DEPARTMENT OF TRANSPORT AND COMMUNICATIONS FEDERAL OFFICE OF ROAD SAFETY DOCUMENT RETRIEVAL INFORMATION

Report No.	Date	Pages	ISBN	ISSN
CR 75	JULY 1988	88	Ø 642 51179 9	CR = 0158 - 3077 CR = 0810 - 770X

Title and Subtitle

AN ANALYSIS OF THE RELATIONSHIP BETWEEN ROAD IMPROVEMENTS AND ROAD SAFETY

Author(s)

Nelson English, Loxton & Andrews Pty Ltd

Performing Organisation (Name and Address) Nelson English, Loxton & Andrews Pty Ltd 231 Glenhuntly Road ELSTERNWICK VIC 3185

Sponsor (Name and Address) Federal Office of Road Safety GPO Box 594 CANBERRA ACT 2601

Available from (Name and Address) Federal Office of Road Safety GPO Box 594 CANBERRA ACT 2601

Abstract

The report identifies aggregations of crashes by location (black spot), or by other common characteristics. Further work involved correlating crash occurrence with road parameters such as alignment, roughness etc, on a selected sample of road and examined the feasibility of automating the procedures nationwide.

Keywords

NOTES:

- FORS Research reports are disseminated in the interests of information exchange.
- (2) The views expressed are those of the author(s) and do not necessarily represent those of the Commonwealth Government.
- (3) The Federal Office of Road Safety publishes two series of research report
 - (a) reports generated as a result of research done within the FORS are published in the OR series;
 - (b) reports of research conducted by other organisations on behalf of the FORS are published in the CR series.

AN ANALYSIS OF THE RELATIONSHIP BETWEEN ROAD IMPROVEMENTS AND ROAD SAFETY

Prepared for:

PEDERAL OFFICE OF ROAD SAFETY

Prepared by:

NELSON ENGLISH, LOXTON & ANDREWS PTY LTD 231 GLENHUNTLY ROAD ELSTERNWICK VIC 3185

Telephone: (#3) 528 1644

With assistance with: COMMED ASSOCIATES

July 1988

Page No.

EXECUTIVE SU	MMARYES1
1.0 IN	IRODUCTION1
1.1 1.2 1.3 1.4	BACKGROUND. 1 OBJECTIVES. 1 PURPOSE OF THIS DOCUMENT. 1 DEFINITIONS. 2
STUDY PHASE	A
2.0 ST	UDY DOCUMENTATION
2.1 2.2 2.2.1 2.2.2 2.2.3	STUDY FRAME
3.0 PH	ASE A RESULTS6
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 STUDY PHASE	INFORMATION FROM STATES
4.0 DA	TA REQUIREMENTS14
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2	CRASH RECORD
5.0 R	QAD INVENTORY AND CRASH ANALYSIS
5.1 5.2 5.2.1 5.2.2	A GRAPHICAL REPRESENTATION

TABLE OF CONTENTS

Page No.

5.2.3	Relationship Between Crash Occurrences
	and Road Characteristics
5.2.4	Statistical Tests of Road and Crash
	Comparisons
5.3 L	INEAR REGRESSION ANALYSIS
5.3.1	Preamble24
5.3.2	Methodology24
5.3.3	Analysis and Results
	•
6.0 DISC	USSION ON NEW CASE STUDY
7.0 CONC	LUSIONS
BIBLICCRAPHY .	
<u>oromonum</u>	
APPENDIX A :	Sample Crash Data Output from States.
A.1:	Sample Crash Data Output from N.S.W.
A.2:	Sample Crash Data Output from Victoria.
A.3:	Sample Crash Data Output from Queensland.
A.4:	Sample Crash Tabulation from W.A.
A.5:	Sample Detailed Crash History Output from W.A.
A.6:	Ranking Crash Data Output from Tasmania.
APPENDIX B :	Crash History Summary.
	• •
APPENDIX C :	Data Items Available in NAASRA Sectionised Road Inventory.
APPENDIX D :	Graphical Analysis of Injury and Fatal Crashes
	and Selected Road Parameters.
	Statistical Tests of Comparisons Between Crash
AFFEWLA E ;	Frequency and Road Parameters.
	Putraat from Donartmont of Main Doade N & W
APPENDIA F :	Extract from Department of Main Rodus N.S.W.
	Chatiation 1004 and 1005 M C M "
	DLALISLICS 1704 ALM 1703 N.D.M

LIST OF TABLES

TABLE	3.1:	NUMBER OF FATAL AND INJURY CRASHES ALONG ROAD LINKS OF FUNCTIONAL CLASS 1, 2 AND 3 REPRESENTING HIGHEST CRASH RECORD IN N.S.W. IN 1984-86
TABLE	3.2:	CRASH RECORDS OF HIGHEST NUMBER OF FATAL AND INJURY CRASHES OCCURRING ALONG STATE DECLARED HIGHWAYS IN RURAL VICTORIA IN 1984-86
TABLE	3.3:	HIGHEST CRASH RECORD ROAD LINKS IN WESTERN AUSTRALIA 1984-8611
TABLE	3.4:	NUMBER OF FATAL AND INJURY CRASHES DURING 1984-86 ALONG HIGHEST RANKED LOCATIONS IN TASMANIA
TABLE	4.1:	CRASH LOCATION ERROR RANGE IN CRASH RECORD
TABLE	5.1:	SUMMARY OF ROAD ALIGNMENT PARAMETERS
TABLE	5.2:	CRASH DATA SUMMARY
TABLE	5.3:	NAASRA ROUGHNESS METER READING AND CRASH
TABLE	5.4:	ROAD SURFACE WIDTH AND CRASHES
TABLE	5.5:	ROAD ALIGNMENT AND CRASHES
TABLE	5.6:	SUMMARY OF ROAD CRASH STATISTICS FOR DIFFERENT ROAD VARIABLES
TABLE	6.1:	BREAKDOWN OF IDENTIFIED AND NON-IDENTIFIED CRASH LOCATIONS, PACIFIC HIGHWAY, N.S.W

LIST OF FIGURES

Page No.

FIGURE	5.1:	PROBABILITY OF OBSERVED CRASHES VS MINIMUM HORIZONTAL CURVATURE	27
FIGURE	5.2:	PROBABILITY OF OBSERVED CRASHES VS MINIMUM VERTICAL CURVE	28
FIGURE	5.3:	PROBABILITY OF OBSERVED CRASHES VS ROUGHNESS	29
FIGURE	5.4:	PROBABILITY OF OBSERVED CRASHES VS MAXIMUM GRADE	30

EXECUTIVE SUMMARY

INTRODUCTION

In 1987 the Federal Office of Road Safety (FORS) commenced a review of the relative costs and road safety benefits accruing from road improvement measures identified from Australian and International research. Nelson English, Loxton & Andrews Pty. Ltd. (NELA) was commissioned to perform two parts of the project, herein referred to as Phase A and Phase B, with the objectives, respectively to:

- o identify aggregations of crashes by location (Black Spots), or by other common characteristics, at an appropriate level of detail; and
- correlate crash occurrence with road parameters such as alignment, roughness etc, and examine the feasibility of automating the procedures nationwide.

PHASE A

DATA RETRIEVAL FROM STATE AUTHORITIES

Formal requests were made to all State Road Authorities for data relating to crash records and data bases, including:

- tabulation of crashes by severity (fatal, injury and property damage only), Local Government Area (LGA), and road number of all Functional Class 1, 2 and 3 roads in the three year period 1984-1986;
- (ii) map showing the locations of Class 1, 2 and 3 roads; and
- (iii) carriageway length of Class 1, 2 and 3 roads by road number and LGA.

Following discussions with the respective authorities, and upon receipt of the requested data items, it became apparent that all States have different reporting formats, although the content of information is consistent. In particular:

- o all States except Queensland and Tasmania were able to provide crash statistics by road, LGA, crash severity and year;
- o all States locate crashes;
 - identifying the distance from either closest intersection, start of road, end of road, or LGA boundary for mid-block crashes; and
 - road names identifying the intersection for intersection crashes;
- precision of crash locations varied from State to State depending upon the police reporting practices; and
- o only Western Australia had a Functional Class data field incorporated into their crash data base.

REVIEW AND ANALYSIS OF CRASH RECORDS

Road links with poorest safety record were identified from manual observation of the tabulation of crashes by severity, IGA and road number of all Functional Class 1, 2 and 3 roads in the three year period 1984-1986.

The links were ranked according to the absolute number of fatal and injury crashes during the study period. This provided a candidate list for the subsequent case study.

SELECTION OF ROAD LINKS FOR CASE STUDY

Criteria for choice of links for case study included:

- availability of crash location records, and compatibility with road inventory reference system;
- availability of crash data by Functional Class;
- o availability of road inventory data; and
- o absence of significant changes to road parameters arising from road construction carried out during the study period.

On this basis, two road links were selected for case study:

- o the Pacific Highway in Coffs Harbour, New South Wales; and
- o the Eyre Highway in Dundas Shire, Western Australia.

PHASE B

The analysis of relationships between road inventory parameters and crash occurrence was performed in three steps, namely:

- (i) a graphical, or visual check of crash concentrations;
- (ii) comparison of frequency of crashes with the proportions of corresponding road characteristics, including statistical considerations; and
- (iii) a multiple regression analysis of the contribution of selected road parameters to crash occurrence.

GRAPHICAL REPRESENTATION

A computer program was used to process both crash and road inventory data to produce an output representing the road as a continuous, sealed vertical line including marked locations of crashes and corresponding road inventory data for each section of the road. This graphical representation allows immediate location of black spots if they occur.

The output is shown in Appendix D.

CRASH AND ROAD CHARACTERISTIC FREQUENCY

This analysis compared the observed number of crashes with the expected number of crashes for road sections characterised by particular parameters. For example, the number of crashes observed on road sections for which some proportion of the horizontal alignment was curved was compared to the number of crashes which would be expected to occur on these sections purely by chance.

An appropriate test then determined whether or not the difference between the observed and expected crashes was statistically significant. A statistically significant difference provides evidence that the parameter in question (in this example, horizontal curvature) contributes to crashes.

The results of this analysis indicated that road alignment and road grade are associated with higher-than-expected crash occurrences.

LINEAR REGRESSION ANALYSIS

This analysis attempted to uncover an algebraic relationship between crash occurrence and road parameters by regressing the probability of observed crashes for each road section on four independent variables, namely;

- o minimum horizontal curve in section;
- minimum vertical curve in section;
- o NAASRA roughness meter reading; and
- maximum grade in section.

Although the regression failed to establish an acceptable linear relationship between the dependent and independent variables, it is possible that a relationship of some other form exists.

This analysis was completed for the Eyre Highway. It was not possible, within the resources of this study, to perform the Phase B analysis on the Pacific Highway in Coffs Harbour. This was because the permanent reference point system used to define sections in the road inventory was not used in the NSW crash records, rendering automatic cross referencing of crash occurrence and road parameters impossible.

CONCLUSION

The principal conclusions arising from the study are as follows:

- the varying formats of crash data bases between States mitigate against automation of the procedures for identifying crash black spots;
- (ii) correlation between crash occurrence and road parameters is hampered by two major sources of error, namely;
 - error in the precise location of crashes due to reporting procedures particular to each State;

- error in identifying changes in road parameters due to the sectionised road inventory.

Note that the use of a continuous road inventory would eliminate the latter source of error;

(iii) correlation between crash occurrence and road parameters would also be facilitated through the use of a standardised reference system for locating crashes, which was compatible with the permanent reference system used in the road inventory - this would enable the correlation procedures to be automated nationwide.

1.0 INTRODUCTION

1.1 BACKGROUND

In 1987 the Federal Office of Road Safety (FORS) commenced a review of the relative costs and road safety benefits accruing from road improvement measures identified from Australian and international research.

The overall objectives of this research as set down by the FORS were to:

- identify, review and from a cost-effectiveness viewpoint, rank known measures for modifying the road and road environment to enhance road safety;
- o identify areas of future research into improvements of the road environment that are likely to enhance road safety.

Nelson English, Loxton & Andrews Pty. Ltd. (NELA) was commissioned to perform two parts of the project, herein referred to as Phase A and Phase B.

1.2 OBJECTIVES

The objective of Phase A was to identify aggregations of crashes by location (Black Spots), or by other common characteristics, at an appropriate level of detail.

The aim of Phase B was to correlate crash occurrence with road parameters such as alignment, roughness etc, on a selected sample of road and examine the feasibility of automating the procedures nationwide.

1.3 PURPOSE OF THIS DOCUMENT

This report documents the work carried out within Phases A and B of the Study, and comprises two parts.

The first part reports on the effort involved in Phase A and presents its findings.

The second part reports on Phase B of the Study, and:

- describes the data used in the case study of Western Australia;
- presents the results of the analysis of relationships between crashes and road inventory;
- o documents the procedures undertaken in this phase of the study; and
- o comments on the feasibility of automating these procedures for nationwide applications.

1.4 DEFINITIONS

The following definitions are used throughout this document:

- road link a stretch of road within a Local Government Area;
- o LGA Local Government Area;
- o Functional Class as defined by NAASRA (1977):
 - CLASS 1 Those roads which form the principal avenue for communication between major regions of the Commonwealth, including direct connections between capital cities.
 - CLASS 2 Those roads, not being Class 1, whose main function is to form the principal avenue of communication for movements:
 - between a capital city and adjoining States and their capital cities, or
 - between a capital city and key towns, or
 - between key towns.
 - CLASS 3 Those roads, not being Class 1 or 2, whose main function is to form an avenue of communication for movements:
 - between important centres and the Class 1 and Class 2 roads and/or key towns, or
 - between important centres, or
 - of an arterial nature within a town in a rural area.

STUDY PHASE A

2.0 STUDY DOCUMENTATION

2.1 STUDY FRAME

The study addressed the following States:

- (i) New South Wales;
- (ii) Victoria;
- (iii) Queensland;
- (iv) South Australia;
- (v) Western Australia; and
- (vi) Tasmania.

Roads within Functional Classes 1, 2 and 3 correspond to arterial roads for which road parameter data tends to be most comprehensive.

Although crashes with "Property Damage Only" (PDO) severity index were inspected it was noted that procedures governing the reporting of crashes in this category varied from State to State. This made comparisons between State crash rates difficult.

Since all crashes involving personal injury are required to be reported in all States, only those in Fatal and Injury categories were included in the study.

