying sizes. 

It is important that sampling within each 
As with stratified sampling, samples drawn from 

To illustrate the effect of choice-based sampling, assume that 

from the population described by Table 13 a choice-based sample Is 
drawn with 5.000 observations collected on individuals being 

involved in road crashes and 5.000 observations collected on 
individuals with no crash involvement. We would expect the number 

of observations collected in each cell to be as shown in Table 17. 
The probability estimates, Prg. calculated from Table 17 are shown 
In Table 18. These terms could have been derived 
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TABLE 16 

CONDITIONAL PROBABILITY ESTIMATES. qg, OBTAINED FROM THE 
SIllATIFIED SAMPLE SHOWN IN TABLE 14 

crash 

involvement 0.044 
no crash 

involvement 0.956 

total 1.ooO 

0.030 

0.970 

1.OOO 

TABLE 17 

EBECTED NUMBER OF OBSERVATIONS IN EACH CELL FROM A BIOICE-BASED 
SAMPLE FOR CRASH INVOLVE" BY AGE 

crash 

involvement 2500 

no crash 
involvement 2054 

total 4554 

2500 5Ooo 

2946 5Ooo 

5446 loo00 
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TABLE 18 

* 

BASIC PROBABILITY ESTIMATES. Prg. OBTAINED FROM THE 

CHOICE-BASED SAMF'LE SHOWN IN TABLE 17 

Age < 25 years Age > 25 years Total 

crash 

involvement 0.250 0.250 0.500 

Involvement 0.205 0.295 0.500 
no crash 

total 0.455 0.545 1 .m 

TABLE 19 

UXDITIONAL PROBABILITY ESTIMATES. Tg. OBTAINED FROM THE 
CHOICE-BASED SAMPLE SHOWN IN TABLE 17 

Age < 25 years Age 25 years 

crash 
Involvement 0.550 

no crash 
involvement 0.450 

0.459 

0.541 

total 1.ooO 1 .m 
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Y 

directly from the population probability values by the relation P 

= 0.5 P /P where the P are the expected cell probabilities 
rg r+ rg 

from the choice-based sample. 

0.5[0.018/(0.018 + O.OlS)] = 0.250. 

rg 
-a 

u 

For example. Po,-1 = 

Unlike the case of stratified sampling, the logit parameter 

estimates obtained from a choice-based sample will be different 
from those obtained from a random sample. 

probability terms from the choice-based sample are shown in Table 

19. It can be seen that these are quite different from those 
derived using the random sample (shown in Table 4). However, 

simple weights can be applied to the choice-based probability terms 

so that they become identical to the random sample probability 

terms. 

The conditional 

These weights are given by: 

'r+ w =- r Y  

In words, 

the probability of response r being observed in a randomly drawn 

the probability of response r being observed in the choice-based 
sample 

sample 

In the example of Tables 2 and 17. these weights are 0.036/0.5 for 

crash involvement (r = 0) and O . W O . 5  for no crash involvement (r 
5 1). As a demonstration that these weights do result in the 
random sample and adjusted choice based sample probability 

estimates being equal in our example adj(Po,-l) = 0.25(0.036/0.5) = 
0.018 which is the same as Po,-l. 
estimates from the choice-based sample are shown in Table 20. 

or weights may also be applied when estimating logit models from 
choice-based sample data, so that the parameter estimates will 
replicate those that we would expect to 

Y 

The other weighted probability 

The 
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TABLE 20 

BASIC PROBABILITY FSl'IMm. M)J(Prg). OBTAINED FROM 'I7-E 

CHOICE-BASED SAMPLE SHOW IN TABLE 17 AFTER WEImING 

Age C 25 years Age 2 25 years Total 

crash 
involvement 0.018 0.018 0.036 

involvement 0.396 0.568 0.964 

no crash 

total 0.414 0.586 1.ooO 

obtain from a random sample. 

in Manski and Le- (1975). 

require very little extra information. 

estimate of the number of people in the population of interest 

falling into each response category. 

A form1 proof of this is contained 
It can be seen that these weights 

All that is required is an 

Choice-based sampling would seem to have enormous potential 

for application in road crash research for three reasons: 

1. Many phenomena of interest to the road crash researcher 
occur very rarely. 

large only a few observations will be collected on the response of 
interest. 

sampling offers significant cost savings. 

This means that even if a random sample is very 

It is under these circumstances that choice-based 

2. Often very good information exists on the response variable 

For instance. from the mass crash data records for the population. 

we know the proportion of the population involved in crashes, 

categorised by type if necessary. 

weights, wr, presents no Impediment to using 
Thus the need to calculate the 
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choice-based samples. 

3. In road crash research most of the data that has been 

collected relates to the crashes themselves or the type of driver 

behaviour that cause crashes. Relatively little data has been 

collected on normal driver behaviour or on travel that does not 

involve a crash. 

prognosis that these latter matters are critical to an under- 

standing of how crashes occur. That m r e  research be devoted to 

normal driving behaviour was the major conclusion to emerge from 

Johnson and Perry's review. 

this paper that the LVM framework forces the analyst to not only 
study the behaviour of interest, but also the antithesis of that 

behaviour. To estimate the model of crash involvement, for 
instance, data was not only required on those individuals who had 
been involved in a crash but also some data was needed on 

individuals with no crash involvement. 
new samples on n o m 1  driver behaviour or non-crash travel may be 

used to profitably supplement the data bases already in existence. 

For instance, to estimate the model of crash involvement, data on 

individuals who had been involved in a crash could be gleaned from 

the mass crash data tapes, with a new survey being conducted just 

to obtain some information on individuals who had not been involved 

in a crash during the study period. 

This is despite Johnson and Perry's (1980) 

It is evident from the examples in 

With choice-based sampling 

5.1.3. S a m  le Sizes Reau ired for the Estiina tion of Latent Variable 
Models. 

Before departing sampling issues it is worth mentioning 

approximate sample sizes needed to estimate the L W s  reviewed to 

this point. 

planning area. suggests that reliable parameter estimates can be 

obtained with as few as 50 to 70 observations and sample sizes in 
the range of 200 to 500 are more than adequate provided sampling is 
controlled to yield a reasonable spread of observations. 

small sample sizes combined with the sampling techniques mentioned 

means that data collection costs for LVMs tend to be relatively 

Limited evidence, mainly acquired in the transport 

These 
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low. 

5.2. ImRODUCING E"0W VARIABLFS IHID LATENT VARIABLE KNELS. 

In Section 4.3 brief reference was made to a simultaneous 

model system consisting of two discrete dichotomous variables. In 

this Section a recursive model system is considered with one of the 
continuous explanatory variables in the LVM being specified as a 
function of a second set of variables. 

Mathematically the system considered is: 

* y = 2 6 + 7 V  + €  

v = x p + q  
9 q  9 9  

9 9  q 

* 
where y 

dichotomous outcome such that y = 0 if y < 0 and y = 1 
otherwise, Z 

V is a continuous variable determining the state of y X is a 

vector of variables determining V 
7 is a parameter. and B and q are error terms. Often it is 

convenient to assume that the B are normally distributed leading 

to the probit form for the latent variable model. 

is an unobservable continuous variable with an observable 
9 * 

9 9 9 
* 
9' 

is a vector of variables determining the state of y 
9 

* 
9 9' 9 

6 and p are parameter vectors, 
9' 

9 4 

9 

this method it is 

Alternatively, 

predicted values 

Two methods are available for estimating equation system 

(39a+b). Combining (3%) with (39b) we have: 

y Y = Z 6 + 7 ( X P ) + e  +TI? 
9 9  9 9 9 

and this can form the L W  to be estimated. 
impossible to separate the estimates of 7 and p. 
equation (39b) may be estimated using OLS and the 
of V used in the latent variable model. 

Using 

9 

An obvious application of this model system in the road crash 

research field is for equation (3%) to be a model of crash 
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involvement with V representing exposure (say, distance 

travelled). 

some data can be extracted from home interview travel surveys 

conducted as part of transport studies and further data m y  become 

available from the exposure study funded by Federal Office of Road 
Safety. This data would allow estimtion of an exposure model. 

Amongst the explanatory variables (X ) included in the exposure 
model would be locational factors, access to motor vehicles, and 

socio-economic descriptors. 

exposure values as an explanatory variable in the model of crash 

involvement. 

9 
Very little information on exposure is available, but 

4 

The next step is to use the predicted 

It should be recognised that the same variable might appear in 

the X and 2 vectors. For instance. it is possible that an 
4 4 

individual’s age will affect both the probability of being involved 
in a crash and the level of exposure. 

road crashes among the young in part due to higher levels of 

exposure? If so, how much? These are questions which m y  be 

addressed by the model system. 

position of the 2 and X vectors. Then the impact of age on 

exposure is measured by pk, the direct impact of age on the 
probability of crash involvement measured by 6k, and the indirect 

impact of age on the probability of crash acting through exposure 
is measured by 7pk. 
crash involvement. disregarding exposure. the parameter estimated 

will represent (ljk + 7%): that is. the direct and exposure related 

age effects will be confused. 