2.2 APPROACH

Phase A consisted of three major tasks:

(i) dat	a retrieval	from State	Authorities;
---------	-------------	------------	--------------

- (ii) review and analysis of crash histories; and
- (iii) selection of road links for case studies.

Each of these is described in detail below.

2.2.1 Data Retrieval from State Authorities

This component involved the following sub-tasks:

- initial introduction of the study to the appropriate State authorities by FORS;
- response by State authorities providing names of contact representatives;
- telephone or personal discussions by NELA with nominated officers in each State canvassing data availability and its retrieval;
- o formal requests to States for data, including the following items:
 - tabulation of crashes by severity (Fatal, Injury and Property Damage Only), IGA, and road number of all Functional Class 1, 2 and 3 roads in the three-year period 1984-86;

- (ii) map showing the locations of Class 1, 2 and 3 roads;
- (iii) carriageway length of Class 1, 2 and 3 roads by road number and LGA;
- (iv) travel data of Class 1, 2 and 3 roads by road number and LGA;
- (v) available traffic growth rate of Class 1, 2 and 3 roads by road number and LGA; and
- (vi) list of locations of divided roads;
- further telephone reminders to expedite processing of requests; and
- o receipt of data.

2.2.2 Review and Analysis of Crash Records

This step involved reviewing crash histories received from each State and processing the data in order to identify road links upon which greatest number of fatal and injury crashes occurred.

This process was performed manually by observing the tabulations of crashes by severity (Fatal and injury), LGA and road number of all Functional Class 1, 2 and 3 roads in the three year period 1984-1986.

The absolute number of crashes was used to define road links with the poorest safety record instead of other indicators such as crashes per kilometre. This indicator was chosen because it would maximise the number of data points for the subsequent correlation of crash occurrence with road parameters.

This process, although in this instance performed manually, would lend itself to automation, thereby increasing the efficiency and accuracy of selecting links with poorest safety record. The main constraint, however, that needs to be overcome before automation is possible is standardisation of crash record outputs among the States. At the moment all States have different reporting formats although most hold common information.

Sample outputs of crash records obtained from each State are shown in Appendix A.

2.2.3 Selection of Road Links for Case Studies

Prior to selecting road links which were suitable for the case studies, the road improvement history of links within the study period was considered. Cases where road parameters changed dramatically during the study period, e.g., by-pass construction or road sealing, do not lend themselves to case studies because another set of factors introduced by changed road parameters effectively reduce the number of available data points. In other words, crashes which occurred along the stretch of road affected by roadworks would need to be further divided into pre- and postroadworks for their correlation with road inventory variables. The need for roadwork information for candidate road links necessitated another formal request to States in which case studies were to be conducted, i.e., New South Wales and Western Australia.

The selection was then made of the road link along which no major improvements were made and which experienced the greatest number of crashes during the study period.

3.0 PHASE A RESULTS

3.1 INFORMATION FROM STATES

The following summarises the results of discussions held with State Road Authority officers with regard to crash record availability:

- o all States except Queensland and Tasmania were able to provide crash report by road, LGA, crash severity, and year;
- o Queensland, at the time discussions were held, was able to provide crash record by Statistical Local Areas for the entire State and a detailed crash analysis in Warwick Region. A new crash data base (PHYLAK) is being created which will enable automatic crash analysis on road links down to 1 km long and all intersections and includes Functional Class categories;
- o Tasmania has its own ranking system based on a severity and frequency index, traffic volume and growth rate of crash frequency. Each intersection and link is ranked and rankings are reviewed yearly. Although only ranked sites on crash score were obtained, records of crashes by LGA and road number could be obtained;
- o all States locate crashes by:
 - identifying the distance from either closest intersection, start of road, end of road, or LGA boundary for mid-block crashes; and
 - road names identifying the intersection for intersection crashes;
- o precision of crash locations varied from State to State depending on the Police reporting practices;
- o only Western Australia had a Functional Class data field incorporated into their crash data base and therefore only in Western Australia could crash records be retrieved by Functional Class. Other States store rural road information in crash data bases by State classifications, e.g.:
 - New South Wales:
 - Freeways;
 - State Highways;
 - Trunk Roads;
 - Main Roads; and
 - Local Roads;
 - Victoria:
 - State Declared Highways;
 - Rural Arterial Roads; and
 - Other Roads;
 - Tasmania:
 - National Highways;
 - Other Highways;
 - Main Roads; and
 - Local Roads.

A consequence of the discrepancies between NAASRA Functional Class and crash data base classifications is that the roads selected from crash records may not exhaustively correspond to a particular Functional Class or group of Classes. A major effort would be required to ensure that all roads which belong to a specific Functional Class are selected (particularly for Functional Classes 2 - 7) since in most States roads would need to be checked by individual numbers or names and LGAs against their Functional Class categories.

For more detailed descriptions of the relationship between NAASRA Functional Classification and other classification systems refer to Chapter 5 of NAASRA (1983).

3.2 CRASH RECORDS

3.2.1 New South Wales

Table 3.1 shows a summary of those road links on Functional Class 1, 2 and 3 roads in New South Wales which experienced the greatest absolute number of crashes during 1984-86. The Functional Class of each road was obtained by cross checking the road number on a DMR map of New South Wales showing Main Roads System and Functional Classes of Rural Roads.

The road link with by far the poorest safety record, both in terms of absolute number of crashes per LGA and crashes per kilometre, is Pacific Highway (Road No. 10) in Coffs Harbour and Tweed.

3.2.2 Victoria

Table 3.2 shows a summary of the highest ranking road links with respect to the number of fatal and injury crashes occurring along rural Victorian State Highways. These roads represent most of the Functional Class 1 and 2. About 25 percent of Class 3 roads are classified as State Highways and the task of identifying the remaining 75 percent of Class 3 roads is prohibitive since a match would need to be made by road name with a Functional Class listing as no road numbers other than State Declared Highway numbers are available in the crash data base.

The road link experiencing the greatest number of fatal and injury crashes is Princes Highway (West) in Corio, both in terms of absolute number of crashes per LGA (109) and the number of crashes per kilometre (3.59).

3.2.3 Queensland

As Queensland data did not break up crashes by roads and LGAs, no analysis by road link was performed. Refer Appendix A for sample output from Queensland data base.

				NUMBER OF CRASHES				NUMBER OF
CLASS	RUAD NUMBER	NUMBER	LGA NAME	FATAL	INJURY	TOTAL	LENGTH (KM)	PER KM
1	10	023	Ballina	9	91	100	41	2.44
1	10	062	Byron	5	98	103	34	3.03
1	09	402	Singleton	13	91	104	48	2.17
1	10	235	Kempsey	10	107	117	52	2.25
2	01	145	Eurobodalla	11	123	134	108	1.24
2	01	032	Bega Valley	6	129	135	157	0.86
1	02	515	Yass	15	144	159	67	2.37
1	10	410	Great Lakes	15	166	181	79	2.29
1	02	495	Wingecarribee	14	195	209	77	2.71
1	10	488	Tweed	11	204	215	36	5.97
1	10	110	Coffs Harbour	14	238	252	51	4.94

TABLE 3.1: NUMBER OF FATAL AND INJURY CRASHES ALONG ROAD LINKS OF FUNCTIONAL CLASS 1, 2 AND 3 REPRESENTING HIGHEST CRASH RECORD IN NEW SOUTH WALES IN 1984-86

		102		NUMBER OF CRASHES				NUMBER OF	
number	NAME	NUMBER	lga name	FATAL	INJURY	TOTAL	LENGIH (KM)	PER KM	
2550	Hume	615	Seymour	9	83	92	76.49	1.20	
2510	Princes East	806	Orbost	10	81	91	171.23	0.53	
2550	Hume	603	Benalla	11	42	53	86.34	0.61	
2590	Midland	309	Buninyong	5	21	26	30.47	0.85	
2510	Princes East	905	Pakenham	7	82	89	27.67	3.22	
2510	Princes East	856	Morwell	5	74	79	9.43	8.38	
2550	Hume	703	Chiltern	8	19	27	27.92	0.97	
2530	Calder	454	Mildura	2	74	76	100.49	0.76	
2510	Princes East	857	Narracan	5	40	45	(1)		
2510	Princes East	809	Tambo	-	64	64	48.74	1.31	
2500	Princes West	106	Corio	2	107	109	30.40	3.59	

TABLE 3.2: CRASH RECORD OF HIGHEST NUMBER OF FATAL AND INJURY CRASH OCCURRING ALONG STATE DECLARED HIGHWAYS IN RURAL VICTORIA IN 1984-86

Note: (1) No carriageway length provided.

Q

3.2.4 South Australia

Crash data from South Australia was received too late to be incorporated in the analysis.

Nevertheless, discussions with South Australia indicated that although the Functional Class data item is not attached to the crash data base record, all those roads which are maintained by the road authority have allocated road numbers and can be automatically cross-referenced to the road data base. Thus although the process is somewhat time consuming, it is possible to obtain crash record by Functional Class.

3.2.5 Western Australia

Table 3.3 shows number of crashes per LGA and crashes per kilometre on road links with the greatest number of fatal and injury crashes during 1984-86.

The largest number of crashes occurred along the Eyre Highway (Road Number H3) in Dundas although this link does not experience a large number of crashes per kilometre due to its length of 724.51km.

3.2.6 Tasmania

Tasmania ranks rural locations along National Highways, other Highways and Main Roads on the basis of the crash score and frequency (refer discussion in Section 3.1).

Table 3.4 shows the three highest ranked locations in each road class and corresponding number of fatal and injury crashes.

3.3 SELECTION OF CASE STUDIES

Two road links were required to be selected for correlation of crash locations with road inventory parameters.

The States from which case studies were drawn are Western Australia and New South Wales. Criteria for choice included:

- availability of crash location records, and compatibility with road inventory reference system;
- o availability of crash data by Functional Class; and
- o availability of road inventory data.
- 3.3.1 New South Wales

Three possible road link candidates in New South Wales were:

- o Pacific Highway (10) in Coffs Harbour;
- o Pacific Highway (10) in Tweed; and
- o Hume Highway (02) in Wingecaribee.

On the basis of road construction information received from the Department of Main Roads, New South Wales, the Pacific Highway in Coffs Harbour was selected for case study.

			NUM	BER OF CRA	ASH	()) DDT 3/TE 19 V	NUMBER OF	
CLASS	NUMBER	NUMBER	LGA NAME	FATAL	INJURY	TOTAL	LENGIH (KM)	PER KM
1	H6	4	Wyndham-East Kimberley	4	26	30 (1)	207.29	0.14
1	H6	2	Halls Creek	6	27	33 (1)	375.62	0.08
1	H3	603	Dundas	6	55	61	724.51	0.09
1	H10	602	Coolgardie	5	14	19	123.64	0.15
1	H 6	1	Broome	7	19	26	474.77	0.05
2	M2	215	Murray	5	35	40	<i>A</i> 1 <i>A</i> 0	0.97
2	н2 н2	213	Harvov	2	38	40	12 52	0.97
2	M7	205	Busselton	6	30	36	30.60	1 10
2	H7	803	Carnaryon	2	30	34	102 67	1.10
2	117 117	81 <i>4</i>	Poebourno	1	27	J-1 /1	202.07	0.00
2	117	014	NCEUGUINE	7		41	203.99	0.14
3	M20	814	Rœbourne	N/A	23	23	25.80	0.89
3	M19	606	Boulder	N/A	27	27	52.66	0.51
3	M23	215	Murray	4	13	17	14.62	1.16
3	S134	811	West Pilbara	2	21	23	152.08	0.15
3	M31	419	Narrogin	2	4	6	30.49	0.20
3	M34	507	Gingin	3	13	16	62.97	0.25
3	S104	215	Murray	2	9	11	38.97	0.28
3	M22	607	Laverton	2	4	6	70.62	0.09
3	M24	213	Manjimup	2	6	8	75.16	0.11
3	M12	003	Derby-West Kimberley	2	7	9	313.83	0.03

TABLE 3.3: HIGHEST CRASH RECORD ROAD LINKS IN WESTERN AUSTRALIA IN 1984-86

Note (1) Combined Halls Creek and Wyndham-East Kimberley LGAs give 63 crashes along 582.91 km thus obtaining 0.11 crashes per kilometre.

			CRASH SCORE	N	NUMBER OF CRASHES			
RANK	MUNICIPALITY	LOCATION		FATAL	INJURY	PDO	TOTAL	
NATIONA	L HIGHWAY RURAL							
1	Evandale	Midland Highway Evandale Main Road Relbia Road	37	1	8	10	19	
2	Westbury	Bass Highway Exton Road Hwy Deviation Westbury	36	3	8	9	20	
3	Evandale	Midland Highway Evandale Main Road	34	1	8	7	16	
OTHER H	IIGHWAYS RURAL							
1	Clarence	Tasman Highway Lindisfarne Main Road	146	0	35	59	94	
2	Zeehan	Murchison Highway Clemens Street Rosebery Ardyn Street Tullah	60	1	12	29	42	
3	Waratah	Murchison Highway Waratah Highway	54	0	16	14	30	
MAIN RC	ADS RURAL							
1	Longford	Cressy Main Road Illawarra Main Road	17	0	5	4	9	
2	Latrobe	Port Sorrell Main Road Pardoe Development Road	14	0	5	l	6	
3	Latrobe	Mersey Main Road Railton Main Road Tarleton Road	13	0	3	4	7	

TABLE 3.4: NUMBER OF FATAL AND INJURY CRASHES DURING 1984-86 ALONG HIGHEST RANKED LOCATIONS IN TASMANIA

The other candidate links were rejected on the basis of significant road improvement activity. The Tweed Heads bypass was constructed along the Pacific Highway in Tweed LGA and some 12 kilometres of dual carriageway including some bypasses were completed along the Hume Highway in Wingecaribee during the study period.

3.3.2 Western Australia

The selection for the Western Australia case study was the Eyre Highway (H3) in Dundas LGA.

Highway H6, within Halls Creek and up to its intersection with H1l in Wyndham-East Kimberley, was considered initially, but rejected due to major roadworks involving sealing and construction which took place along that stretch during the study period (refer Section 2.2.3).

The rationale for selecting the H6 Highway in Dundas link included the following:

- o it provides sufficient length (724.51 km) for the road inventory analysis;
- o it experienced the greatest absolute number of crashes in the period 1984-86 in one municipality;
- o Western Australia road inventory and crash location reporting procedures are best suited for this analysis;
- o it is a National Highway joining Perth and Adelaide; and
- o roadworks carried out along this stretch in the period 1984-86 are mainly reconstructions and resealing, and are constrained to short sections.

Furthermore, the reference system used to locate crashes in the Western Australia crash data base is identical to the NAASRA road inventory reference system, thus facilitating the automatic cross referencing of crash location and road parameters.

STUDY PHASE B

4.0 DATA REQUIREMENTS

This Phase utilised road parameter data as recorded by NAASRA road inventory, and crashes which occurred along road links selected as case studies in Section 3.3.

Difficulties were experienced in analysing the crash data pertinent to the NSW case study. Refer Section 6.

Sections 4 and 5 cover the WA case study, i.e. the Eyre Highway in Dundas Shire, Western Australia.

- 4.1 CRASH RECORD
- 4.1.1 Data Items

Data items available in the detailed crash history consisted of:

- o crash location and its error;
- o date;
- o time;
- o day of week;
- severity (comprising four categories: Fatal, Injury, Major PDO and Minor PDO);
- o pavement condition (wet, dry or other);
- o road alignment (curve, straight or other);
- o road grade (level, crest, slope or other);
- o light conditions;
- o vehicle description;
- direction of involved vehicles;
- o movement of vehicle;
- o crash nature;
- o objects hit;
- o traffic control; and
- o location feature.
- 4.1.2 Items Selected for Analysis

The analysis used crash severity and the data items which were relevant to crash location and permanent road condition, namely road grade and alignment.

4.1.3 Data Format

A sample crash data record which formed an input to the analysis is shown in Appendix A.5.

The format of this standard output of detailed crash history is made up of six crash records per page and nine 136-character lines per crash record.

4.1.4 Error in Crash Location

There are some errors in the locations of some crashes.

The number of crashes falling into various error range categories is shown in Table 4.1.

Error Range (+/~ km)	No. of Crashes	Proportion of Crashes
<u> </u>	10	
0.00	12	5.388
0.01 - 0.50	69	36./08
0.51- 1.00	13	6,91%
1.01- 3.00	25	13.30%
3.01- 5.00	60	31.91%
5.01-10.00	1	0.53%
10.01-25.00	1	0.53%
25.01-50.00	5	2.66%
> 50.00	2	1.06%
TOTAL	188	100.00%

TABLE 4.1: CRASH LOCATION ERROR RANGE IN CRASH RECORD

As the Table shows, the majority of crashes (63 percent) are located within a 3km error range, 95 percent within a 5km range and some 6 percent were located precisely.

4.2 ROAD INVENTORY

4.2.1 Data Availability and Format

In general, there are two types of road inventory available; continuous and Sectionised. Whereas the continuous inventory provides information about each road parameter as a change in that parameter occurs, the sectionised inventory provides entire road information pertaining to each given section of the road.

While both inventories could be used for the purpose of this study, the sectionised inventory was chosen because of its compatibility with the chosen time period for crash analysis. In particular, the sectionised road inventory used for this study In particular, the sectionised road inventory used for this study was developed for the Review of Road Vehicles Limits Study. The data format corresponded to that format used for the NAASRA Road Planning Model (NIMPAC).

Each record, corresponding to one inventory section, consisted of 510 alpha-numeric characters.

4.2.2 Data Items

A list of data items comprising this sectionised road inventory is shown in Appendix C.

Data items selected for the analysis on the basis of their relevance to the stretch of road under consideration were the following:

- 0 distance from Permanent Reference Point 1;
- length of section; 0
- formation width; 0
- surface width; 0
- horizontal road alignment; 0
- road grade; 0
- vertical curve data; 0
- NAASRA roughness meter reading; 0
- legal speed limit; 0
- average annual daily traffic; 0
- proportion of cars in daily traffic; 0
- number of intersections; 0
- number of railway crossings; and number of bridges. 0
- 0

5.0 ROAD INVENTORY AND CRASH ANALYSIS

The analysis of relationships between road inventory parameters and crash occurrence was performed in three steps:

- (i) a graphical or visual check of crash concentrations;
- (ii) comparison of frequency of crashes with the proportions of corresponding road characteristics, including statistical considerations; and
- (iii) a multiple regression analysis of the contribution of selected road parameters to crash occurrence.

Each of these steps is described in detail below.

5.1 A GRAPHICAL REPRESENTATION

In order to identify whether black spots (with high concentration of crashes) occur, it is useful to represent the locations of crashes graphically along a given stretch of road. Such a visual test also allows immediate location of any black spots.

A computer program, developed specifically for this analysis, was used to process both crash and road inventory data and produce an output representing the road as a continuous vertical line to scale including marked locations of crashes and corresponding road inventory data for each section of the road. This output is shown in Appendix D.

As shown in this sample, graphical representation of the road at the smallest marked interval is lkm long. However, if a high concentration of crashes was found, the program allows "zooming in" onto a selected section of the road with smaller intervals thus allowing a more accurate identification of locations of crashes occurring along that section.

The left hand side of the listing (shown in Appendix D) represents crash information including a pointer to their location, severity, number and the error of crash location. In the case where more than one crash occurs at the same location the error shown corresponds to the largest error for all crashes occurring at that location.

Road inventory data corresponding to each section of the road is presented on the right hand side of the printout. A legend of symbols used to aid its interpretation is included in Appendix D.

Road alignment data, including horizontal and vertical alignment and grade, is expressed in percentages of the road section length. The exact length of each section can be obtained by subtracting the distance measured from Permanent Reference Point 1 (PRP1) from the distance given in the preceding section.

5.2 OVERALL ANALYSES OF CRASH AND ROAD CHARACTERISTIC FREQUENCIES

5.2.1 Summary of Road Characteristics

A summary of road alignment parameters is shown in Table 5.1. As the Table, shows the Eyre Highway in Dundas consists of 99 percent of straight alignment and 85 percent of flat alignment. Most of the vertical curves are in the 70-110km/h design category and most of the road vertical grades are in the range between 2 and 6 percent.

It can be seen from the printout in Appendix C that other road parameters do not vary to a large extent. The average annual daily traffic is 395 vehicles per day with about 213 of these being cars and the rest being light commercial vehicles, trucks, semi-trailers, or road trains. The legal speed limit is 110km/h for most of the road. There are very few (if any) intersections, railway crossings and bridges along this stretch of Eyre Highway.

The road roughness count and road width are discussed in Section 5.2.3.

5.2.2 Crash Summary Analysis

A standard crash history summary obtainable from the Main Roads Department Western Australia is shown in Appendix B. The items relevant to this analysis are crash severity and road alignment/grades. These three items were analysed for the crash data set and the results are shown in Table 5.2.

As the Table shows, about 90 percent of crashes occurred on the straight stretches of road and 76 percent on the flat alignment.

5.2.3 Relationship Between Crash Occurrences and Road Characteristics

By combining the road inventory data with data of crash locations as shown graphically in Appendix D, it is possible to describe the relationship between the frequencies of occurrence of road characteristics and crashes. Four road characteristics are considered; road roughness, surface width, vertical and horizontal alignment. It is possible, however, to perform similar analysis on any road parameter given in the road inventory (refer Appendix C).

The comparisons of NAASRA roughness meter reading and surface width with crash occurrence are shown in Tables 5.3, and 5.4 respectively.

The proportion of road length within a given road parameter category gives an indication of the number of crashes which are expected to occur within that category by chance. A comparison between this number and the actual number of crashes which occurred within that category provides some information about the relevance of this road parameter to crash frequency.

ROAD ALIGNMENT			
	Length (km)	Proportion	No. of curves
Straight <80 km/h curve 80-110 km/h curve	718.375 0.000 5.096	99,30% 0.00% 0.70%	n/a 0 23
TOTAL	723.470 (1)	100.00%	23
CREST VERTICAL CUR	ve data		
	Length (km)	Proportion	No. of curves
<70 km/h curve 70-110 km/h curve	0.110 19.738	0.02% 2.73%	2 152
TOTAL	19,848 (2)	2.74%	154
ROAD GRADE			
	Length (km)	Proportion	
Flat (<2%) 2-6 % >6 %	615.721 63.191 1.030	85.11% 8.73% 0.14%	
TOTAL	679.942 (2)	93.98%	
Total Road Length - Total sections (re	= 723.460 km. cords) processe		
Note: (1) This to	tal does not	add up to the	road length of

TABLE 5.1: SUMMARY OF ROAD ALIGNMENT PARAMETERS

- 724.51km because the first section in the road inventory commenced at the distance of 1.04km from Permanent Reference Point 1. Thus, this first section of Eyre Highway was missing from the road inventory data.
 - (2) These do not total 724.51km due to road sag vertical curves not being included in road inventory data.

.

TABLE 5.2: CRASH DATA SUMMARY

TOTAL NUMBER OF CRASHES

	Fatal	Crash Seve Injury	erity PDO	TOTAL	
Number	6	57	125	188	
Proportion	3.19%	30.32%	66.49%	100.00%	

ROAD ALIGNMENT IN CRASH RECORD

	Numbe Fatal	r of Injury	Cras PDO	hes TOTAL	8
STRAIGHT CURVE OTHER	6 0 0	52 5 0	112 11 2	170 16 2	90.43% 8.51% 1.06%
TOTAL	6	57	125	188	100.00%

ROAD GRADE IN CRASH RECORD

	Numbe Fatal	er of Injury	Cr PDO	ashes TOTAL	8
LEVEL	5 0	44 2	94 7	143 9	76.06% 4.79%
SLOPE OTHER	1 0	11 0	23 1	35 1	18.62% 0.53%
TOTAL	6	57	125	188	100.00%

Roughness Counter	Road Length (km)	Proportion of road	Numbo Fatal	er of Injury	Cras PDO	hes TOTAL	
<= 30	23,65	3.27%	0	2	6	8	
31-35	151.03	20.88%	ĩ	17	25	43	
36-40	63.47	8.77%	0	2	7	9	
41-45	214.54	29.65%	2	16	46	64	
46-50	52.97	7.32%	0	1	9	10	
51-60	75.24	10.40%	1	9	11	21	
61-60	121.46	16.79%	2	9	19	30	
› 70	21.10	2.92%	0	1	2	3	
TOTAL	723.46	100.00%	6	57	125	188	

TABLE 5.3: NAASRA ROUGHNESS METER READING AND CRASHES

TABLE 5.4: ROAD SURFACE WIDTH AND CRASHES

Surface	Road Length	Proportion	Numb	er of	Cras	hes	
Width	(km)	of road	Fatal	Injury	PDO	TOTAL	
<= 5-M	0.00	0.00	0	0	4	4	
6 M	554.34	76.62%	5	42	85	132	
7 m	169.12	23.38%	1	15	36	52	
> 7 m	0.00	0.00	0	0	0	0	
TOTAL	723.46	100.00%	6	57	125	188	

When comparing these proportions, however, statistical significance needs to be considered. Appropriate statistical tests for this analysis are presented in Section 5.2.4.

Although it is possible to analyse the contribution of road alignment to crashes using a similar method to that shown in Tables 5.3 and 5.4 for road roughness and surface width, it is appropriate to combine the alignment data from crash record and alignment proportions from the road inventory. The reason for this is twofold:

- (i) most of the crash locations (94 percent) have some built-in error (refer Table 4.1); and
- (ii) sectionised road inventory does not precisely show which part of the road section corresponds to a particular alignment but rather expresses alignment in terms of percentage of the entire section. For example, within any section it may be known that 20 percent of the section length consists of horizontal curves with design speeds in the range 80-90 kph. However, the precise location of these curves within the section is unknown.

These two elements would have a combined effect of introducing an unknown error into a hypothesis that a particular crash occurred in a given road alignment category. Although this error could have been reduced somewhat by using a continuous road inventory, thereby eliminating the error component described in (ii) above, a continuous inventory for Western Australia was unavailable at the time of the study.

Since road alignment data, however, is included in the Crash Record summary, the proportions of these (shown in Table 5.2) can be compared with road data (shown in Table 5.1). Combining the data from Tables 5.1 and 5.2 results are presented in Table 5.5.

5.2.4 Statistical Tests of Road and Crash Comparisons

The statistical significance of comparisons of crash frequency and road parameters should be considered before meaningful conclusions are drawn about the contribution of these road parameters to crash occurrence.

Poisson distribution of crashes was assumed in the statistical tests carried out (Langley:1968) and Walpole and Myers (1978).

Table 5.6 shows the statistical probabilities of no significant difference between expected and observed number of crashes. These results indicate that only road alignment and road grade (slope and level) comparisons reached statistical significance.

Details of calculations of these tests are shown in Appendix E. Briefly, the Tables in Appendix E compare the observed number of crashes on road lengths characterised by a particular parameter with the expected number of crashes. For example, Table E3 shows that for road sections for which some proportion of the horizontal alignment is curved, the expected and observed number of crashes are 1.32 and 16 respectively.