Is the high incidence of 

Place an age variable in the kth 

4 4 

Note that by just including age in a model of 

5.3. SAFIPLE SLECTIVITI MODEIS. 

Attention in this Section is switched from the analysis of 

discrete response variables to the analysis of continuous response 

variables. In particular, the analysis of continuous response 

variables in non-random samples is examined. 

can be linked to analyses of data from non-random samples so as to 

permit the results obtained from such samples to be applied to the 

entire population. 

into cells (h) - (j) of Table 1. 

It is shown that LVMs 

Statistically the techniques considered fall 

Firstly, samples are studied 
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where the continuous variable of analysis interest is only observed 

within a limited range. Secondly, more elaborate non-random 

samples are studied. 

context of regression analysis of the continuous variable. 

Thirdly. the role of LVMs in weighting sunrmary statistics extracted 

from non-random samples is disclosed. 

Both these examinations are placed within the 

5.3.1. The Trun cated Regression and Basic Tobit Models, 

The type of rum-random sample examined in this section is 

characterised by data points on the continuous variable of interest 

enveloped within a range that is less than the range of values 

exhibited by the population as a whole. 

way of concrete example, it is assumed that the analysis task is to 

discern factors contributing to the cost of property damage only 

(pdo) road crashes and the data source is official crash data 

tapes. 

if they exceed a specified cost level. 
therefore, to presume that no data points will be available on 
crashes with a cost value less than the legislative reporting 

limit. That is the data on crash costs will be attenuated. 

For ease of exposition by 

Legislation requires pdo road crashes to be reported only 

It seems reasonable, 

Data from a hypothetical sample containing information on 
crash costs is displayed in Figure 3. 

is assumed that only one factor contributes to crash costs, impact 

velocity, but the arguments presented below are readily extended to 

include analyses with multiple explanatory variables. 

data in Figure 3 is observed a linear regression model might be 
fitted of the form: 

For illustrative purposes it 

If all the 

where pi and pa are parameters to be estimated, c 
the qth crash, v is impact velocity and .f 

9 9 
with an expected value of zero and which is independent of v 

and E With a random 
sample unbiased estimates of pi and Bz can be obtained by OIS. 
resulting regression relationship between c and v is shown as 

is the cost of 

is a disturbance term 

c 

9 

9’ 9 
are assumed to be normally distributed. 

9 
The 

q 9 
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ILLUSTRATION OF REGRESSION SPECIFICATION ERROR WHEN SAMPLE 
POINTS WITH A C VALLE LESS THAN SOME CONSTANT ARE 

UNOBSERVED (FROM BERK 1983) 

AB  = true regression line 
CD - incorrectly estimatad regression 

line using an attenuated data set 
€6 - correctly estimated regression 

line using an attenuated data set 

E D  
cost 
rCi 

el 0 

(Note: Shaded area represents the set of observations, 
lying within the population of analysis interest, but which 
are not captured within the rvailabia data set) 
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line AB in Figure 3. 
Pz when the sample is non-random. 

Problems, however. occur in estimating Pi and 

Suppose, initially. that crashes costing less than cl0 are 

unobserved. Simply fitting the model of equation (41) to the 

remaining data, using O B .  will lead to biased estimates of Pi and 
Pa. The true 
regression line. passing through the expected values of c 

value of v 
Essentially the difference between lines CD and EB is due to 
specification error inherent in CD from forcing a linear relation- 
ship between c and v when a non-linear relationship is 

appropriate. 

The fitted OLS regression line is shown as line CD. 
for each 

9 
given the attenuated data set. is shown by line EB. 

9' 

9 9 

Two major consequences stem from the non-recognition of the 

attenuated data set shown in the non-shaded section of Figure 3. 

Firstly, the slope of the estimated regression line CD (i.e. the 
estimated Pa value) will be less than the slope of the population 
regression line (i.e. the true P2 value). 
comparison of line AB and CD. 
is that the estimated effect of impact velocity on the cost of 

crashes will be less than the true population effect. 

estimated pa value should not be used to infer the effect of impact 
velocity on crash costs for the population. 

lacks external ualtdtty. 

to road crashes with a cost greater than cl0 the estimate of B2 
will still be biased. The reason is that will be positively 
correlated with v 

values of v 
high values of v 
one of the assumptions required for OLS to yield an unbiased 
estimate of p2 and the destruction of the internal wltdtty of the 
model. 

This can be seen from a 

The result, for the example given, 

Clearly the 

The model therefore 

Secondly, even if interest is restricted 

4 
It can be seen from Figure 3 that for low 

9' 
there is a tendency for 

9 q 
to be negative, while for 

The result is violation of the converse holds. 
q 

Before indicating how the correct regression line can be 

estimated from the attenuated data set. it is important to 

recognise two general classes of samples that might produce the set 

of observations in the non-shaded section of Figure 3. If data 
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points with c 

set is termed 'truncated'. Alternatively, if for data points with 
c 

obtained, with c values remaining unobserved, the resulting sample 
9 

is said to be a censored sample. 

values less than cl0 are totally unobserved the data 
9 

< cl0 values for the explanatory variables can still be 
9 

For censored samples, unbiased estimates of pi and pz can be 
obtained using the basic Tobit model. 

discussed by Tobin (1958) and further developed by a number of 

researchers, principally, Amemiya (1973). Fair (1977). Goldberger 
(1964.1981). and Heclonan (1976b). 
sample is appropriately recognised in a Tobit model through 

inclusion of an extra regressor. From equation (41). for the 
censored data set characterised by c 

This model was first 

The attenuated nature of the 

> cl0: 9 

where the E(.) term can be read as the expected value of 
that E is greater than cl0 - - &vq. A two-stage method is 

4 
available for estimating this model. 

estimating a latent variable probit model that an observation will 
exceed the threshold value, cl0. then using output from this model 

to form the E(.) term in equation (42). Equation (42) can then be 

estimated using OB. 
unavailable since observations where c 

eliminated from the sample. 

can be estimated from truncated samples using a full information 
maximum likelihood approach. 

(1976. 1977'). 

given 
9 

Basically the method involves 

When the sample is truncated this method is 

< cl0 are completely 
9 

Nevertheless the true regression line 

Details are given in H a u s m  and Wise 

5.3.2. Generalised -le Selection Models with Censored kta, 

The previous Subsection concerned the correct estimation of 

regression models when the sample was conditioned on the dependent 
variable exceeding a single threshold value. 

sample selection processes are dealt with in this section. 
inclusion or exclusion of sample points is assumed to depend on a 

More complicated 

The 



host of factors, only some of which are h o w n  by the analyst. 

is shown that even from these sorts of samples analyses can be 
conducted that will permit general conclusions to be drawn. 

It 

A good example of a potential application in the road crash 
sphere is in the analysis of insurance data. 
source (Searle 1980). In the past, however, researchers have 

exhibited a reluctance to utilise this data, in large part, because 

of its unrepresentativeness; data is only available on those 

individuals who have decided to claim om insurance. This is an 
example of self-selection bias. Other types of selection bias are 

when an administrator decides to include or exclude certain 

observations (administrator selection) and attrition in panel data. 

Here is a rich data 

To analyse this, more general. sample selectivity problem 
assume that selection in a sample is conditioned by an unobservable 

variable y . When y exceeds a threshold value an observed outcome 

is that observation q is included in the sample; otherwise 

observation q is excluded. 

can be specified as 0. 

interpreted as propensity to claim on insurance. 

be aware of some factors that condition the propensity of 

individual q to claim on insurance. but not all of the factors. 

w * 
9 9 

As in Section 4 this threshold value 
* 

In the insurance example. y might be 
q 
The analyst will 

Following through the insurance example, suppose again that 

the analysis task is to examine the factors contributing to crash 

damage costs. Figure 4 illustrates the likely situation where y 

the propensity to claim on insurance (and thus be included in the 

sample). is positively correlated with c crash damage costs. 

Circled observations lying within the population of interest (all 

crashes) are nevertheless excluded from the sample due to no 

insurance claim being made. 

the regression model of equation (41) to the given (insurance) 

sample depicted in Figure 4, using OB. will yield biased estimates 

of p1 and pz. 
between the error term f and v . From Figure 4, for low values of 
v there is a tendency for E to be 

* 
9' 

q' 

It can be seen that the application of 

Statistically this can be attributed to correlation 

9 9 

q 9 



FIGURE 4 

ILLUSTRATION OF ESTIMATED AND TRUE REGRESSION LINES WHEN INCLUSION 
OF SAMPLE POINTS DEPENDS ON THE VALUE OF A SELECTION VARIABLE 

cost 0 
0 (Cl - 

- 

. regression 
line 

- . . 
t . 

4 velocity (vJ 

(Note: Circled observations lie within the population of 
analysis interest. but are not captured within the available 
data set) 
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smaller than for large values of v As before both the internal 

and external validity of the model will be undermined. However. 

now it is difficult to determine whether the biased OLS estimates 

will understate or overstate the true causal effects. 

q' 

Mathematically the regression equation for the observed data 

points is: 

* In turn y can be segmented into an 'analyst known' portion and an 

unknown portion: 
q 

* 
y = Z 6 + e  
9 q  9 

where Z contains a list of factors that the analyst knows will 
affect the propensity to claim on insurance and 6 is a vector of 
associated parameters. From the discussion, the observation will 
be included in the sample (i.e. a claim on insurance will be made) 

if: 

9 

and will be excluded otherwise. 
1 (when observation q from the population is included in the 

sample) and the latter by y 

re-expressed as: 

The former case is denoted by y = 
9 

= 0. Equation (42) can now be 
9 

The last term on the RHS of equation (44) can be shown to equal 
(see Heckman 1976b. Barnard 1986b. Cain 1975. and Muthen and 

Joreskog 1983 among others) A{+(Z 6)/&Z 6)) where + is the density 
function of the standard normal. 8 is the distribution function of 
the standard normal and A is an estimate of the covariance between 
e and E,, so: 

9 

q 
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A two-staged estimation procedure is to: 

1. Estimate a probit model of the probability of an observ- 

ation from the population being included in the sample (i.e. of an 
insurance claim being made). 

parameter vector 6 are obtained. 

From this model estimates for the 

A 

2. Use the estimated parameter vector 6 to form the term 

W q 6 )  
3. Apply OLS to equation (45) replacing with to 

4uq6) &zoh 
obtain estimates for PI, Pa and A. 
be unbiased and can be used to draw inferences concerning all 

crashes and not just crashes about which insurance claims are made. 

The estimates of Pi and 8, will 

To estimate the probit model some information is needed on 
those Individuals not in the sample under analysis. 

use insurance data, for instance. some information is needed on 

those individuals not making claims. 

collected from such individuals, however, will normally be 
substantially less than that collected from those individuals 

included in the analysis. Further, the sampling discussion in 

Section 5.1 suggests that this extra information to estimate the 
probit model can be collected at relatively little cost. 

To profitably 

The range of information 

The technique outlined above can be used with any unrepresent- 

Many of the detailed psychometric and ergonomic road ative sample. 

crash related studies are potentially unrepresentative due to the 

time d e d s  placed on participants and the voluntary nature of 
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participation. 

these have been placed at identified ‘blackspots’. Concern has 

already been raised in the crash literature over the 

unrepresentativeness of countermeasure data (Hauer 1980). 

techniques outline offer the possibility of correcting biases that 

may exist in these data sources. 

So too are samples of crash countermeasures where 

The 

5.4. WEIGHTING SURVEY STATISTICS. 

Often surveys are conducted for less elaborate purposes than 

applying the regression type analyses that have formed a major 

thrust of this report. Sometimes all that is needed from a survey 

is summary statistics of the incidence of certain phenomena within 

the population. For example, information may be required on the 

incidence of certain kinds of driver behaviour. 

Typically to tackle this sort of problem a random sample is 

drawn from the population of interest. 

ative, frequency tabulations and like summary statistics can be 

calculated from the data and expanded to a population level by 

applying a single weight equal to the inverse of the sampling 

ratio. What is the best course of action. however, if, despite 
best intentions, the survey turns out to be unrepresentative? That 
is. what should be done if upon receipt of the survey returns 

representative checks reveal (despite the sample being drawn 

randomly) certain discrepancies between the socio-demographic 

composition of the sample and that known to exist (e.g. from census 

data) for the population? This situation is not uncomn because 

even random surveys suffer from refusals and *no contacts’. 

If the survey is represent- 

The methods introduced in this report suggest the following 

First estimate a probit (or logit) model of the solution. 

probability of an observation from the population being included in 
the sample. 

ally constructed set based on the known population distribution and 

the sample distribution. Next calculate. using data on each person 

in the sample, the probability of that person being included in the 

sample. More precisely, these probabilities represent the 

The data for this model could come from a synthetic- 
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probability of sample inclusion of individuals from the population 

urtth tdenttcal chnractertsttcs to that person. 

these probabilities are the optimal weights to expand the sample. 

The inverse of 

To clarify this assume that a sample and population can be 
perfectly described by age distribution and that only two age 

categories exist. Say, for the sake of consistency, these 

categories are age < 25 years and age > 25 years. Total numbers 

falling into each age category in the population of interest are 
shown in Table 21. 

population and per chance all those sampled aged 25 years or more 
responded to the survey but only half of those sampled aged less 
than 25 years responded to the survey. 

is shown in Table 22. From this information we can calculate that 

the probability of an individual from the population with an age 
less than 25 years being included in the sample is 0.25 and the 
probability of an individual from the population aged more than 25 
years being included in the sample is 0.50. The inverse of these 

rates are. respectively, 4.0 and 1.0. It can be seen that by 
applying these weights the population distribution is replicated 

and therefore we can place confidence in survey statistics, such as 

perhaps the number of crashes, for which the population 

distribution is unknown. 
probabilities are easy to calculate and there is no need to resort 

to a model. However, with many variables conservation of effort 
suggests that a modelling approach should be adopted. 

evident from Section 4 of this report that the probabilities used 
above are exactly those probabilities estimated In a LVM of sample 
inclusion. 

Suppose a 50% sample was drawn from this 

The sample age distribution 

With just one population parameter the 

It should be 

Throughout this report sparing use has been d e  of specific 

applications of LVMs in road crash research. In this Section we 

choose to redress this imbalance by highlighting three empirical 

studies that have used LVMs in road safety related analyses. 
of the studies were undertaken by the author as part of the current 

Two 



TABLE 21 

POPULATION FRWUENCI AGE DISTRIBUTION 

Age < 25 years Age 2 25 years 
41.400 59.600 

TABLE 22 

SAMPLE FREQUENCY AGE DISTRIBUTION 
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Age < 25 years Age 2 25 years 
10.350 29.300 
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A.R.R.B. project funded by the Federal Office of Road Safety. 

third study was conducted by researchers at Northwestern 

University. 

The 

In Section 4.2.2 an analysis framework was developed for 
studying the influence of perceived safety on choice of bicycle for 
commuting. 

logit to this choice analysis was provided in Section 4.2.2. 
this Section empirical results from a study conducted into this 
issue are outlined. 

in Barnard (1986a). 

A theoretical justification for applying multinomial 
In 

Further details on the study are to be found 

The data for the study of bicycle conmuting use were from a 
survey comissioned by the Australian Road Research Board and the 
South Australian Department of Transport conducted in the eastern 

and north-eastern suburbs of Adelaide in 1981 (Barnard 1981). 

from this survey has been used extensively by a number of 
researchers (e.g. Barnard (1987). Clarke et al. (1985). ligan 

(1982)). 
survey was utilized, namely. the journey to work (JW) questionn- 

aire which m s  satisfactorily answered by 219 full time workers. 

Data 

In the study suimnarised here only a small part of the 

The JlW questionnaire consisted of seven parts, each part 
concentrating on a particular main method of travel to work - car 
driverhotor cycle. car passenger, car pool. taxi, bus. bicycle and 
walk. 
method of travel to work. then for other methods of travel used in 

the last three months. Finally, respondents were asked if there 
were any other modes they had considered using to travel to work. 
The percentage reponses for chosen and alternative modes are shown 

in Table 23. 

The respondent was first asked to supply his usual main 

For each mode mentioned responses were sought to the detailed 
Infornrt- questions about the use of that mode to travel to work. 

ion WEIS obtained on times taken to travel by each mode. parking 

costs, vehicle operating expenses, and so on. The bicycle 



TABLE 23 

FREQUENCI DISTRIBUTION OF OXMUTING MODE USE 
AND PERCEIVED AVAILABILITY 

Mode Per cent of respondents Per cent of respondents 
for whom this is the for whom this is an 
usual method of travel alternative method of 
to work travel to work 

Car driver 

Car passenger 

Car pool 
Bus 

Bicycle 

Walk 

65 

6 
2 

15 
5 

7 

16 
41 

2 

54 

8 

10 
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questions are reproduced in Figure 5. 

bicycle as the usual method to travel to work, and it represented 

an alternative travel method for a further eighteen respondents. 

These findings are broadly consistent with those obtained from the 

1977 Metropolitan Adelaide Data Base Study (Pak Pay and Associates 
(1978)). 

bicycle as a method of travelling to work. 

Eleven respondents chose 

It is obvious that most people do not even consider 

Of particular interest here is responses to the question 

concerning perceived bicycle safety. 

measured on a 1 to 5 point scale and measured the individual's 

assessment of being involved in minor and major bicycle crashes. 

The anchor points on this scale were (1) almost no chance of having 

any sort of crash if a bicycle were to be used to travel to work 

for one year and (5) large chance of having a serious crash 
involving personal injury. The frequency distribution of these 

responses is shown in Table 24. 

had used or considered using a bicycle to travel to work, felt that 
if they were to travel this way every day for one year. there was a 

large chance of being involved in a serious personal injury crash. 