	Length (km)	Proportion of Road	Total Number of Crashes	Proportion of Crashes
HORIZONTAL				
Straight	718.375	99.308	170	90.438
VERTICAL	5.050	0.705	10	0.518
토] ə+	£15 701	95 119	כעו	76 069
riac Creet	10 040	2 749	143	1 709
Slope (Grade)	64.221	8.87%	35	18.62%
TABLE 5.6:	SUMMARY OF ROAD VARIABI	ROAD CRASH & LES	STATISTICS F	OR DIFFERENT
Road Variable	e 	Probability Difference 1 Observed Nu	(P) of No Si Between Expec mber of Crash	gnificant ted(1) and wes
Roughness:				
Roughness:				
Roughness: < 30 31-35			P > 10% P > 10%	
Roughness: < 30 31-35 36-40			P > 10% P > 10% 10% > P > 5%	
Roughness: < 30 31-35 36-40 41-45			P > 10% P > 10% 10% > P > 5% P > 10%	
Roughness: < 30 31-35 36-40 41-45 46-50			P > 10% P > 10% 10% > P > 5% P > 10% P > 10%	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60			P > 10% P > 10% 10% > P > 5% P > 10% P > 10% (2)	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70			P > 10% P > 10% 10% > P > 5% P > 10% P > 10% (2) (2)	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70			P > 10% P > 10% 10% > P > 5% P > 10% P > 10% (2) (2) P > 10%	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width:			P > 10% P > 10% 10% > P > 5% P > 10% P > 10% (2) (2) P > 10%	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 -			<pre>P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m.			<pre>P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment:			<pre>P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10%</pre>	·
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment: Straight			<pre>P > 10% P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10% P < .2%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment: Straight Curved			<pre>P > 10% P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10% 1% < P < 5% P > 10%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment: Straight Curved Road Grade:			<pre>P > 10% P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10% 1% < P < 5% P > 10% P < .2% P < .2%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment: Straight Curved Road Grade: Level			<pre>P > 10% P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10% 1% < P < 5% P > 10% P < .2% P < .2% P < .2%</pre>	
Roughness: < 30 31-35 36-40 41-45 46-50 51-60 61-70 > 70 Road Width: 6 m. 7 m. Road Alignment: Straight Curved Road Grade: Level Crest			<pre>P > 10% P > 10% P > 10% 10% > P > 5% P > 10% (2) (2) P > 10% 1% < P < 5% P > 10% P < .2% P < .2% P < .2% P < .2% P < .2%</pre>	

TABLE 5.5: ROAD ALIGNMENT AND CRASHES

proportion of road with the particular characteristic being statistically tested. (2) Poisson and ZI test cannot be used in these cases since $P_X > 10$ percent and x < 40. The expected number of crashes is calculated by multiplying the total number of crashes along the highway by the proportion of highway which is curved. Thus this represents the number of crashes which would be expected, on average, along such sections if crashes were randomly distributed without bearing any correlation to horizontal curvature.

Application of the appropriate statistical test indicates a probability of no significant difference between the observed and expected crashes is less than 0.2 percent. In other words, there is less than 1 chance in 500 that the observed number of crashes results from chance alone, indicating a higher than average crash occurrence on these road sections. On this evidence it would appear that horizontal curvature contributes to road crashes, and therefore measures which reduce road curvature could be expected to enhance road safety.

5.3 LINEAR REGRESSION ANALYSIS

5.3.1 Preamble

The analysis described in Section 5.2 has yielded results which, in a very broad sense, identify measures for modifying the road and road environment to enhance road safety, insofar as:

- (i) the analysis compares the observed number of crashes with the expected number of crashes for road sections characterised by particular parameters; and
- (ii) the analysis determines whether the difference between the observed and expected number of crashes is statistically significant.

Having identified the parameters which most significantly contribute towards road crashes, it becomes desirable to further quantify the extent to which improvements in the road environment will reduce crashes. For example, if a correlation between curvature and crashes is accepted, the question becomes, to what extent should curvature be reduced such that the expected decrease in crashes justifies the cost of the road modifications. If it could be established that (say) curves with a design speed less than 50k.p.h. accounted for 90 percent of crashes on curved sections, this provides more precise information as to where funds should be directed.

The analysis described in the following Section has attempted to address this issue by using the technique of multiple linear regression.

5.3.2 Methodology

Each data record in the regression analysis corresponded to a road section as specified by the NAASRA road inventory, and consisted of one dependent and four independent variables pertaining to that road section. The four independent variables were:
- (i) Minimum Horizontal Curve this is the smallest radius horizontal curve (in terms of design speed) occurring in the road section;
- Minimum Vertical Curve this is the smallest vertical curve (in terms of design speed) occurring in the road section;
- (iii) Roughness the NAASRA roughness meter reading for the road section;
- (iv) Maximum Grade the largest grade (up or down) for the road section.

The rationale for selecting these as the independent variables was based upon the analysis in Section 5.2, which indicated that horizontal and vertical alignment, roughness and road width were candidates for further investigation.

In the cases of horizontal/vertical curvature and grade, the minimum horizontal and vertical curve, and maximum grade within each road section were considered to be the most appropriate measures of these parameters. Although it would have been possible, for example, to have used the proportions of road length within each section which were <40k.p.h. curves, 40-50k.p.h. curves etc., this would have given an unmanageably large number of variables. In the case of road width, this was excluded as only two values (i.e. 6m and 7m) were assumed by this parameter for the entire road length examined.

The dependent variable was the probability of observed crashes for each road section, defined as:

Pr (observed crashes) =
$$\underbrace{\mathbf{e}}_{\mathbf{x}!} \cdot \underbrace{\boldsymbol{\lambda}}_{(1)}$$

- where x = the observed number of crashes in the road section;
 - λ = the mean (or expected) number of crashes in the road section;
 - Total crashes on highways(2) = _____ x section length Highway length
 - = 63/723.46 x section length

This was chosen as the dependent variable because:

- Note: (1) This assumes that crashes are distributed according to a Poisson Distribution.
 - (2) Property Damage Only crashes have been excluded.

- (i) previous attempts to correlate the number of crashes with road parameters have shown that the relationship is not linear. It was therefore felt that some nonlinear function of the number of crashes offered the best chance of detecting a relationship;
- (ii) the majority of road sections had no recorded crashes during the study period. Thus, if the number of crashes was used as the dependent variable, a data set would have resulted in which the majority of values of the dependent variable were equal to zero.

With the dependent variable configured in this way, the dependent variable would be expected to decrease as road conditions become more severe, as such road sections would be expected to experience a higher than average number of road crashes compared to the overall mean for the entire highway. As the difference between the overall mean and observed crashes for a road section increases, the probability that the observed crashes result from statistical scatter about the mean decreases.

It was anticipated that if a relationship between the dependent and independent variables could be established, this would provide an aid in assessing the changes to the road environment which would most significantly reduce crashes.

5.3.3 Analysis and Results

Prior to the regression analysis, each independent variable was individually plotted against the dependent variable. This was to determine whether or not any of the independent variables, viewed individually, showed any relationship with the dependent variable. The plots are shown in Figures 5.1 to 5.4.

As can be seen from the Figures, the independent variables appear to show a random association with the dependent variable in each case.

A stepwise regression of the dependent variable on the independent variables was then performed. The results indicate that there is no linear relationship between the variables as selected, as the analysis yielded a correlation coefficient of 0.17.

Although there appears to be no linear relationship between crash probabilities and the selected road parameters, there is no evidence to suggest that some other type of relationship may or may not exist. It is possible that a relationship could be developed through other transformations of the crashes, or crash probabilities (e.g. a regression of log (crashes) road parameters), although exhaustive trials may be required until a satisfactory relationship was found.

Furthermore, it is questionable whether these variables lend themselves to such rigorous analytical techniques, or whether much simpler (albeit cruder) analytical procedures, such as those shown in Section 5.2 and Appendix D, are more useful.

IGURE 5.1: PROBABILITY OF OBSERVED CRASHES VS MINIMUM HORIZONTAL CURVATURE

2 DENOTES TWO POINTS PLOTTED AT SAME LOCATION

ETC.

+ DENOTES ≯9 POINTS PLOTTED AT SAME LOCATION

PROBABILITY OF

OBSERVED CRASHES

FIGURE 5.2 PROBABILITY OF OBSERVED CRASHES VS MINIMUM VERTICAL CURVE

28

2 DENOTES TWO POINTS PLOTTED AT SAME LOCATION

ETC.

+ DENOTES >9 POINTS PLOTTED AT SAME LOCATION

PROBABILITY OF

OBSERVED CRASHES

FIGURE 5.3: PROBABILITY OF OBSERVED CRASHES VS ROUGHNESS

FIGURE 5.4: PROBABILITY OF OBSERVED CRASHES VS MAXIMUM GRADE

ЗО

6.0 DISCUSSION ON NSW CASE STUDY

As stated in Section 3.3.1, it was intended that the Phase B analysis would include the section of the Pacific Highway within Coffs Harbour LGA, New South Wales, for the period 1984-86. The decision to use the NSW crash data was, in part, based upon a review of a document produced by the Department of Main Roads (DMR) NSW entitled "Traffic Section. Crash Statistics 1984 and 1985 NSW". The Divisional ranking statistics produced in that report (a copy of which is shown in Appendix F) appeared to associate each crash with a road section, suggesting that some sort of cross-referencing procedure between crash statistics and a road inventory was in place.

The analysis was to have proceeded along similar lines to that documented in Section 5 of this Report, in which accident statistics were cross-referenced with the NAASRA road inventory for the section of the Eyre Highway within Dundas LGA, Western Australia.

To this end, the Consultant obtained from the DMR, the following items:

- (i) crash records for the section of the Pacific Highway being considered, for the years 1984-86; and
- (ii) the NAASRA sectionised road inventory for the study area.

The analysis was to be based upon automatically (i.e. via a computer program) cross-referencing the crash data within the road inventory data. This would enable each crash to be associated with a section in the road inventory so that road parameters (such as road width, horizontal and vertical alignment, etc.) at each crash location could be identified.

Upon examination of the crash records, however, it was immediately apparent that such automatic cross-referencing would not be possible. This was because of the method of identifying crash locations. Whereas the location of each road section defined in the road inventory is identified in terms of its distance from a datum referred to as the Permanent Reference Point, crash locations from the crash record are identified by their distance from roads intersecting the Pacific Highway. Without a data base which identifies the location of these intersections relative to the Permanent Reference Point, automatic cross-referencing between the two was not possible.

Subsequent telephone conversations with officers of the Department of Main Roads, New South Wales, confirmed that a manual procedure for cross-referencing the two data sets would be necessary. It was suggested that by marking each crash location on a map of the study area, and then measuring its distance from the Permanent Reference Point (the absolute location of which would be identified and marked upon the same map), crash locations relative to the road inventory could be identified. A map of the Study Area was forwarded to the Consultant by the Department. The Consultant then proceeded with the manual cross-referencing. However, many of the crash locations could not be identified as the identifying cross road was not marked on the map. In the case of crashes in non (provincial) urban areas(1), the majority of crash locations could not be identified. Table 6.1 shows the breakdown between identified and non-identified crash locations; note that only 32 out of 112 fatality/injury crashes (all years) in non-urban areas could be located on the map.

At present, the following conclusions can be made regarding the NSW data:

- 1. Automatic cross-referencing of the NSW crash statistics and road inventory data is not possible, with current data bases(2).
- 2. Manual cross-referencing of the crash statistics and road inventory data is not possible with the information made available by the DMR to the Consultant.
- 3. Manual cross-referencing of the crash statistics and road inventory data would be possible if documentation sufficient in detail to enable all crash locations to be identified were made available. This would, however, require a considerable commitment in terms of labour resources(3).

Note: (1) Assumed to be all crash locations with a speed limit recorded as > 100k.p.h.

- (2) Recent telephone conversations with officers of the DMR have confirmed that this is the situation at present. However, the consultant is advised that a pilot study for automatically cross-referencing crash locations with road inventory using permanent reference points in a system known as ROADLOC is about to commence.
- (3) The Divisional Ranking Process illustrated in Appendix F relies upon manual correlation of crash report forms with a series of road maps and gazettes and is currently undertaken by the Traffic Authority of New South Wales.

	 Provincial Urban(1)	1984 Non- Urban(2	Total)	Provincial Urban(1)	1985 Non- Urban(2	Total (Provincial Urban(1)	1986 Non- Urban(2)	Total)
No. of crashes with deaths/ injuries	 47 	52	99	58	36	94	32	24	56
No. of above crashes located	36 	15	51	53	11	64	30	6	36
Total crashes	 96 	73	169	 58 	36	94	32	24	56

TABLE 6.1: BREAKDOWN OF IDENTIFIED AND NON-IDENTIFIED CRASH LOCATIONS, PACIFIC HIGHWAY, NSW

Note: (1) Provincial Urban assumed to be locations with speed limit recorded as < 100k.p.h. (2) Non-urban assumed to be locations with speed limit recorded as ≥ 100k.p.h.

7.0 CONCLUSIONS

The following conclusions were reached as a result of the Phase A study:

- Western Australia is the only State which has a facility to retrieve crash data automatically by reference to a common permanent reference system;
- all States except Queensland provide a breakdown of crash records by road and LGA. New crash data bases in Queensland, currently being developed, will have this facility;
- o all States have unique crash report output formats which poses a constraint on automation of this process at present;
- automation of the Phase A process is possible, providing that either output formats are standardised or crash data processing computer programs are adapted specifically for each State. The disadvantages of the latter option are its potential cost and constant updates as the State authorities change or update their data bases.

With regard to Phase B, the Western Australian crash data proved to be suitable for automatic cross-referencing with the road inventory. It was therefore a relatively simple procedure to identify within which section of the highway, as defined by the road inventory, a particular crash has occurred, and therefore the corresponding road parameters (such as road width, roughness, etc.) pertaining to that location.

It would therefore appear that the data set would readily lend itself to an analysis of the relationship between crash frequency and the road environment. Some difficulty exists in that the road inventory relates to road sections, within which the precise location of certain parameters is unknown. For example, for a particular road section it is known that 20 percent of its length consists of horizontal curves with design speeds in the range of 50-60k.p.h. It is also known that an crash has occurred within this road section. However, whether or not the crash occurred on a curved or straight part of the road section is unknown, and attempts to correlate crash statistics with parameters such as horizontal and vertical curvature, and road grade, become somewhat subjective.

Notwithstanding, useful information was obtained from the data set. As detailed in Section 5.2, it was possible to compare the observed number of crashes with the expected number for road sections characterised by particular parameters, and determine the statistical significance of any difference between the two. On this basis and for this particular data set, it was concluded that:

(i) roughness and road width did not appear to have any effect upon crash frequency; and

(ii) horizontal alignment and road grade appeared to have an effect upon crash frequency, insofar as certain road sections experience higher than average crash frequencies. These road sections are those for which some proportion of the horizontal alignment is curved or consists of grades greater than 2 percent.

Attempts to further quantify the relationship between crash frequency and road environment proved inconclusive (Section 5.3). This is not surprising, considering the inability to relate crashes and road parameters to a precise location.

If more detailed relationships between crash frequency and road environment are to be established, it would first be necessary to produce a data base relating crash occurrence to the road environment at the precise location at which the crash occurred. Further work should be directed to this end.