In contrast only 10.3% felt that there was almost no c h c e  of 

being involved in any sort of crash. 

Perceived bicycle safety was 

Astonishingly, 27.6% of those who 

The bicycle travel safety ratings were further analysed 

through application of linear regression in an effort to discern 
systematic variation in individual ratings. 
that the use of regression assumes that the ratings are interval 

scaled. Strictly, the ratings are ordinal scaled: however, 

available evidence suggests that mostly such ratings can safely be 
treated as though interval scaled (e.g. Kim (1975). Labovitz 
(1970)) and indeed this practice is cOrmMn in sociological studies. 
Regression results are displayed in Table 25. 
only significant factor found to explain individual safety ratings 

is time spent bicycling on main roads. Interestingly, time spent 

travelling on side streets, bikeways and in parks although adding 
to exposure. apparently was not seen as increasing the crash risk. 

It should be noted 

As can be seen the 
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FIGURE 5 

BICYCLE QUESTIONS FROM JCURNEX-TQ-WORK QUFSTIONNAIRE 

- ONLY ASK IF USUAL OR ALmATIVE MODE IS BICYCLE - 
33. About how long does it normally take to get to work 

by bicycle? 

(minutes) m 
34. Could you next estimate about how many minutes of 

this trip are spent travelling along main roads. 
along streets, along bikeways, & through parks? 

Minutes 

(i) Main roads a 
(ii) Side streets a 
(iii) Bikeways m 
(iv) Parklands m 

35. 
you park your bicycle to where you actually mrk/are 

How long does it usually take you to walk from where 

educated? minutes m 
36. 

you feel riding your bike? 

Please indicate using the numbers 1 to 5 how safe 

1 = almost no chance of having any sort of 
accident 

2 I some chance of having only a minor accident 

3 =: large chance of having a serious accident 

involving personal injury 

4 = slight chance of having a serious accident 
involving personal injury 

5 = large chance of having a serious accident 
involving personal injury 

number 0 
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TABLE 24 

FREQUENCY DISTRIBUrTON OF RESFONSIB TO PERCFXVED BICYCLE SAFETY 

Perceived safety category 
(on year time reference) 

Per cent of 
responses 

1. 

2. 

3. 

4. 

5. 

Almost no chance of having any 
sort of accident 10.3 

Some chance of having only a 
minor accident 17.2 

Large chance of having only a 
minor accident 20.7 

Slight chance of having a serious 
accident involving personal injury 24.1 

Large chance of having a serious 
accident involving personal injury 27.6 

Note: sample size = 29. 



TABLE 25 

PERCEIVED BICYCLE SAFETI REGRESSION RESULTS 

Var iab 1 e Variable Definition Parameter 
Name Estimate T-Statistic 

BKROADS Time spent travelling on 
main roads (minutes) 0.0825 2.68 

BKSITEEB Time spent travelling on 
side streets (minutes) 0.0038 0.11 

BKWAYS Time spent travelling on 
bikeways (minutes) -0.0707 -0.97 

BKPARKS Time spent travelling in 
parklands (minutes) -0.0511 -0.96 

D E N m  Dunnny variable with value 
1 if workplace is located 
in CBD and zero otherwise 0.1554 0.32 

WNSTANT 2.9135 5.64 

-67- 

Notes: 

1. Dependent variable = perceived bicycle travel safety rating. 
2 2. R = 0.34. 
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The final piece of analysis concerns the influence of 

perceived bicycle safety and provision of bicycle facilities on the 

decision to bicycle to work. Following the model specification in 
Section 4.2.2. it is assumed that each individual associates with 
each available commuting mode a level of utility, this utility 
being a function of modal attributes. 

identified by equation (20). were specified in their non-random 
components as: 

The modal utility functions, 

+ 64(DIVTIME)q2 

where the subscripts 1. . . , 5 refer to the modes car driver, car 
passengerlcar pool, bus. bicycle and walk, respectively, with the 
variable definitions shown in Table 26. 

Estimation results from a multinomial logit (MNL) mode choice 
model. defined by equations (23) and (46). using the J"W data, are 
shown in Table 26. These results hold few surprises. Travel time 

was categorised into in-vehicle and out-of-vehicle times. 

former refers to time spent travelling in a car or a bus. 
latter refers to wait time and time spent walking to and from a car 
or public transport, time spent bicycling, or travel time for the 
walk mode. 

twice that of IVlT suggesting that commuters in choosing a mode. 
tend to negatively weight out-of-vehicle time about double 

invehicle time. The parameter estimates attached to 1". WIT 

The 

The 

From Table 26 the parameter estimate for OVlT is about 
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TABLE 26 

MNL MODEL OF JOURNEY TO WORK MODE CHOICE 

~ 

Variable Variable Definition Parameter 

Name Estimate T-Statistic 

INVTT 

OVTT 

TCQSTINC 

DIVTIME 

BKWAYS 

BKsAFEn 

WKPARKS 

CARDRIVER 

CARPASS 

CARPOOL 

BUS 

BIKE 

In-vehicle travel time 

Out-of-vehicle travel time 

Travel costs divided by income 

Driver diversion time to pick 
up and drop car passenger, 
0 for non-car passenger modes 

Time spent travelling on 
bikeways, 0 for non bike modes 

Perceived bicycle safety 
rating, 0 for non-bike modes 

Per cent of travel time spent 
walking through parklands, 
0 for non-walk modes 

Constant equal to 1 if car 
driver, 0 otherwise 

Constant equal to 1 if c a r  
passenger, 0 otherwise 

Constant equal to 1 if car 
pool, 0 otherwise 

Constant equal to 1 if bus. 
otherwise 

Constant equal to 1 if 
bicycle, otherwise 

-0.0531 

-0.1185 

-0.0838 

-0.1736 

0.5132 

-0.6620 

7.226 

-0.1986 

-2.119 

1.625 

-0.4701 

-0.337 

-1.92 

-3.68 

-2.36 

-2.22 

2.17 

-1.68 

2.08 

-0.25 

-2.48 

1.27 

-0.64 

0.02 

2 Notes: p 
(without model 45%). 

= 0.52. per cent of choices correctly predicted 83% 
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and the travel cost variable TCOSIINC imply that out-of-vehicle 
time is valued at 141% and in-vehicle time at 63% of the wage rate. 

Of pivotal importance to bicycle planning is the parameter 
values associated with the variables BKWAYS and BKSAFETY. The 

positive parameter estimate for W A Y S  indicates that the provision 
of bikeways increases the prohbility of choosing bike as the 

commuting mode. From the regression analysis, however, the 

intrinsic attractiveness of bikeways appears not to be related to 

better safety. As anticipated, the perceived safety rating has a 
negative impact on the probability of bicycling to work. 

Having estimated utility functions for each mode, predictions 

can be made of the effect on utility and hence mode choice of 

changes in the travel environment. For example, there tray be a 

desire to analyse the effect of altering perceptions of bicycle 
safety for those who currently believe that there is a large chance 

of being involved in a serious personal injury crash if bicycle uas 
used as the comnuting mode for one year (category 5 in the scale) 
to believing that there would be almost no chance or only a slight 
chance of having a minor crash (categories 1 and 2 in the scale). 
Such changes in perceptions may be brought about through a public 
relations campaign or through physical changes to the travel 

environment that result in real improvements in bicycle safety. 
Using the estimated utility functions and equation (23). Figure 6 
graphs the predicted probability of choosing bicycle against the 

perceived safety rating. By comparing the predicted probabilities 

of using a bicycle with a safety rating of 5 (approximately, 0.01) 
with the predicted probabilities of using a bicycle given a safety 

rating of 1 or 2 (approximately, 0.11 and 0.06. respectively) and 
recalling that 28% of respondents gave bicycle a safety rating of 

5. it can be seen that bicycle use would substantially increase if 
its perceived safety could be improved. 

In summary research reported in this note has shown: 

(i) that as a conmuting option bicycles have achieved very low 
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(ii) that bicycles lack safety credibility as a conunuting mode and 

this impacts on their use, 

ii) that perceived safety is related to conditions of bicycle 
use. particularly the m u n t  of time spent on main roads, and 

v) the provision of bikeways increases the amount of bicycle 

comting. 

These conclusions apply only to the survey area and must be 

tempered by the small sample size. 

6.2. THE EFFECT OF SEAT BELT WEARING ON ROAD cBA9I IN-. 

In Section 4.2.3 a theoretical model was developed of the 

probability of being injured at various levels of severity given 

that a road crash had occurred. 

the theory presented was ordered logit. Recently this model has 

been empirically implemented (Barnard 1989) using injury data on 

vehicle drivers from the Adelaide In-Depth Accident Study (Road 
Accident Research Unit 1979). 

The model type that resulted from 

The essential feature of the model developed in Section 4.2.3 
is of a continuous variable, representing the severity of the 

crash, crossing a number of threshold levels, determined by the 
ability of the vehicle occupant to withstand collision forces. 
Crash severity and occupant injury threshold levels jointly 

determine the level of injuries sustained. Furthermore. just as 

the utility associated with a conmuting mode could be specified as 
a function of modal attributes, so can crash severity and occupant 

threshold levels be specified as functions of other observable 

variables. In the empirical implementation of the model crash 
severity was specified as a function of change in vehicle velocity 

on impact, vehicle mass and seat belt use and tollerance capacity a 
function of age, sex and state of inebriation. These variables 

were selected on the basis of an understanding of the physics of 
road crashes and results obtained from laboratory based 
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biomechanical research. 

6.2.1. ExDlana torv Variables of Iniurv Severltv, 

Biomechanical studies of automobile collisions have shown that 

the single most important variable contributing to crash severity 
is the change in vehicle velocity on impact. 

directly to the change in momentum, this variable best reflects the 
forces acting on vehicle occupants. bodies during a collision. 
During the collision period the occupants' initial velocities must 

be changed to the new velocity of the vehicle compartment. 

resulting in occupant contact with the vehicle interior andlor with 
a restraint system. 

sustained will largely depend upon the de-acceleration time history 

of the collision (Krishnan et al. 1983). 

As it relates 

The occurrence and nature of the injuries 

Following Marquardt (1974). Carlson (1979). Hutchinson (1983) 
and Krishnan et al. (1983). from momentum considerations the change 

in vehicle velocity on impact can be calculated as: 

(47) C 1 + mc/mo 

where vc is the initial velocity of the case vehicle, vo is the 
velocity of the other vehicle. mc and m 

vehicles and 9 is the angle of alignment of the vehicles at the 

point of impact.' The change in velocity on impact increases as 

the initial velocities of the vehicles increase and as the ratio 
rn /m increases. 

are the masses of the 
0 

c o  

To aid appreciation of the index, hypothetical crash 

'The formula of equation (47) takes into consideration the change 
in velocity along both the x and y axes. Some of the studies 

mentioned only included the velocity change in one direction. 
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configurations are depicted in Figures 7 and 8. 

involve a two-vehicle collision between a Honda Civic of mass 690 

kg and a Ford Fairmont of mass 1333 kg. The vehicles are assumed 

to be both travelling at 30 km/h immediately prior to impact. In 

the head-on crash 8 = 0. so that the relative collision velocity is 
60 km/h and the change in velocity for the Honda Civic is -40 lan/h. 

If both cars were travelling at 40 kinh the change in velocity of 
the Honda on impact would be -53 lan/h. The corresponding changes 

in velocity for the Ford Fairmont are -20 km/h and -27 km/h. For 

the crash depicted in the second diagram the change in velocity on 

impact for the vehicles is exactly half that of the Figure 7 crash. 
The reduction in impact velocity change is entirely due to the 

different alignment of the vehicles, measured by the cos(8) term in 

equation (47). 

Both figures 

A feature of equation (47) is that the change in vehicle 
velocity on impact is contingent upon the ratio of vehicle masses. 

This means, given initial velocities and vehicle alignment, the 

velocity change for a collision involving two equivalently weighted 
light vehicles will be the same as for two equivalently weighted 
heavy vehicles. An understanding of collision physics, however, 

leads to the conclusion that the severity of the crash will be 
greater for light vehicle occupants than for massive vehicle 

occupants. Larger vehicles provide a protective effect to 

occupants. 

initial vehicle energies that can be absorbed by metal deformation 

without intrusion into the occupant compartment. 

more room in the vehlcle cabin for the occupant to travel without 

striking an object. 

The larger the vehicle the greater is the proportion of 

There is also 

In addition to the main effects of impact velocity change and 

vehicle mass. the severity of the crash to the occupant will be 
affected by seating position and restraint usage. The driver. in 
particular, is likely to be more vulnerable than other vehicle 
occupants because of the close proximity to the body of the 

steering apparatus. The role of seat belts in reducing injuries 
has been well documented (e.g. Lave and Webb 1970. Trinca 1980. 
Layton and Weigh 1983). 
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FIGURE 7 
-LE OF IMPACT VELOCITY CHANGE CAUXILATION: 

H E A W N  COLLISION 

Ford Fairmont 
(1333 kg) 

30 km/h. 

30 M. 

Honda Civic 
(690 kg) 

e = o  0 
[302 + 302 + 2(30)(30)] 

690 I + -  1333 

- - - 
"Honda - 40 m. 

FIGURJ7. 8 
MAEIpLE OF IMPACT VELOCITY CXANGF, CALCULATION: 

SIDE-ON alLLISION 

[302 + 302 + 2(30)(30)COS(90)] - =2a1tln/h 690 1 + -  1333 
AvHonda - 
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There is less evidence on the factors contributing to the 

different capacities of individuals to tolerate collision forces. 

Age, sex and state of intoxication are the variables used in the 

current analysis. 

! 

6.2.2. The Adelaide In-hDth Accident Studv, 

The data source for the research is the Adelaide in-depth 

This study, sponsored by the Office of Road Safety accident study. 

and the Australian Road Research Board, obtained an 8% sample of 
crashes in the Adelaide Metropolitan Area. to which an ambulance 

was called, during the period March 1976 - March 1977. 
inclusion criterion means that the sample consists of a non-random 
subset of the total crash population. 

The 

Crash researchers invariably work with non-random samples. 
Typically the sample inclusion criterion is that damages should 

exceed a specified monetary amount (currently $loo0 in South 

Australia). 

excess of the specified monetary amount go unreported. 

likely that the Adelaide in-depth sample inclusion criterion is not 

very different to normal reporting criterion. 

be called routinely to crashes of even moderate severity. 

sample used for modelling an ambulance was called, but was not 
required, in over 50% of crashes. 

In practice many crashes with monetary losses well in 

It is 

Ambulances tend to 

In the 

The Adelaide in-depth sample was found to be representative of 
the population of crashes, characterised by nrass crash data 

records, for a number of key variables (Road Accident Research Unit 

1979). 
crash involvements. 

In total the study collected information on 494 vehicle 

The available sample size from this source was snrtll compared 
to that available from nrtss crash data tapes. It is. however, of a 
higher quality. with the data on each crash reflecting the combined 

on-site talents of an engineer. psychologist and a medical officer. 

In selecting this data source we were particularly 
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mindful of having accurate information on the velocities of 

vehicles just prior to impact and vehicle alignment when calcul- 

ating the velocity change index of crash severity. This inform- 

ation is not included on Australian mass crash data records. We 

were also aware that the statistical techniques adopted in this 

study may be successfully applied, and stable parameter estimates 

obtained, with as few as 70 observations (Tye et al. 1982, p. 27) 

No automobile mass information was collected in the Adelaide 

data: however, information on vehicle make and model was obtained. 

The information needed to calculate impact velocity change was 

derived by linking the Adelaide data with a data set on automobile 

characteristics. collected under the Dimensions of Automobile 

Demand Project sponsored by the National Energy Research Develop- 

ment and Llemonstration Program (NERRDP) (Hensher 1986). 

The current research is confined to an examination of two- 

vehicle collisions. In the Adelaide data 303 vehicles were 
involved in collisions of this type. Occupants of these vehicles 
in total numbered 561 persons. 

collisions involved 196 automobiles, occupied by 394 persons. The 

distribution of AIS injuries sustained by vehicle occupants in 
two-vehicle collisions and in automobile-only two-vehicle 

collisions are displayed in Table 27. 

analysis, no injuries were observed in AIS classes 5 or 6 (notably 
there were no fatalities). 

the data are shown in Table 28. 

Automobile-only two-vehicle 

Unfortunately for this 

Other relevant summary statistics for 

6.2.3. Iniurv Severi tv Mod el Estimation Results, 

Four models were developed using the Adelaid-P data. 
These related to (i) two-vehicle collisions, all occupants, 

(ii) two-vehicle collisions, drivers only, (iii) automobile-only 

two-vehicle collisions, all occupants, and (iv) automobile-only 

two-vehicle collisions, drivers only. The form for y - t used in 

these models was: 

* *  
9 9  



TABLE 27 

DISIRIBUI'ION OF AIS CUSSIFIED INJURIES 

(a) Two-vehicle collisions. 
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AIS Class Proportion of Sample 

0.46 
0.34 
0.14 
0.05 
0.01 

(b) Automobile-only two-vehicle collisions. 