BIBLIOGRAPHY

- 1. Langley, R., (1968), "Practical Statistics", London: Pan Books Limited.
- 2. NAASRA (1977) Data Base Study, Initial List of Data Items Definitions.
- 3. NAASRA (1983) Roads Study, Road Classification Technical Report T-4.
- 4. Nelson English, Loxton & Andrews Pty. Ltd., (1987a), "A Proposal for Research Project 86R 4.6 Road Safety Benefits from Road Improvements", prepared for the Federal Office of Road Safety.
- Nelson English, Loxton & Andrews Pty. Ltd. (1987b), "Research Project 86R4.6, Working Paper No. 1 - Progress Report and Study Design", prepared for the Federal Office of Road Safety.
- Nelson English, Loxton & Andrews Pty. Ltd. (1987c), "Research Project 86R4.6, Working Paper No. 2 - Progress Report", prepared for the Federal Office of Road Safety.
- 7. Nelson English Loxton & Andrews Pty. Ltd. (1988), "Research Project 86R4.6, Road Safety Benefits from Road Improvements, Description of Existing Crash Patterns, Sub-Phase 2.1", prepared for Federal Office of Road Safety.
- 8. Walpole, R.E. and Myers R.H. (1978), "Probability and Statistics for Engineers and Scientists", 2nd Edition, New York: MacMillan Publishing Co. Inc.

APPENDIX A: SAMPLE CRASH DATA OUTPUTS FROM STATES

.

APPENDIX A.1:

Sample crash data output from New South Wales.

TRAFFIC ACCIDENT REPORTING SYSTEM
ARP VER 1.0
11.36.46 20 DCT 87
ACCIDENT REPORT DEFINITION
1 - LOCAL GOVERNMENT AREA (LGA) (DEFAULT) 2 - LGA and Street
4 - ACCIDENT NO. 5 - DTHER PARAMETERS Force 6 - REPROCESSING EXISTING FILE
5
1 - 132 COL. BRIEF LISTING (DEFAULT)
3 – 132 COL: CODE LISTING — 4 – NO. ACCIDENT LISTING
- 3 - TOTALS (DEFAULT) 6 - BREAKDDWN OF TOTALS 7 - HISTOGRAMS 8 - EXTENDED HISTOGRAMS
PRINTOUT OPTIONS 2 4,5
OTHER OPTIONS ? Y
JDB PRIDRITY ? O SUBMIT BATCH JDB (Y/N) DEFAULT=Y ? N BATCH JUTPUT TD WAIT QUEUE (Y/N) DEFAULT=N ? .
ACCIDENT SELECTION DEFINITION
94-86(4) AVAILABLE 94-86(4) AVAILABLE
ENTER QUERY STATEMENT
? DEGREE=1 AND ACCOMP=1-0 AND DATE=010184-311286
ENTER QUERY STATEMENT
RECORD COUNTS :
DUTPUT RECORDS WRITTEN TO FILE ARPGAD * 1935 DUTPUT RECORDS WRITTEN TO FILE ARPTUD = 3378

-

DEPI. MAIN RJADS	STUDY NO. L	<u> </u>	⇒4G	<u>ë NO.</u>
PROGRAM ARP V1.0	LGA ROUTE NOS		TIM	E 20.34.11
	 TOTAL POUTE : 2	ACCIDENTS: 195 ACCIDENTS: 44 ACCIDENTS: 13 ACCIDENTS: 252 ACCIDENTS: 252	0 F 195 I PEOPLE: 0 F 13 I PEOPLE: 0 F 13 I PEOPLE: 0 F 252 I PEOPLE: 0 F 252 I PEOPLE:	0 K 264 I 0 K 67 I 0 K 16 I 0 K 347 I
	 TOTAL ROUTE : 74 TOTAL ROUTE : 124 TOTAL ROUTE : 124 TOTAL 009 CITY DE ARMIDALE TOTAL ROUTE : 2 	ACCIDENTS: 11 ACCIDENTS: 73 ACCIDENTS: 73 ACCIDENTS: 73	0 F 11 F FOPLE: 0 F 2 T PEDPLE: 0 F 73 T PEDPLE: 0 F 73 T PEDPLE:	ОК 14 І ОК 3 І ОК 91 І ОК 91 І
	* TOTAL ROUTE : 5 * TOTAL ROUTE : 167 * TOTAL POUTE : 549 * TOTAL POUTE : 2013	ACCIDENTS: 129 ACCIDENTS: 14 ACCIDENTS: 38 ACCIDENTS: 38	0 F 129 I 060PLE: 0 F 14 I 260PLE: 0 F 38 I 260PLE: 0 F 38 I 260PLE:	ЭК 174 I ОК 16 I ОК 48 I
	* IUIAL PJUIE 12918 + TOTAL PJUTE 12927 + TOTAL PJUTE 12929 + TOTAL PJUTE 12040	ACCIDENTS: 12 ACCIDENTS: 12 ACCIDENTS: 17 <u>ACCIDENTS: 5</u>	0 F 12 I PEUPLE: 0 F 17 I PEUPLE: 0 F 17 I PEUPLE: 0 F 17 I PEUPLE:	ОК 17 1 ОК 20 I ОК 20 I
		ACCIDENTS: 19 ACCIDENTS: 13 	0 F 18 Î PEDPLE: 0 F 13 I PEDPLE: 0 F 13 I PEDPLE: 0 F 132 I PEDPLE:	0 K 25 I 0 K 16 I
	 ♦ ŤĎŤĂĽ ŘŮŬŤĚ ± 190 ▲ TOTAL RŮUTĚ ± 532 ▲ TOTAL RÙUTĚ ± 2057 ▲ TOTAL RÙUTĚ ± 2069 	AČČĪDENTŠ: 123 ACCIDENTŠ: 44 	0 F 123 I PEOPLE: 0 - 44 I PEOPLE: 0 - 32 I PEOPLE: 0 F 49 I PEOPLE:	0 K 191 I 0 K 61 I <u>0 K 91 I</u> 0 K 77 I
	★ ŤŎŤĂĹ RÖŬŤĚ : 2096	ACCIDENTS: 33 ACCIDENTS: 34 <u>ACCIDENTS: 34</u> ACCIDENTS: 467 ACCIDENTS: 91	0 F 53 I PEOPLE: 0 F 34 I PEOPLE: 0 F - 467 I PEOPLE: 0 F 91 I PEOPLE:	0 K 86 [0 K 44] <u>-0 K 712]</u> 0 K 140 I
. <u></u> ,	TOTAL ROUTE : 16 TOTAL ROUTE : 146	ACCIDENTS: 43 ACCIDENTS: 8 ACCIDENTS: 33 ACCIDENTS: 13 ACCIDENTS: 13	0 F 8 I PEDPLET 0 F 8 I PEDPLET 0 F 32 I PEDPLET 0 F 13 I PEDPLET 0 F 13 I PEDPLET	0 K 11 I 0 K 11 I 0 K 15 I 0 K 15 I
	** TOTAL C23 BALLINA SHIRE <u>* TOTAL ROUTE : 14</u> * TOTAL ROUTE : 67 * TOTAL ROUTE : 514	ACCIDENTS: 207 ACCIDENTS: 27 ACCIDENTS: 27 ACCIDENTS: 12 ACCIDENTS: 1	0 F 207 1 PEOPLE: 0 F 27 I PEOPLE: 0 F 12 I PEOPLE: 0 F 1 I PEOPLE:	Ŭ K 284 I <u>-0 K -42 I</u> 0 K 21 I 0 K 1 I
<u>_</u>		AČČÍDĚNÍŠ: 2 ACCIDENTS: 42 ACCIDENTS: 362 ACCIDENTS: 44	0 F 2 I PEOPLE: 0 F 362 I PEOPLE: 0 F 362 I PEOPLE: 0 F 44 I PEOPLE:	0 K 5 I 0 K 507 I 0 K 57 I
	* TOTAL ROUTE : 167 * TOTAL ROUTE : 190 * TOTAL ROUTE : 315 * TOTAL ROUTE : 508	ACCIDENTS: 265 ACCIDENTS: 261 ACCIDENTS: 7 ACCIDENTS: 7 ACCIDENTS: 134	0 F 265 1 PEOPLE: 0 F 141 7 PEOPLE: 0 F 7 1 PEOPLE: 0 F 134 1 PEOPLE: 0 F 134 1 PEOPLE:	0 K 403 I 0 K 203 I 0 K 12 I 0 K 201 I
	▼ TUTAL RUITE :2050 ▼ TUTAL RUITE :20561 ■ TUTAL RUITE :2058 ■ TUTAL RUITE :2030 ■ TUTAL RUITE :2030	ACCIDENIS: 55 ACCIDENIS: 55 ACCIDENIS: 68 ACCIDENIS: 68 ACCIDENIS: 68	0 F 23 I PEOPLE: 0 F 88 I PEOPLE: 0 F 68 I PEOPLE: 0 F 68 I PEOPLE:	0 K 73 I 0 K 120 I 0 K 82 I 0 K 33 I
	* TOTAL 026 CITY OF BANKSTOWN * TOTAL ROUTE : 53 * TOTAL ROUTE : 132 * TOTAL ROUTE : 360	ACCIDENTS: 1202 ACCIDENTS: 14 ACCIDENTS: 4 ACCIDENTS: 4	0 F 14 1 PEOPLE: 0 F 14 1 PEOPLE: 0 F 4 1 PEOPLE: 0 F 4 1 PEOPLE: 0 F 4 1 PEOPLE:	<u>0 K 1719 †</u> 0 K 19 1 0 K 4 I 0 K 5 I
		ACCIDENTS: 22 ACCIDENTS: 66 ACCIDENTS: 8 ACCIDENTS: 8 ACCIDENTS: 15	<u>0</u> F. 22 I PEOPLE: 0 F 66 I PEOPLE: 0 F 8 I PEOPLE: 0 F 15 I PEOPLE:	0 K 28 I 0 K 86 I 0 K 10 I 0 K 20 I
	* TOTAL ROUTE : 54 * TOTAL ROUTE : 253 ** TOTAL 030 CITY OF BATHURST * TOTAL ROUTE : 13 + TOTAL ROUTE : 13	ACCIDENTS: 32 ACCIDENTS: 2 ACCIDENTS: 123 ACCIDENTS: 106	0 F 32 I PEOPLE: 0 F 2 I PEOPLE: 0 F 123 I PEOPLE: 0 F 106 I PEOPLE:	0 K 49 I 0 K 61 I 0 K 161 I 0 K 150 I
	* IDIAL ROUTE : 156 * TOTAL ROUTE : 157 * TOTAL ROUTE : 160 * TOTAL POUTE : 181 + TOTAL POUTE : 181	ACCIDENTS: 28 ACCIDENTS: 30 ACCIDENTS: 109 ACCIDENTS: 15 ACCIDENTS: 15	0 F 30 I PEOPLE: 0 F 169 I PEOPLE: 0 F 169 I PEOPLE: 0 F 15 I PEOPLE:	0 K 40 I 0 K 213 I 0 K 25 I 0 K 5 I
	T TUTAL RUUTE THZ. # TOTAL ROUTE 184 # TOTAL ROUTE 2574 # TOTAL ROUTE 2034 # TOTAL ROUTE 2034	ACCIDENTS: 211 ACCIDENTS: 1 ACCIDENTS: 1 ACCIDENTS: 41	OF 211 I PEOPLE: OF 1 I PEOPLE: OF 41 I PEOPLE:	0 K 275 I 0 K 1 I 0 K 54 I

C

۲

APPENDIX A.2:

•

.

Sample crash data output from Victoria.

.

1 ILIUUHV.CIUJI.FENIHR.JFJJJJJJJUUHHIUUHIN	r	*LEDUAD: EASG. PENMAN, SPSSIH IGHWAYLGA IN	.TEL:3
--	---	--	--------

22-SEP 87 15:09

Pase 10

DATE: 22-SEP-87 PAGE: 10

ROAD TRAFFIC AUTHORITY RUAD TRAFFIC ACCIDENTS - VIC 1986 NUMBER OF FATAL , INJURY AND PROPERTY DAMAGE ACCIDENTS ON NUMBERED ROADS IN LGAM ACCIDENTS OCCURRING AT INTERSECTIONS