AIS Class 

~~ 

Proportion of Sample 

0.44 
0.39 
0.14 
0.03 
0.01 



TABLE 28 

SUUMARY SAMPLE STATISTICS 

Variable Description Sample Statistic 

(a) Two-vehicle collisions 

average number of vehicle occupants 
average speed on impact 
average collision impact velocity 
average velocity change on impact 
average vehicle mass 
percent of head-on collisions 
percent of side-on collisions 
percent of rear-end collisions 
percent of occupants wearing a seat belt 
percent of occupants aged more than 

60 years 
percent of femle occupants 
percent of drivers intoxicated 

(b) Automobileonly two-vehicle collisions 

average number of vehicle occupants 
average speed on impact 
average collision impact velocity 
average velocity change on impact 
average vehicle mass 
percent of head-on collisions 
percent of side-on collisions 
percent of rear-end collisions 
percent of occupants wearing a seat belt 
percent of occupants aged more than 

60 years 
percent of female occupants 
percent of drivers intoxicated 

1.85 persons 
36 km/h 
53 km/h 
27 km/h 
1160 kg 
6% 
81% 
13% 
64% 

7% 
rn 
16% 

2.01 persons 
36 km/h 
55km/h 
28km/h 
1134 kg 
5% 
88% 
7% 
66% 

&% 
4&% 
17% 
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- t* = 60 + Po + 61VELC"G + 6210g(BfAS) + &$BELT 
y: 9 

where " N G  is the velocity change on impact (= Av). MASS is the 
mass of the case vehicle (= mc). 'log' denotes the natural 
logarithm, SBELT is a binary variable taking value 1 if in the 
investigatot's judgement a seat belt was certainly or probably worn 

and 0 otherwise, DRIVER is a binary variable if the occupant was 
seated in the driving position and 0 otherwise, IMw( is a binary 
variable if the occupnt was slightly. moderately or severely 
intoxicated and 0 otherwise, AGE60 is a binary variable taking the 
value 1 if the occupant was aged more than 60 years and 0 
otherwise, and FEEIALE is a binary variable taking the value 1 if 
the occupant was a female and 0 if the occupant was a male. 

A number of features of the model implied by equations (10) 
and (48) should be noted. First, the parameters 6 and P cannot 

separately be estimated. 

term equal to 6 

indices for y and t cannot be recovered, only the combined index. 

y: - tq. This inability is not a cause for concern. however. 

because we are only interested in honing how the independent 

variables yEu3ING. W. SBEL,T, DRIVER. INlDX. AGE60 and FEMALE 
affect the probability of sustaining an injury at AIS level i. 
i = 0. 1. 2. 3, 4. Second, for the drivers-only models, DRIVER is 
a constant so that ti4 cannot be estimated. 

absorbed into the constant term and other parameter estimates 

remain unbiased. Third, intoxication data were only collected for 

drivers. 

models. 

0 0 
The model estimates a single constant 

A consequence of this is that the separate + So. 0 
* * 
9 9 

* 

The parameter 64 is 

This term was therefore omitted in the 'all occupants' 

Estimation results for the four models are shown in Tables 29 - 32. All included variables, except the absolute mass and seat 
belt variables in the 'automobile-only driver-injuries' model, are 

statistically significant at the 2.5% level using a one-tailed 

T-test, and even these variables are significant at the 5% level 



TABLE 29 

ORDERE3 LOGIT MODE OF OccUpANT INJURY SEVERITY 
IN TWO-VEHICLE CRASHES 

Var lab 1 e Parameter Standard T-Statistic 

Mnemonic Estimate Error 

3.27464 

0.06411 

-0.75606 

0.46227 

-0.30994 

0.95468 

0.78249 

2.05903 

3.74015 

6.40987 

1.2670 

0.0071 

0.1652 

0.2134 

0.0956 

0.2893 

0.2041 

0.1346 

0.2411 

0.6249 

2.59 

8.97 
4.58 

2.17 

-3.24 

3.30 

3.83 

15.30 

15.51 

10.26 

Number of observations 561 

Log Likelihood at = 0 
Log Likelihood at convergence 

R2 

-660.98 

-557.48 

0.36 

-81- 
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TABLE 30 

0- LOGIT )IoDEL OF oc(xIpAKT INJURY SEVERITY 
IN AUKMOB1LE-ONL.Y " O - ~ I C Z E  CRASHES 

~ 

Variable Parameter Standard T-Statistio 

Mnemonic Estimte Error 

4.04485 

0.05813 

-0.86774 

0.55297 
-0.28259 
1.16618 

1.15146 

2.10255 

3.92270 

5.65502 

3.2690 

0.0103 

0.4418 
0.2437 

0.1075 
0.3363 
0.2423 

0.1543 
0.3037 

0.6583 

1.24 

5.65 
-1.96 
2.27 

-2.63 

3.47 
4.75 

13.63 

12.92 

8.59 

Number of observations 394 

Log Likelihood at 8 = 0 
Log Likelihood at convergence 

R2 

-651.01 

-408.84 

0.24 
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TABLE 31 

ORDERED LOGIT MODEL OF DRIVER INJURY SEVERITY 
IN ’IWQ-VMICZE CaASHEs 

Variable Parameter Standard T-Statistic 
Mnemonic Estimate Error 

3.46723 

0.06221 

-0.72935 

-0.31620 

1.1ooo9 

0.90783 

0.61840 

2.13719 

3.75491 

6.21678 

1.5760 

0.0098 
0.2127 

0.1252 

0.3335 

0.3694 
0.2883 

0.1927 

0.3104 

0.6771 

2.20 

6.34 

-3.43 

-2.53 

3.30 

2.46 
2.15 

11.09 

12.10 

9.18 

Number of observations 

Log Likelihood at 8 = 0 
Log Likelihood at convergence 

R2 

303 

-373.96 

-302.71 

0.42 
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TABU 32 

ORDERED LOGIT MODEL OF DRIVER INJURY SEVERITY 
IN AVIYIMOBILE-ONLY IMKI-VMICLE CRASHFS 

Variable Parameter Standard Tatatistic 

Mnemonic Estimate Error 

6.07375 

0.06644 
-1.14107 

-0.27665 

1.12041 
0.96767 

0.97779 

2.10935 

3.61398 

5.30452 

4.7140 

0.0152 

0.6420 
0.1519 

0.4069 
0.4426 

0.3525 

0.2255 

0.3714 

0.7399 

1.29 

4.37 

-1.78 

-1.82 

2.75 
2.19 

2.77 

9.35 

9.73 

7.17 

Number of observations 

Log Likelihood at 8 = 0 
Log Likelihood at convergence 

R2 

196 

-234.31 

-203.79 

0.31 
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using this test. Parameter estimates attached to the two dominant 

indices of crash severity, YELCHNG and MASS. are of the anticipated 
sign. 

positive signifying that, ceteris paribus, an increase in the 

initial speeds of the vehicles, or a decrease in the mass of the 

case vehicle relatiue to the other vehicle involved in the 

collision, will increase the likelihood that occupants of the case 
vehicle will be injured. 
on the probability of being injured through the MASS variable. 
This variable is measuring the degree of protection offered by 

travelling in a vehicle of larger absolute mass. The negative sign 
on this variable indicates that the probability of injury decreases 

as the absolute mass of the case vehicle increases. 

The sign of the parameter estimate attached to VELCHNG is 

Vehicle mass exerts a further influence 

To appreciate the effect of vehicle size on injuries consider 
a head-on twovehicle collision between a small (6M) kg) and large 
(1300 kg) automobile both travelling at 30 laa/h. 
predicts that for the injurious impact of the collision on small 

vehicle occupants to be the same as the injurious impact on large 

vehicle occupants one of the vehicles would have had to be 
travelling more than four times as fast: that is. at 120 km/h 

instead of 30 lonh. 
vehicle mass on the probability of sustaining a severe injury in 

collisions involving various impact velocities with a second 

vehicle of mass loo0 kg is shown in Figure 9. 

The model 

A diagrammtic depiction of the effect of 

12 

Models were also estimated with impact velocity, the numerator 

of equation (47). included separately from the ratio of vehicle 
masses. the denominator of equation (47). and the logarithm of 
absolute vehicle mass. The separate terms were all statistically 

'%e variable levels assumed in Figures 9 - 12. excepting those 
explicitly set in each Figure, are = lo00 kg, mc = loo0 kg. 
SBELT = 1 (seat belt worn), DRIVER = 0 (occupnt not seated in 
driver's position), INTOX c 0 (occupant sober), AGE60 = 0 (occupant 
younger than 60 years of age) and FEMALE = 0 (occupant is a male). 

0 
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Figure 9 

INJURY SEVERITY BY VEHICLE WEIGHT 
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significant at the 2.5% level. However, the overall goodness of 

fit measures for these models and the models of Tables 29 - 32 were 
virtually identical, lending support to the use of the VEKHNG 
variable, derived from a theoretical consideration of the physics 

of two-vehicle collisions, as an index of crash severity. Models 

which omitted either of the mass effects or the impact velocity 

term were significantly inferior to the model in which all these 

terms were included. 

was always less than 0.35. 

The correlation between log(MASS) and VELCIING 

Parameter estimates attached to the remaining set of (binary) 
variables also took the anticipated signs. 
attached to the AGE60 variable signifies that the elderly have an 
increased probability of being injured in a collision, of a given 

severity level, between two vehicles. 

and the probability of sustaining a severe injury is quantified 

diagrammatically in Figure 10. It is interesting to note that, 
ceteris paribus, females have a higher probability of being injured 

in road crashes than do males. 

The positive sign 

The relationship between age 

Again, having estimated the model, 'what if' type analyses can 
be conducted. 

effect on the severity of road crash injuries of an aging in the 
population or a change in the distribution of vehicle weights such 
as occurred as a result of the energy crisis of the early 1970s. A 
topic that has attracted considerable interest is the effect of 
restraint use in reducing road crash injuries. 

Table 31 we can calculate the effect of seat belts in reducing 

severe injuries for drivers involved in two-vehicle crashes, by the 

following steps: 

For instance, it may be of interest to predict the 

From the model of 

-H 
(i) 

on the assumption a seat belt was not worn, as: 

For individual q in our sample calculate the value of y 
9 

4 - t 
4 

- t E 3.467 + 0.062(-Gq) - 0.729(10g(Mbssq)) .f:: 
+ 0.908(AGE~xl ) + 0.618(FEMALEq) + l.lOO(INTOXq) 

9 
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Figure 10 

INJURY SEVERITY BY OCCUPANT AGE 
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Note that the values for all variables, but the seat belt variable, 

are those actually pertaining to individual q. 
zero irrespective of whether or not a seat belt was actually worn. 
For e-le if individual q was a sober male aged less than 60 
years driving a car of mass lOOOkg and involved in a collision 
where the change in velocity was 35 M. assuming a seat belt was 

not worn y - t may be calculated as 0.601. 

SBELT is set to 

* *  
9 9  

(ii) Oalculate the probability of individual q being severely 

injured on the assumption a seat belt was not worn as: 

* *  
exp(3.740 - y + t ) 

Prob(y = 3) + Prob(y = 4) = 1 - 
9 9 1 + exp(3.740 - 

with 3.740 being the threshold constant that separates injury 

severity classes 2 and 3. For the example individual: 

exp(3.740 - 0.601) 
1 + exp(3.740 - 0.601) Prob(y = 3.4) = 1 - = 0.04. 

9 

(ill) Repeat steps (1) and (11) for all individuals in the 

sample and sum the probabilities to obtain the expected number of 
severely injured crash victums on the assumption of no seat belt 

wearing. 

* 
9 (iv) 

on the assumption a seat belt was worn, as: 

For individual q in our sample calculate the value of y 
* - t 
9 

3 ( +  - t E 3.467 + 0.062(vELc”Gq) - 0.729(10g(NAssq)) 
y9 9 

+ O.StX(AGE60 ) + 0.618(FEEuLEq) + l.lOO(INTOXq) 
9 

- 0.316. 
Again note that the values for all variables, but the seat belt 
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variable, are those actually pertaining to individual q. SBELT is 
set to one irrespective of whether or not a seat belt was actually 

worn. For the example individual, assuming a seat belt was worn, 
4 4  - t = 0.285. 
yq 9 

(v) Calculate the probability of individual q being severely 

injured on the assumption a seat belt was worn, following step 

(ii). For the example individual the new probability value is: 

exp(3.740 - 0.285) 
1 + exp(3.740 - 0.285) Prob(y = 3.4) = 1 - = 0.03. 

q 

(vi) Repeat steps (iv) and (v) for all individuals in the 
sample and sum the probabilities to obtain the expected number of 
severely injured crash victums on the assumption of universal seat 

belt wearing. 

(vii) Campare the figures derived in steps (iii) and (vi) to 
gauge the impact of seat belt wearing in reducing severe car 
injuries. 

Provided the model has been correctly estimated, the value obtained 

In step (iii) should correspond to the number of severe injuries 
that would actually be observed if no one wore seat belts. 

Likewise the value obtained in step (vi) should correspond the 
number of severe injuries that would actually be observed if 
everyone wore seat belts. This use of the model, therefore, 

provides an excellent measure of seat belt effectiveness in 
reducing injuries. Applying this measure to the Adelaide data set 
It was estimated that the wearing of seat belts should lead to a 

33% reduction in the number of severe injuries and a 12% reduction 

in the number of minor Injuries. 

The estimates obtained from this study on the effect of seat 
belts in reducing severe and minor injuries are considerably lower 

than the estimates of 60% and 30%. respectively, quoted by the 

United States National Highway Traffic Safety Administration (cited 
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in Arnould and Grabowski 1983). The latter of my estimates. 

however, is in reasonable accord with an estimated 44% reduction in 

the number of fatalities from seat belt wearing derived from the 

work of Layton and Weigh (1983). based on Queensland data, and an 
estimated reduction of 30% in severe and fatal crashes by Krishnan 

(1983) based on two U.S. data sets. l3 In making these comparisons 

it is important to note that the current research was restricted to 

an analysis of urban road crashes. 

A pictorial representation of the effectiveness of seat belts 
in reducing the probability of severe injuries for a sober male 
vehicle occupant, younger than 60 years of age, at various impact 

velocities is shown in Figure 11. 

Finally, as shown in Figure 12. inebriated drivers were more 

likely to be injured than non-inebriated drivers. 

(e.g. Raymond 1974. Johnson 1978) have concluded that those 

affected by alcohol are more likely to be involved in crashes in 

general, particularly, severe crashes. The current study adds to 

the store of knowledge on the relationship between alcohol and road 

safety by concluding that given a crash of a set severity level 
those under the influence of alcohol are about two and one-half 

times more likely to sustain a severe (AIS classes 3 and 4) injury 

than a sober occupant. 

Other studies 

14 

13Layton and Webb calculate that fatalities were reduced by 37% as 

a result of legislation making seat belt wearing compulsory. if 
fitted. after allowing for the proportion of vehicles in the fleet 

without seat belts fitted. We have adjusted this estimate upwards 

to also allow for the proportion of the travelling population not 

using a seat belt when available (see Lay 1984). 

'%r. Max Lay has drawn to my attention research by Waller et al. 
(1986) which reached a similar conclusion about the effect of 

alcohol on injury severity. 

that alcohol involved drivers were 3.85 times more likely to be 

killed than sober drivers, once differences in vehicle deformation 

Waller and his colleagues concluded 
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Figure 1 1  
INJURY SEVERITY BY SEAT BELT USAGE 
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Figure 12 
INJURY SEVERITY BY STATE OF INTOXICATION 
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The two main measures used to assess the overall goodness of 
fit of the ordered logit model are the value of the log-likelihood 

n 
function at convergence and R". 

to the R 

The latter of these is analogous 

2 of regression analysis and is given by: 

R2 = 9 (49) 2 
lr [ 1 (;q - 31 + Q 

9 

A 

l5 In T = 1 T /Q, and Q is the sample size. ** *Y - A 

where T = y - t 
4 9 9' 9 

9 
assessing the fit of these models it must be emphasized that 

indeterminacy pervades the road crash injury process. 

low severity crash a fragment of flying glass can cause severe 

Even in a 

and crash type had been taken into account. 

alcohol induced injury severity is slightly higher than mine. 

Their study, however, did not control for seat belt usage 

differences between sober and inebriated drivers. sex differences 
and age differences. These additional factors are taken into 

account in the current study. 

Their estimate of 

151t will be noted that the 9 of equation (49) and the $ of 
regression analysis are equivalent except the sum of squared 
residuals and the total sum of squares are both estimates rather 

than actual values. The R of equation (49) is therefore an 

estimte of the true R . To fully utilise this estimate lmowledge 

of the sample distribution of the true R2 is required, but the 

sample distribution of the true R2 is presently unknown (McKelvey 
and Zavoina 1975). 

2 

2 
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injury, possibly death, if it becomes lodged in a vulnerable point 

of the human body. No model can hope to capture this level of 
detail. In explaining between 24% - 42% of the variation in road 
crash injuries, using only a limited set of variables, the models 

do surprisingly well. 

6.3. A WHEL OF CXASll INVOLVEHJXT. 

Section 4.2.1 contained a discussion of one method to model crash 
involvement using a binary logit model. 

advanced method of modelling crash involvement is outlined. 

method is known as the Cox proportional hazzards model. 
this method falls into the general family of methods covered in 
this report, being closely related to the models introduced in 

Section 5.3. it has not been specifically reviewed. It is 

highlighted here because of its particular suitability for 

predicting the type of trips that are likely to result in a crash. 
The discussion is largely based on a paper by Jovanis and Chang 

In this Section a m r e  
The 

Although 

(1986). 

The starting point for an appreciation of the suitability of 

the Cox proportional hazzards model for analysing crash trip data 
is a recognition that a trip occupies a certain amount of time. 
Ceteris paribus. the longer the trip the more likely a crash will 
occur. The likelihood of a crash is not only related to exposure 

(trip duration) but also conditions faced on the trip. 

conditions refer to characteristics of the environment, vehicle, 
road, and driver. 

associated with a trip involving crossing three single-lane bridges 

than a trip involving no such crossings. 