ł	ł										RDAD	NUMBER									
•	 (0	+ 12100	+	+	+	+ 12510	+	+ 12530	+	+	+ 2570	+ 12580	+	+	+	+ 1 2620	+	+	+	+ 12680
	, •		+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
309;	1	- 4	ł		1	1	•)	1	1	1	l i	ł.	{ 1	}	1	1	1	1	1	1
310	1	З	1	1	1	1	ļ	ł	1			1		1 2	1	1	1	1	1	1	1
311	1	1	1	ł	1	1	1	1	1	1	ł	1	I	6		1	1	1	1	1	1
312	1	2	1	1	1	1	1	1	1	1	1	1	l	1	1	1	1	1	1	1 3	ł
313	1		1	1	1	+	1	1	1	1	1	1	1	1	1	ł	1	1	1	1	i
314	1	1	1	1	1	1	1	1 3	1	1	1	1	ł	1	Ì	1	1	1 I	i	i –	i
315;	1	6	1	1	ł	1	1	1	1		1	ł	1	1	ł	1	I	1	1	j 2	1
316	ł	2	i	1	i	1	i	i i	i i	1	1	i i		1	İ	i	Ì	i	1	ì	i
403	i	1	j	i	i	i i	i	i	Í	i	İ	İ	İ	Ì	i	i	i	i	i	i	i
404	i i		ĥ	i i	i	1	i	1	i	1	1	Ì	I	1 I	i i	İ.	Ì	Ì	i	i	i
405	i	1	Ì	i	i	i	i	i.	1	1	Ì	İ	i	i	i i	i	i	i -	i	i	i
406	i	12	i	i	i	i	ł	ن إ	i –	i i	i	i	i	i	i	i	i	1	i	i	ì
407	i		i	i	i	i	i	1	i	i.	L	Í.	Ì	i	i	i	i	i	i	i	i
408	i	l	i	i	i	i	i	i	i	1	i	i	i	i	i	i	i	i	i	ì	i
409	i	1	ì	j ı	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	1
410	i	1	i	i	i	i	i	i 4	i	i	i	ì	i	i	1	1	i	i	i	i	i –
411	ŝ	12	1	1	i	i	i	1 2	1	i	i	i	1	1	1	t	1	1	i	ł	ì
412	í	4	i	i	i	i	i	i ī	ì	ì	i	1	í	1	i	i i	i	1	1	1	
413	ł	-	1	i	ł	ì	i	ì	i	i	i	ì	i	ł	i	1	1	1	1		1
414	ì	1	i i	i	1	i	i	i	i	i	i	í	í	i	ì	1	1	i	ł	1	
451	ì	6	i	i i	i	i	i	i	i	i	1	i ı	ł	i i	1	i	ļ	i	ł	i	ł
452	i	-	1	i	i	i	1	ł	i	i	i	i ž	í	i	í	i	1	i	í	1	1
453	i	48	i	1	ì	i	ì	1	i 6	i	1	-	ì	1	i	1 20	1	1	1		
454	i	13	i	i	ľ	i	1	i	1 3	1	i	1	í ·			1 3	i .	1	1	1	ł
455	ì	5	1	1	ì	i i	1	1		i	1	i 11		1	1		ì	ł	1		1
456		ā	1	i	1	1	1	1	1	1	1		1	1	1	i i	1	1	1		1
457.	1	ĩ	1	1	i i	i	1	1	1	1	1	i	i	1		1	i	1	1	ł	1
458.		-	ł	1	1	i	1	i i	i ı	i	i	i	i	ł	1	1	(1	1	1	
501.	i	80	•	1	1	1	1	1	1 21	1	ł			i e	d i	i	i	1 2		1	1
502	i	2	1	i	i	i	i	i	i	1	i	í	í	i		1	í	i		1	í
503.	i	8	i	i	1	i	1	1	i	i	ì	Ì	ì	¦ 5		i	i	i	1	i	ł
304	i	5	i	1	i	i	i	1	i	i	i	i	i	i ĭ		1	i	1	í	i	í
505.	i	1	Ì	i	1	i	i i		i	i	ł	1	1	1	1	1	ì	1	ì	1	1
506	i	7	i	i	1	1	í	i	i	ì	i	ì	i	i		i	i	1 4	,	1	i
508.	i	15	ì	i	i	1	i	L L	i	i 4	1	i e	1	1	1	i	i	1 7	1	1	ł
509.	ľ	1	1	ł	1	1	1	1	i 5	· ·	i		1	1	1 1	1	1	1	1	1	ſ
510.	1	- ŝ		ì		1	1	1	i	1	1	i	1	1	1	1	1	1			
511	;	Ē	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	:	1	
512	1	2	1	1					1		1	1	1	1			1	1	ł	ł	ł
513.	i	1	i	i	i	1	i	, I	1 2	i	i	·		ì	1	i	i	i	i	1	
514	1	Â	ì	1	Ì	1	1	1	1 4		1	ł		1	ł	1	1	1	1		!
515	i	3	i	1	1	í	i		; ;	i 2	l l	1	ì	1	1	ł	1	1	1	1	
516.	;	-	1	1	1	1	1	ì	ì	· -	1	1	1	ì	1	ì	1	1	1		
517	1	=	7 1	1	-	1	!	1				1	1	1	-	1	!	1	1	1	1
	•	J	1	1	1	E	•	1	, J	1	1	1	1	1	1	1	1	1	1	1	I

(continued)

C,

C

APPENDIX A.2:

Sample crash data output from Victoria.

÷ .

DATE: 22-SEP-87 Page: 10

ROAD TRAFFIC AUTHORITY RUAD TRAFFIC ACCIDENTS - VIC 1986 NUMBER OF FATAL . INJURY AND PROPERTY DAMAGE ACCIDENTS ON NUMBERED ROADS IN LGAS ACCIDENTS OCCURRING AT INTERSECTIONS

n
•

. -

C

LIURY	ACCI	DENT												· .						
+ !				_		_		_		RÜAD	NUMBER								 -	
+	0	2100	2110	12300	12500	2510	2520	2530	12540	12550	2570	2580	2590	2600	2610	2620	2630	12640	12670	+ 2680
91	4	+	+ 1	+ 	+	+	, 1	+ !	+ 	+	1		1	1			+ -	+ 	+ 	+
0 i	3		i		i		I	i	1	1	1		i āl				, 1	1	1	1
•••	i i		1		1	ì	1	i	1	1	1	1 1	6				1	1	1	
•••	1		2	1	1	1)	1	1		1	1	1 4	•			1	1		1
••!	-		!	1	1	1		1	1	1	1	1	1				1		1 3	
••!		1	1	F	1	ł		1	1	1	1	ļ	1 1	(I	4	!	1	!
••!		1	!	l	1	1	1 3	1		1	1	1	1				4	ļ	! _	1
· • !	6		1	1	1	!	1	ł	!	Į.		1	1				ł	ļ	1 -	1
·•!			I.	1	ļ	1	l	1	L	1		1	1	1			l	ļ	1	ļ
• [1		1		1	ł	i	1	!	1	ļ	l	1	1			l.	ļ	1	ļ
1		1		1	1	1	L	1	!	1	1	l	1	ł		l	l	l.	1	1
••!	1		1	!	1	1	! .	1	l I	1	!	1	ļ.				l .	!	ļ –	!
<u></u>	12		1	1	1	1	G	1	1	1	1	l	1	L I			•			1
• • 1					I	I	1 1	1			I	i		۰ I		l		I	1	1
• • ł	1		1	1	ł.	!	1	ł	ļ	1	!	l .	1	ļ	l		l			1
•1	3	- E	1	l I	1	ļ	1	l.	1	1	I.	l	l.				l	1	l I	I I
)	1	1	1	1	1	l I	4	ł.	1	1	1	1	ł	1	l I		i	1	1	ł
•••	1.	31	1	l i	1	1	2	1	1	1	1	I	1	I	I	l	I	I	1	ł
2	4	11	1	1	1	ł	1	ł	ł	1	1	1	i i	1			1	I	1	1
1		1			1		1	1	1	1	1	1	l	1			1	1	1	1
4	1	4	1	1	ł	l I	1	ł	1	1	1	1	1				1	1	1	l
1	G		1	1	I	1	1	1	1	1	1 1		1						1	1
2		l	1	1	1	ł	1	l I	1	1	2	1	l i		l		1	1	t i	1
3;	46		1		1	1	1	6	1	1	1	I .	1		20			1	1	1
4 1	13	1	1	1	1	•	1	8		1	1	ł	I	l	3			1	1	!
5	5	1	1		1	1	1	1	1	1	1 11	1	1	1			1	1	1	1
6	8	i l	1	1	1	1	l	1	!	1	1	1	1	!			1	1	1	1
7	1	4	1		1	1	1	1	1	1	1	Í	1	1				1	i i	i i
8		1	1	I	ł	i i	l	1 1	L	1	1	l	1	1	I 1		1	1	L	1
1j	80)	1	1	1	1	1	21	1	1	1	1	1 8	ŀ	I		2	1	1	ł
2j	2	1	L	1	1		•	1	1	L	l	1	1	ļ	1		1	1	ł	ł
эі	ε	34	1	1	1	I	[1	1	Ŧ	1	I	5	1	I	Ι	1	I	1	L
i Ì		1	1	1	1	l	ļ	1	1	1	1	I	1	ł	I İ		1	I I	1	1
٠٠İ	1	4	1	1	ł	1	1	ł	1	1	i i	1	1	1	1		I	1	1	1
• • İ	7	'I	1	1	1	1	1	l I	1	1	E	1	1	1	1		4	I I	i i	ł
i. i	15	i	1	1	1	1	1	i i	4	1	j 5	i	1	1 -	İ		I	I I	i	i
i	1	d -	i	i	i	i	i	j 5	i	1	i	i	i	i ·	i i		i	i	i	i
) İ	2	21	1	i i	i	L I	F	I I	1	i	1	1	I.	Ì	i i		İ	1	i	i
i	6	5i -	i	i	i	i	i	i	i	i	i	i	1	i	1		ł	i	i	i
2j		3	İ	i	i	i	i	i	İ.	1	1	i	1	i	i i		Í	i	i	i
3İ	3	1	1	ł	1	1	1	2	1	1	1	L	i i	i i	1		i i	Ì	i –	Ì
i		Nİ	i	i i	i	i	i	j 4	j –	i	i	i	i	i			i	i	i	i
5i	3	3 j	i	i	i	i	i	i	į 2	i i	i	i	i	i	1		i	i	i	i
i		i	1	i	i	i	i	i	-	i	i	i	i	i	i i		i	i	i	i
		si	i	i	i	i	i	i s	í	i	i	1	i	i			i	i	i	1
				<u> </u>		·		·	<u>.</u>	1	1			,						 *

Ø,

APPENDIX A.3:

.

Sample crash data output from Queensland.

•

TADULATION 20		MAIN ROAG	DS DEPARTMENT - J	UEENSLAND		PASE 1
		NUMBER OF (RASHES VS SEVERI	TY OF CRASH		DATE 22/09/37
		* * * NUMBER (F CRASHES IN SLA			
	+ + + -	* * * * * * * * *	ACCIDENT SEVERIT	Y • • • • • • •	• + • •	
	DEATH	HOSP	TR EATE D	MINOP	PROP	
	0 (.00)	0 (.00)	6 (.00)	C (.00)	0 (.00)	
		TOTAL NUMBER	R OF CRASHES IN S	LA	'n	
		* • • NUMBER ·	CF CRASHES IN SLA	*580 * * *		
	+ + +	• • • • • • • • •	ACCIDENT SEVERIT	Y + + + + • + •	* * * *	
	DEATH	HUSP	TREATED	MINOP	PROP	
	25 (.03)	105 (.21)	123 (.25)	33 (.06)	201 (.41)	
		TOTAL NUMBE	R OF CRASHES IN S	LA+56C 48	.7	
		* * * 11188550	CE EPASHES IN SLA			
	· • • •	+ + + + + + + + +	ACCIDENT SEVERIT	· · · · · · · · · · ·	• • • •	
	DEATH	HOSP	TREATED	71402	P 70P	
	z4 (_01)	327 (.12)	445 (.24)	85 ("N4)	923 (.51)	
		TOTAL NUMBE	R JF CRASHES IN S	SLA+557 18	17	
		* * * NUMBER	CF CRASHES IN SLA	N0051 + + +		
	+ + +	+ + • + + + •	ACCIDENT SEVERIT	17 + + + • + • •	• • • •	
	DEATH	HOSP	TREATED	"IN OR	PQOP	
	2 (.01)	30 (.17)	44 (.25)	13 (.07)	87 (.49)	
		T CT AL NUMBE	R OF CRASHES IN S	GLAQOS1 1	76	۰.

.

-

•

APPENDIX A.4:

Sample crash tabulation from Western Australia.

ſ	NAASRA	CLASS 1 R	DADS	AID-BL	CCK ACCID	ENTS M	54 - 56			87/09/23	16.51	.57.	PAGE	5	(
Ċ,	FILE	NONAME	(CRE	ATION DAT	E = 37/0	9/23)									, (
C :		0 LING FDR.	* *	* * * * *	* * *	CROSS	TABU	LATIO BY LG	N DF	* * * *	* * * * *	* * * * *	* * * *	*	2 2 (
(1	SE ¥		EVER 1. * *	IY	* * * *	* * * * *	* * * *	YALUE	* * * *	_2INJU * * * * * *	RY	* * * PA	GE_1_DE		; (
· ·		CUU1	I Tr	L GA										R DW	• •
(•			I 1	1.1	2.1	3.1	4.1		4Q6.I	409.1	414.I	420.1	421.1		
, (5	_6040	i	<u> </u> I	[01	I	0 I I	I	1_0	1	0 I	1I	0_1		
`. (`			[2•]	 	ا <u></u> ا ا	I	I 0_I I	l	I 10I I	1 6 [I	I 18I	<u>12</u>	231	121 28.3	
י' נ.			1 16	11 191	271	I	1 261	I	I	II	l- 0 1	11 01	1	L175 L40.9	••
, , , , , , , , , , , , , , , , , , ,	ноот_		1 1	1 1	ا الا	[] [0] []	10	<u> </u> 1	1	<u>1</u> 0 101	1 0_1	01	0_1	l8 L1.9	72
۔ ر ک	H01)		I 5.•I I	1 10	0	[I [0I [I	1 01 1	I	1	<u></u> I 0 1	I I	<u>1 0 1</u> 1 0	0	[]9 [4.4	3 7
°≞ C≊		(-1 5.1 1	1 1 0 1	0	I <u></u> I L 0 I L I	I0I	I	1 0 1 1	01 01	0_1	0 I I	1		21 23 20
י <u>י</u> ייי	M004		1 81 1	91	0	[] [0] [1	I 0 I	I	1 <u></u> 1 101	L		II	0	[9 [2.1	ונ קר גר
•			<u>-1</u> 91	1	0	[[[5] [1	0I	I	0I	1		QI	Q	5 1_2	94 59 59 30
יי יי: יי: (<u> </u>	1	1 10	I	0		I	0		0 1	0 I	0 1	Q	I17 I17 I4.0	
*1) 1 - 2 - 4 - 2)	<u> </u>	1	<u>۱ – ۱</u> ۱ ـ ـ ـ ۱ ۱ ـ ـ ـ ـ ـ ـ	0	0		0 1		0	0 1		0 1	0	L I19	(1)
ن در در آرا		C DLU:	<u>– </u>	28 6,5	27	276.3	36	1	10	6	18	12 2.8	23	428	
~ ہر س															47 47 49 49
4 4) 4_11 57								······································							0: 10 15
:ء • • •										· · · · · · · · · · · · · · · · · · ·					54
 ب ي												·			19 57 57 58 57 59 58
، س									· · · · · · · · · · · · · · · · · · ·	· · · ·					

APPENDIX A.5:

Sample detailed crash history output from Western Australia.

EYRE HWY (SLK D.00-724.51 WA/SA BORDER, DUNDAS SHIRE) FROM 01/01/83

	FROM 01/01/83		•					10 197	04/8/		'
EYRE HIGH MAY	000003	0000.00-0724.5	1	MINC	R PDD	ACCS INCLU	DED		DATE OF	REPORT 16/11.	/87 ;
<u></u>	CROSS RD	DATE	TIME	DAY_	SEV	ACC NAT	PA V	ALIGN	LT COND	TR CONT	;
0540-84		30/09/83	10.15AH	FRI	INJ	NON COLL	DR Y	STR LEVEL	DAYLIGHT	ND SIGN	;
ERROR +-0001-12		PANEL VAN		FROM W	το	E 0	UTDF	CONTROL - VEH	COND	LOC FEAT	:
		OVERTURNS	ON RÌGHT	R DAD VE	RGE/F	TPATH		······································			*
<u> </u>		DBJECTS HIT									12
		DATE	TIME	DAY	ŞEV	ACC NAT	PAV	ALIGN	LT COND	TR CONT	¥
0540.84		24/10/83	03.45PH	MON	<u>INJ</u>	NON COLL		STR LEVEL	DAYLIGHT	ND SIGN	¹⁷
ERRDR +-0001+12		CAR		NK	NK			CONTROL - DRÍV	ER COND	LOC FEAT	17
		OVERTURNS	DFF RDAD	RÉSERVI					· · · · · · · · · · · · · · · · · · ·		ار
	······································	DBJECTS HI	1							· _ · · · · · · · · · · · · · · · · · ·	21
		DATE	TIME	DAY	SEV	ACC NAT	PAV	ALIGN	LT COND	TR CONT	"
0540.84		21/11/63	UNKNOWN	MON	<u></u>	NON COLL	DR Y	CURVE LEVEL	DAYLIGHT	ND SIGN	ч в
ERROR +=0001-12		MOTORCYCLE		NK	NK	P	OVENEN	T NOT KNOWN		LOC FEAT	21
+-0001112		FALLS	ON CARRIA	GEWAY							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		OBJECTS HI	ſ <u></u>			·····					F
		DATE	TIME	DAY	SEV	ACC NAT	PAV	ALIGN	LT COND	TR CONT	
0540.84		10/02/85	09.40PH	SUN	INJ	HIT DBJ	DRY	STR LEVEL	DARK NO LT	ND SIGN	x
ERRDR ==================================					TO	- <u>E</u>	WERVIN	G - TO AVOID A	NIMAL	LOC FEAT)'
		HITS	ON LEFT R	CAD VE	RGETFT	PATH					J.
		OBJECTS_HI	r	FIXED	DEJECT	- OTHER					¥
		DATE	TIME	DAY	s <u>ev</u>	ACC NAT	PAV	ALIGN	LTCDND	TR CONT	*
0570.84		01/05/85	11.0044	WED_	MAJ	NON COLL	DRY	STR LEVEL	DAYL IGHT	ND SIGN	47 47
EPROR +-0001-12		PANEL VAN		FRDA w		E (CONTROL VEH SI	DE WIND	LDC FEAT	"
		DVERTURNS	ON LEFT	FROM	RGE/FT	PATH					
	······································	DBJECTS HI	f								
		DATE	TIME	DAY	SEV	ACC NAT	PAV	ALIGN	LT COND	TR CONT	45
0590.84		20/01/83	01.15PM	<u>THU</u>	INJ	NON COLL	DRY	STR LEVEL	DAYLIGHT	ND SIGN	N ⁺
ERROR +-0001.12		STATION WA	GON	FROM E	to	¥ [DUT OF	CONTROL - BLOW		LOC FEAT	
		OVERTURNS	DN LEFT	ROAD VE	R G E <u>/ F T</u>	PATH					<u> </u>
······		OBJECTS HI	1								5°
					·			· •	<u> </u>		;

APPENDIX A.6:

Ranking crash data output from Tasmania

ANSPORT TASMANIA TRAFFIC ENGINEERING DIVISION RESEARCH SECTION

·	PROGRAM - TFC5023R	

1				
				•
·			······································	— '
2	······································	·····		· • ,
²,				' f
<u>دار</u>				•
t				
•				
,				- ,
• · · · · · · · · · · · · · · · · · · ·				
•				
10	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·				
12			· · · · · · · · · · · · · · · · · · ·	!!? (
¹	DEFINITIONS	LOCATION_		'J
14				<u>)</u>
15				15 (
16				14
	TWO ROAD NAMES	INTERSECT		17
14				
, e				
~ · · · · · · · · · · · · · · · · · · ·			·····	30
2'				Z1 (
²²	DEFINITIONS	ACCIDENT SEVERITY	BCORE_VALUES	22
23				Z)
24				24 🧲
25				
26		NOT STATED	1	
·		PROPERTY DAMAGE		
·				
	PD+	ERUTERII. DANAVE_T major		2
2)	tAt	E1R51_A10		²⁹ _
•••	<u>l</u>	INJURYNOI. DETAINED_IN_HOSP	21TAL3) 30 (J
1)	I+	INJURYADMITTED_TD_HOSPITAL	3	
32	F	FATAL	3	32
1.				33 🔮
34]>4
11	LOCATION IDENTIFI	ERS		
16				116
37				
······································	KANK	HIGHEDLE	CURING-LUCATION RECEIVES RANK 1-AND SO ON	",
"			MBER_DF_LOCATIONS_ABOVE_AND_INCLUDING_THE_LOCATION	19 🛡
au	·· ·· ·· ·· · · ·· ·· ·· ·· ·· ·· ·· ··	IN_GUESIJ	ION_ON_RANKED_LIST	I40
41				41
42	NOTE_ON_CONTROL_1	IISTORY	· · · · · · · · · · · · · · · · · · ·] 42 (
41				43
** [[]				44
25	IF 'SEE P. 1' NOTA	TION APPEARS, SITE CONTROLS MAY	HAVE BEEN PRESENT BUT, IF SD. LERE NOT NOTED BY	45 6
46	REPORTING POLICE		·····································	
<i>(</i>)				
(7 				
4]40 🗰
4 4 4 4] 40 (
44 44 47 50]40 Ø
44 44 50 51 51 51 51 51 51 51 51 51 51				40 40 50 51
44 49 50 51 52				40 40 50 51 51 12
41 42 50 51 52 53				40 40 50 51 51 51 51
41 42 52 52 53				40 40 50 51 51 51 51 51
41 43 44 50 51 52 53 54 51				440 477 50 51 51 51 51 51 51 51 51 51 51 51 51 51
41 42 50 51 52 53 54 55				49 49 50 51 32 53 54 54
41 43 50 51 52 53 54 54				440 449 300 541 30 541 342 343 344 345 344
41 42 51 52 53 54 54 53				44 (49 (30 (51 (32 (33 (34 (51))))))))))))))))))))))))))))))
43 44 50 51 52 53 54 53 54 53 54 55 56				44 0 40 50 51 0
41 42 50 51 52 53 54 55 55 56 57 58 59 51				44 0 49 50 51 0 52 53 54 53 54 57 57 57 57

4

 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

TRANSPORT TASMANIA MAINRDS. RURAL. 84-6

PAGE 1

RANKING OF TOP 5000 SITES _____RANKED_ON_ACCIDENT_SCORE_

RANK	LOCATION	SCORE_T	OTAL	P.DO	INJ. FA	TAL 1980_19	91-1982-1983-1984-	1985-	1986-		HIGTORY	
1	LONOFORD CRESSY MAIN_ROAD ILLAWARRA_MAIN_ROAD	17	9	4	5	ACC	4444444	2 6	3_ 5_		OIVHAY-UNCONT	-85-CIWAY 86
2	LATROBE PORT_SCRELL_MAIN_ROAD PARDOE_DEVELOPMENTAL_ROA_	14	6	1		ACC SCORE			4		OIVWAY	-84-UNCONT-84
3	LATROBE MERSEY MAIN_ROAD RAILTON MAIN_ROAD TARLETON RD	13	7 7	4	3			8-	3- 5-		UNC ONT	-85-UNCONT 86
4	CAMEBELL TOWN ESK_MAIN_ROAD	12	6 6	. 3	2	1 ACC SCORE		4	6		UNCONT	-85-UNCONT 86
4	EINGAL ESK_MAIN_ROAD STOREYS_CREEK_SECONDARY BONNEYS_PLAINS_RD	12	<u> </u>	2	A	ACC		- <u>1</u> 		LINK		-85 UNCONT 84
4	LATROBE ERANKEORD MAIN ROAD PORT SORELL MAIN ROAD	12	4		3			2 6	- 2 - 6	4_LEQ5	CIVWAY	85 CIVNAY BA
	WESTBURY ILLAWARRA MAIN ROAD BASS HIGHWAY DUMMY - USED FOR LGA BOU	10	4		2	1ACC 		3-	1 3	LINK	UNCONT	85 UNCONT 84
7	DEVONPORT FORTH_MAIN.ROAD BRADDONS L O RD LILLICO_RD	10	4	1		2ACC	4		····	LINK		UNCONT 84
9	CAMPBELL TOWN LAKE LEAKE MAIN ROAD SPRENT ST DUMMY - USED FOR LOA BOU		3 -		3	ACCACC		<u> </u>		LINK	· · · · · · · · · · · · · · · · · · ·	UNCONT 84
9	ULVERSTONE EORTH_MAIN_ROAD KINDRED_MAIN_ROAD TURNERS_BEACH_RD		3		2	1 ACC			1 3		UNCONT	84 UNCONT 86
9	KENTISH	9				ACC		2	1 3-	T-JUNC		85 CIVIAY 86
						÷						

APPENDIX B: CRASH HISTORY SUMMARY

ACCI T HISTORY SUMMARY

__ _ _

ì

EYRE HWY (SLK 0.00-724.51 WA/SA BORDER,DUNDAS SHIRE)

		00	0000.00-0724	51				-	DATE OF REPOR	<u>1 16</u>	/11/87
ACCIDENT NATURE	ND	Z	ACCIDENTS INVOLV	ING_NO	_ Z	DBJECTS HIT		<u> </u>	LIGHT CONDITIONS	<u>_ND</u>	<u> </u>
REAR_END	14.	5	DVERTAKING	36	13	SEC/PHG POLES			DAYLIGHT	169	60
HEAD ON	2	<u>i</u>	PARKING			TRAFFIC LIGHT POSTS	-	•	DAWN	21	7
SIDESWIPE OPP DIR	16	6	ANIMALS	08.	28	TRAFFIC SIGN POSTS			DUSK	14	5
SIDESWIPE SAM DIR	32	_11	PEDESTRAINS	1		COMM SIGN POSTS			DARK STREET LTS DN	1	, .
RIGHT ANGLE	2.		DRIVE WAYS	5	2	TREES	17	18	DARK STREET LTS OFF		
IND RIGHT ANGLE			DTHER	162	57	DTHER		62	DARK NO STREET LTS	77	27
HIT PEDESTRAIN	1								UNKNOWN	2	1
HIT ANIMAL	54	19						- <u></u> -			
HIT DBJECT	34	12						·	· · · · · · · · · · · · · · · · · · ·		
NON COLLISION	129	45				· · · · · · · · · · · · · · · · · · ·					
UNKNOHN											
					100					 284	1 00
						·····					
SEVERITY			PAVEMENT COND		7	ROAD_ALIGNMENT	а	2	RDAD GRADE	NO	7
FATAL	12_	4			14	CURVE~		11		218	77 ·
INJURY	35	31	DRY	245	<u>66</u>	STRAIGHT	1 252	89	CREST DE HILL ^	12	4
PDT-HAJ	159	56	OTHEP			OIHER	- 2_		SLOPE	54	19
(PDD-MIN	25	9									
~											
				707	100		786	110		284	100

APPENDIX C: DATA ITEMS AVAILABLE IN NAASRA SECTIONISED ROAD INVENIORY

	GENERAL	ROAD-DA	TA				
GF	OPETHIC	AND MAT	ERIAL	CLASSI	FICATION D	5 T A	
22	LENGTH			8	91- 78	99999 9999	LENGTH OF ROAD SECTION (KM
23	FT			1	99- 9 7-	9	FORMATION TYPE
24	FW			3	100-102	9979	FORMATION WIDTH (M)
25	14			1	103-103	9	PAVEMENT TYPE
26	₽¥			3	104-106	9949	PAVEMENT WIDTH (M)
27	ST		•	1	107-107	a, i	SURFACE TYPE
28	58			3	108-110	9999	SHRFACE WIDTH (M)
29	<u> < H 71</u>			1	111-111	9	SHOULDER TYPE - LEFT
30	SHAF			2	112-113	9 V 9	SHOULDER WIDTH (M) - LEFT
31	SHTP			1	114-114	9	SHOULDER TYPE - RIGHT
32	SHWR			2	115-116	ġV9	5HOULDER VIDTH (M) - RIGHT
33	054			3	117-119	99 V9	OUTER SEPARATOR WIDTH (M)
34	u u			3	150-155	9979	MEDIAN WIDTH (M)
35	SAFRAR			1	123-123	9	SAFETY RARGIER IN MEDIAN
36	SVLL			1	124-124	9	SLOW VEHICLE LANE - LEFT
37	SVLR			1	125-125	9	SLOW VEHICLE LANE - RIGHT

1	REC-TYPE		2	1 -	2	99
2	ROUTE		R	3-	10	*****
Э	RON		Я	11-	18	*****
4	PRPI		9	19-	27	****
5	PHP7		9	-85	36	****
Ċ,	YFAR+INV	YRINV	4	37-	40	9939
7	SECTION-NO	SÊCNO	6	41-	▲6	999999
A	COST+GROUP-CODE	CSTGPP		47-	50	9999
q	LINK-SED-NO	LINKNÖ	3	51-	53	000
10	RIST		8	54-	61	90088600C
11	CAAR		1	62-	62	o .
ĢĒ(GRAPHICAL AND LE	EGAL CL/	ISSIFI	CATIC	DN ITS	45
12	STATE		1	63-	63	9
13	DVH		2	(4 –	55	ġ ð
14	16A		З	66-	68	999 .
15	845NO		6	69-	74	999 999
16	FC		1	75-	75	9
17	SLC		2	76-	77	99
38	CLC		2	7 <u>8</u> -	79	97
19	AREAC		1	80-	80	ò
20	LU		4	81-	84	9999
51	GT .		1	85-	85	Q
	FILLER		5	86-	90	99999

LINK SEODENCE NUMBER DISTANCE FROM PRP1 (KM) CARHIAGEWAY IDENTIFIER STATE OR TEMPITORY IDENTIFIER S.R.A. DIVISION NUMBER LOCAL GOVERNMENT AREA A.B.S. STATISTICAL AREA FUNCTIONAL CLASS STATE LEGAL CLASS COMMONWEALTH LEGAL CLASS AREA CLASS LAND USE GENERAL TERRAIN

RECORD TYPE (01) ROUTE IDENTIFIER ROAD NUMBER PERMANENT REFERENCE POINT 1 PERMANENT REFERENCE POINT 2 NOMINAL YEAR OF INVENTORY SECTION NUMBER CODE TO INDICATE REQUIRED COST GROUP

IDENTIFIER-FIELDS

IDENTIFIER AND SORT-KEY ITEMS

REFERENCE	ITEM	NO OF CHARACTER	PICTURE	DESCRIPTION	0F	ITEM
NUMBER	MNEMONIC	CHARS POSITIONS		• • • • •		

NAASRA ROAD PLANNING MODEL - NIMPAC TABLE 1 : SECTIONIZED ROAD INVENTORY - DATA ITEMS FOR NIMPAC

NAASRA ROAD PLANNING MODEL - NIMPAG TARLE I I SECTIONIZED ROAD INVENTORY - DATA ITEMS FOR NIMPAC

.