These 

For instance. a larger risk factor would be 

Suppose each trip was potentially infinite in length so that 

all trips were terminated by crashes. The probability of an 
individual trip of duration T surviving to time t is: 



where S(t) is the survival function and f(t) is the probability 

density function of T. 
t given that no crash has occured prior to that time is given by 

the hazzard function, h(t): 

The probability of a crash occuring at time 

In the b i c  Cox model the hazzard rate at time t. conditional on a 
set of explanatory variables, X. is given by: 

h(t 1x1 = h(O IX)exp(XqP) (52) 

where h(OlX ) is the baseline hazzard rate. 
crash occurs at time t is: 

The probability that a 
9 

where R 
t. 

on each each trip and durations are distinct the parameters. p. can 
be estimated using equation (53) and maximum likelihood techniques. 

In reality, however, most trips are short and risk does not 

accumulate to the extent that a crash results. 

data as censored in that we only h o w  that the risk exposure 

required for a crash Involvement to be observed is greater than the 

duration of the trip. 

again be estimated by maximum likelihood methods using a sample of 

crash and non-crash trips. 
general case, the ps may be consistently estimated. albeit 

inefficiently, using data only on trips involving a crash. 

is the set of trips of duration greater than or equal to 
For the simple case described where a crash inevitably occurs 

i 

We nray view the 

For this more general case parameters m y  

Alternatively, even for this more 

A Cox proportional hazzards model has been used by Jovanis and 
Chang to study truck crashes in the United States. 
more than 1200 truck trips involving collisions was used in 

A sample of 



estimating the model. Data was collected on the age, experience, 

crash record and working hours just prior to the crash trip of the 

driver, type of truck, cargo weight. type of roadway. number of 
lanes, weather and lighting conditions. traffic volume, time of 

year and time of day. 

Jovanis and Chang (1986). Results are a little disappointing. Not 

surprisingly, different factors appeared to be responsible for 

different kinds of truck crashes. Nevertheless, an important 

finding was that regularly scheduled drivers who took frequent 

trips appeared to have reduced risk of a crash, particularly if 
they had a longer number of hours off duty just prior to the trip. 
Time of day and year factors were also significant determining 

factors for some types of crashes. 

Preliminary estimates are contained in 

The Cox proportional hazzards model provides a more complete 
picture of the crash process than the binary latent variable model 

proposed in Section 4.2.1. 

of the crash whereas the former allows the accumulation of factors 

over the course of a trip. 

encountered on a trip, for example, may be an important determinant 

of crash involvement and there are a number of indices available to 
measure this. 

the same scope in sampling design / simple estimation packages 
offered, especially, by the binary logit model. This is an 

critical issue since, from the results of Jovanis and Chang. the 
loss of information in only considering crash trips would appear to 
be severe - estimation of the full model, with censoring, seems to 
be required. 

The latter provides a ‘snapshot’ view 

The cumnulative driving difficulty 

The Cox model, however. does not appear to provide 

7. SoFlmRE. 

A number of comonly used statistical or econometric software 
packages contain routines to estimate some or most of the models 

covered in this report. In addition a number of special purpose 

programs exist to estimate models involving categorical dependent 

variables. 

software packages that can be used to estimate one or more of the 

models described in this report. 

In this section a sununary is provided of a selection of 
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Spssx (SPSS Inc. 1983): The origins of SF'SS are as a general 

purpose mainframe statistical package for social scientists. 

Recently an extended version of this software package, SPSSX, has 
been released. One of the new routines in SPSSX is a set of 
procedures for fitting log-linear models. 

techniques are designed around aggregate cross-tabulation type 

data. The procedures can fit binary and multinomial logit models, 

The estimation 

hierarchical and non-hierarchical log-linear models. quasi- 

independence log-linear models and log-linear models with 

structural zeros. 

is provided. 

SPSS Inc.. Suite 3300. 444 North Mitchigan Avenue, Chicago, IL 

An extensive set of data manipulation commands 
Further information on SPSSX can be obtained from 

60611, U.S.A. Versions are available for most popular mainframes 

and the IBK PC. 

LIEIDEP (Greene 1986): LIMDEP is a pachge for estimating a 
variety of econometric models on both cross sectional and time 

series data. 
routines to estimate binary logit and probit. unordered multinomial 

logit, ordered logit or probit, basic tobit, truncated regression, 

generalised sample selection models and proportional hazzards 

models. 

regression techniques. 

in scope to those found in SPSSX. 
extensive set of matrix operation facilities. 

their own likelihood function in a FORTRAN subroutine and link this 
to one of LIMDEP's nraximisation routines. The set of LIMDEP 
connnmds to estimate the ordered logit model outline in Section 6.2 

is shown in Figure 6. 
obtained from Professor W. Greene. Graduate School of Business 
Administration, 100 Trinity Place, New York. N.Y. 1ooo6. U.S.A. 

Of the techniques covered in this report, LIEIDEP has 

In addition there is a comprehensive coverage of 

The data manipulation connrands are similar 

The package also contains an 

Users can supply 

Further information on LIMDEP can be 

(Avery and Hotz 1985): HOTZTRAN is a FORTRAN based 
statistical package which is designed to estimate discrete choice, 

limited dependent and linear and non-linear regression models where 

the models may consist of a system of one or more equations. 

coverage of model types is similar to LIMDEP. HOTZTRAN is 
The 
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particularly useful for multiple period (panel data) models where 

there are several years of data for each individual. 

be read in a number of different ways with a full range of internal 

transformations available. Although comnendably comprehensive the 

author experienced some difficulty in estimating some of the model 

types covered in this report using H(JIZTRAN and users are cautioned 

that errors may remain. Further information on Ho7zTRAN may be 

obtained from CERA Economic Consultants Inc.. P.O. Box 159, Old 
Greenwich, CT 06870. U.S.A. 

Raw data can 

BLCGIT (Crittle and Johnson 1980): BLOGIT is designed 

specifically to estimate individual observation binary and 

unordered multinomial logit models. 

also provided. For the estimation of such models BLOGIT has been 

widely used. 

price (at tape copying cost to academic users), its description in 

the textbook by Hensher and Johnson (1981) and its distribution by 

the Australian Road Research Board. 
its relatively limited scope and advancing age, BJBGIT probably now 

compares unfavourably with packages such as LIMDEP for users other 
than those with a specialised interest in MNL models. It is 

currently undergoing upgrading. 

contact Professor D. Hensher, School of Economics, Macquarie 
University, N.S.W. 2109. Australia. 

An OLS estimation procedure is 

This wide use can be attributed to its intial low 

Because of price increases, 

For further information on BLOGIT 

GQLXT: It is conceivable that no readily available 'off-the- 
shelf' software package will exist for estimating some advanced 
model types. Under these circumstances it is usual for the user to 

specify the model's likelihood function in a FQKTUAN subroutine. 
As has been pointed out this subroutine could be linked to a 

package such as LIMDEP. 
specially devised to maximise user supplied functions. 

package is GQOFT. 
nraximised in a FQRTRAN subroutine and, optionally, its first and 
second derivatives with respect to the parameters to be estimated. 

A number of algorithms are available for parameter estimation 
including Davidon-Fletcher-Poll and 8 quasi-Newton procedure. 

Further informtion on GQOFT m y  be obtained from Professor R. 

Alternatively a number of programs exist 

One such 

The user must supply the function to be 
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Quandt, Department of Economics, Princeton University, Princeton, 

NJ 08540. U.S.A. 

8. SUHU4RY. 

This report has attempted to convey an overview of an area of 

recent advance in econometrics and statistics in the understanding 

and estimation of quantal response models. It has also attempted 

to assess the potential applicability of these models in road crash 

research. The conclusion is that the models appear to be 

especially suited to the analysis of road crash data. Underlying 

this conclusion is a recognition of a number of useful features of 

these models when applied to road crash research. 
these are: 

Premier among 

(1) that the models possess an intuitively appealing 

theoretical framework that challenges the analyst to think about 

crashes in a different way and forces a consideration of normal. 

non-crash driving behaviour. 

(ii) that they can be estimated using individual observations 

rather than aggregated data, thus providing certain statistical 

advantages, 

(iii) the models offer enormous flexibility and their 

probabilistic orientation permits utilisation of results from 

probability theory, and 

(iv) the data demands of the models are slight since they can 

be estimated with small sample sizes and are unaffected by 
non-random sampling schemes once simple corrective procedures have 

been instituted. 

Computer programs to estimate most of the models mentioned in 

this report are comnercially available. 

purpose programs exist for maximisation of user specified 

likelihood functions. An example is the GQOR program developed by 
Richard Quandt. Although mst of these packages endeavour to be 

Alternatively general- 
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user friendly (with varying degrees of success). it must also be 

recognised that the increased flexibility and realism offered by 

the class of model reviewed in this report places extra demands on 

the analyst. 

hand and the most appropriate model specification. In short the 
models (and software packages) demand a measure of statistical 

literacy, which is probably not a bad thing. 

The analyst is required to thtnk about the problem at 
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