REFE NUMRI	PENCE Fr	ITEM Mnehoníc	NO OF Chars	CHARACTER POSITIONS	PICTURE	DESCRIPTION OF ITEM
+ R(140 AL1	GNHENT DATA				
38	PCLT	0 PCNC(1.1)	4	125-129	94999	PROPORTION OF LENGTH WITH CURVE SPEED LESS THAN 40 KM/H
Ĵ٩	NCLT4	0 PCNC(2+1)	3	130~132	979	NUMHER OF CURVES WITH CURVE SPEED LESS THAN 40 KM/H
40	PC405	0 PCNC(1-2)	4	133-136	94999	PROPORTION OF LENGTH WITH CURVE SPEED IN THE RANGE (40.50) KM/H
41	NC405	0. PCNC(2+2)	3	137-139	999	NUMBER OF CURVES WITH CURVE SPEED IN THE RANGE (40.50) KM/H
47	PC50t	0 PCNC(1.3)	Ă	140-143	94999	PROPORTION OF LENGTH WITH CURVE SPEED IN THE RANGE (50.60) KM/H
43	NC506	0 PCNC(2-3)	3	144-146	974	NUMBER OF CURVES WITH CURVE SPEED IN THE HANGE (50,60) KHZH
44	PCAGT	a PCNC(1++1	Å.	147-150	97999	PUOPORTION OF LENGTH WITH CURVE SPEED IN THE RANGE (60.70) KH/H
45	NC507	0 PCUC12+41	3	151~153	979	NUMMER OF CURVES WITH CURVE SPEED IN THE RANGE (60.70) KM/H
46	PC706	0 PCNC(1.5)	4	154-157	91999	PROPORTION OF LENGTH WITH CURVE SPEED IN THE RANGE (70.40) KM/H
4.7	NCTOR	PONCI2-51	3	158-160	000	NUMMER OF CUPVES WITH CURVE SPEED IN THE HANGE (70.00) KM/H
4 A	PCAAS	0 PCMC(1+4)	4	161-164	97993	PROPOPTION OF LENGTH WITH CURVE SPEED IN THE RANGE (H0.90) KM/H
49	NCHOS	0 PC*C(2+6)	Э	165-167	399	NUMMER OF CUPVES WITH CUPVE SPEED IN THE PANGE (80.90) KM/H
50	アビトリュ	PCNC(1+7)	4	168-171	9V999	PROPORTION OF LENGTH WITH CURVE SPEED IN THE RANGE (90.100) KM/H
51	NCQUE	0 PCVC(2+7)	3	172-174	666	NUMHER OF CURVES WITH CUNVE SPEED IN THE RANGE [90+100) KM/H
52	PC101	I PONC(1-A)	4	175-178	97999.	PROPURTION OF LENGTH WITH CURVE SPEED IN THE RANGE [100+110} KM/H
° 7	NC101	1 PCNC(2+8)	3	179-181	999	NUMMER OF CURVES WITH CURVE SPEED IN THE HANGE [100+110] KM/H
54	PCGEI	1	4	182-185	91999-	PRUPORTION OF LENGTH WITH STRAIGHT ALIGNMENT
55	PFLAT		4	186-189	91009	PROPORTION OF LENGTH WITH FLAT ALIGNMENT (I.E. GRADES LESS THAN 28)
	UPGPAD	ES				
56	PU624	PUGNUG (1+1	1 4	190-193	91999.	PROPORTION OF LENGTH WITH UP GRADES IN THE RANGE (2+4) \$
57	_ NUG24	PUGNUG (2+1)	1 3	194-196	999	NUMHER OF UP GRADES IN THE RANGE [2.4) %
5 A	PHG46	PUGNUG (1+2)	1 4	197-200	97999	PROPORTION OF LENGTH WITH UP GRADES IN THE RANGE (4.6) %
` 59	N1164.6	PUGNUG (2+2)) 3	201-203	999	NUMHER OF UP GRADES IN THE HANGE (4.6) %
60	PUG68	PUGNUS (1+3)) 4	204-207	97999.	PHOPORTION OF LENGTH WITH UP GRADES IN THE RANGE (6+8) *
61	NIGHB	PUGNUG (2+3)) 3	208-210	999	NUMBER OF UP GRADES IN THE HANGE (5.4) 5
62	PUGPl	0 PUGNUG (1+4)	3 🔺	211-214	9 7999	PROPORTION OF LENGTH WITH UP GRADES IN THE RANGE (8+10) #
63	NUGA	0 PUGNUG (2,4)) 3	215-217	999	NUMBER OF UP GRADES IN THE RANGE (8.10) %
64	PUGE1	0 PUGNUG (1+5)	} 4	218-221	91999	PROPORTION OF LENGTH WITH UP GRADES GREATER THAN OR EQUAL TO 105
65	NUGE 1	0 PUGNUG(2+5)) 3	222-224	999	NUMBER OF UP GRADES GREATER THAN OR EQUAL TO 10%
	NOWNGA	ADES				
65	P0624	PDGNDG (1+1)	3 4	225-22A	97999	PROPORTION OF LENGTH WITH DOWN GRADES IN THE RANGE 12.4) \$
67	40624	PDGNDG(2+1)) 3	229-231	999	NUMBER OF DOWN GRADES IN THE RANGE [2+4] %
68	PDG46	PDGNDG (1+2)) 🔺	232-235	97998-	PHOPORTION OF LENGTH WITH DOWN GHAVES IN THE RANGE (4.6) %
69	NDG46	PDGNDG (2+2)) Э	236-238	979	NUMHER OF DOWN GRADES IN THE RANGE [4.6) \$
70	PD668	PDGN0G(1+3)) 4	239-242	44948.	PRUPORTION OF LENGTH WITH DOWN GRADES IN THE RANGE [6,8] B
71	NDG68	PDGN06 (2+3)) 3	243-245	900	NUMBER OF DOWN GRADES IN THE RANGE (6,8) %
72	P06#1	0 PDGND6 (1+4)) 🔺	246-249	94099 -	PROPORTION OF LENGTH WITH DOWN GRADES IN THE RANGE (8,10) %
73	NDGP1	0 PDGNDG (2+4)) 3.	250-252	909	NUMBER OF DOWN GRAVES IN THE RANGE (8,10) *
7 4	PDGF]	0 PDGNDG (1+5)) 4	253-256	97999 -	PROPORTION OF LENGTH WITH DOWN GRADES GREATER THAN OR EQUAL TO 10%
75	NDCE1	0 PDGNDG(2.5)) 3.	257-259	999	NUMBER OF DOWN GRADES GREATER THAN OR EQUAL TO 10%

NAASRA ROAD PLANNING MODEL - NIMPAC TABLE 1 & SECTIONIZED ROAD INVENTORY - DATA ITEMS FOR NIMPAC

PEFEREN	CE ITEM	NO DE CHARS	CHARACTER POSITIONS	PICTURE	DESCRIPTION OF ITEM
76 91	JITSO PVNV()-11	<u>د</u> .	260-263	94999 -	PROPORTION OF LENGTH WITH VERILAL CURVES LESS THAN 50 KM/M
-77 N	VIT50 PVNV(2+1)	3	264-266	999	NUMBER OF SUMMIT VC'S WITH SPEED LESS THAN 50 KM/H
78 2	V5060 PVNV(1+2)	Ă	267-270	97999	PROPORTION OF LENGTH WITH VERTICAL CURVES IN THE RANGE (50.60) KH/H
79 N	V5000 PVNV (2+2)	3.	271-273	999	NUMMER OF SUMMIT VC+S WITH SPEED IN THE RANGE (50+60) KM/H
80 P	V6070 PVNV(1+3)	Ā	274-277	97999	PROPORTION OF LENGTH WITH VERTICAL CURVES IN THE RANGE (60.70) XM/H
81 N	V6070 PVNV (2+3)	з.	278-280	999	NUMMER OF SUMMIT VC'S WITH SPEED IN THE HANGE (60.70) KM/H
82 P	V7080 PVNV()+4)	Ă	281-284	97999	PROPORTION OF LENGTH WITH VERTICAL CURVES IN THE RANGE (70.80) KM/H
A3 NY	¥7080 PVNV (2+4)	з	285-287	, dað	NUMMER OF SUMMIT VC'S WITH SPEED IN THE RANGE (TO, ROI KM/H
84 PA	VPN90 PVNV(1+5)	4	288-291	91999	PROPORTION OF LENGTH WITH VERTICAL CURVES IN THE RANGE (40.90) KM/H
85 M	vengn PVNV(2+5)	3	292-294	999	NUMBER OF SUMMIT VC'S WITH SPEED IN THE HANGE (80.90) KM/H
86 PY	Aobin – 548411+01	4	295-298	94999	PHOPORTION OF LENGTH WITH VERTICAL CUPVES IN THE HANGE (90,100) KM/H
RT NV	A0013 BANA(5+0)	3.	299-301	999	NUMHER OF SUMMIT VC+S WITH SPEED IN THE HANGE (90,100) KM/H
AH PY	V1011 PVNV(1+7)	4	302-305	97399	PHOPORTION OF LENGTH WITH VERTICAL CURVES IN THE RANGE (100,110) KH/H
89 11	V1011 PVNV(2+7)	3.	306-308	000	NUMBER OF SUMMIT VCIS WITH SPEED IN THE BANGE [100+110] KM/H
90 P	VGEII PVNV(1+A)	4	309-312	97999	PROPORTION OF LENGTH WITH VERTICAL CURVES GREATER THAN OR EQUAL TO 110 KM/H
91 N	VGE11 PVNV(2+8)	3	313-315	999	NUMMER OF SUMMIT VCIS WITH SPEED GREATER THAN OF EQUAL TO 110 KM/H
45 b	NOVHC	4	316-319	97999	PROPORTION OF LENGTH WHICH HAS NO VERTICAL OR HORIZ CURVES
POAD	RIDEAGILITY DATA				
93 PI	DT	1	350-350	9	PAVEMENT DATA TYPE
2 94 P	YEAR	4	32)-324	9999	YEAR OF (RE)CONSTRUCTION OR PAVING/RESHELTING
95 PS	S#	2	325-326	6V9	"PRESENT" SERVICEAHILITY RATING
95 5	YEAR	4	327-330	99 <u>3</u> 9	YEAR OF SURFACING/RESURFACING
97 51	URFR	2	331-332	99	SURFACE RATING
- 98 NF	RMYR	4	333-336	9999	YEAR OF NRM READING/P.S. RATING
99 N	RM	3	337-339	999 ,	NAASRA ROUGHNESS METER READING (CDUNTS/KM)
 DRA1* 	MAGE-RELATED DATA				
100 40	ARIP	4	340-343	97999	PROPORTION OF LENGTH WHICH HAS RIPPABLE ADJACENT MATERIAL
101 4/	ATRAF	*	344-347	97999	PROPORTION OF LENGTH WHICH HAS UNTRAFFICABLE ADJACENT MATERIAL
105 M	ΩA	•	348-351	97333	PROPORTION OF LENGTH WHICH HAS ADEQUATE MINOR DRAINAGE
CUL	LVERTS	_			
103 CI	ULVA	8	352-359		TDIAL WATERWAY AREA FOR CULVERIS IN THE SECTION (SO.M)
104 NO	CULV	3	390-305	999	NUMBER OF CULVERIS IN THE SECTION
_ FL(OODWAYS				
105 FL	LENTH	6	363-368	999999	TOTAL LENGTH OF FLOODWAY IN THE SECTION (M)
106 NF	FLWAY	3	369-371	449	
107 11	FFPRY	2	372-373	99	NUMBER OF FERNIES
10A NI	0403	2	374-375	49	NUMBER OF FORDS
]09 NO	CAU5	?	375-377	99	NUMMER OF CAUSEWAYS
4 83	IDGES				
110 N	WATHR	2	378-379	49	NUMBER OF BELDEES OVER WATER
111 NO	OTHER	2	380-381	99	NUMBER OF HRIDGES NOT OVER WATER

· · ·

-

APPENDIX D: GRAPHICAL ANALYSIS OF INJURY AND FATAL CRASHES AND SELECTED ROAD PARAMETERS

In order to increase readability of the printout included in this report the following symbols and abbreviations are used(1):

Inj.		=	Injury Crash
Fat.		=	Fatal Crash
PDO		=	Property Damage Only Crash
PRPl		=	Permanent Reference Point 1
Curve	۲	80 =	Curve with 80km/h design
AADT		-	Average Annual Daily Traffic
vpd		=	vehicles per day
~		=	Horizontal Curve
^		=	Vertical Curve
/§		=	Up and Down Grade
х		=	Intersection
#		=	Railway Crossing
][=	Bridge

Note: (1) Refer also to discussion in Section 3.1.
REFERE	ENCE ITEM R MNEMONIC	NO OF	CHARACTER Positions	PICTURE	DESCRIPTION OF ITEM
• TR#	AFFIC OPERATIO	N DATA			
112	NCARR	. 1	382-382	9	NUMHER OF CARRIAGEWAYS
113	oc	ī	383-393	9	OPERATIONAL CLASS
114	AC	ī	384-384	9	DEGREE OF ACCESS CONTROL
. 115	LSL		385+397	999	LEGAL SPEED (IMIT (KH/H)
116	• EL	4	388-391	99999	PROPORTION OF LENGTH FOR WHICH KERBS FXIST - LEFT
117	KER	4	392-395	9499	PROPORTION OF LENGTH FOR WHICH KERHS EXIST - RIGHT
110	KFLR	4	396-399	94999	PROPORTION OF LENGTH FOR WHICH KERBS FXIST - LEFT & RIGHT
]] 9	₩PL	1	400-400	9	STANDING ALLOWED A.H. PEAK - LEFT
120	₽м₽Ĺ	1	401-401	9	STANDING ALLOWED P.H. PEAK - LEFT
121	OFPL	1	402-402	9	STANDING ALLOWED OFF-PEAK - LEFT
122	ANDO	1	403-403	9	STANDING ALLOWED A.M. PEAK - HIGHT
123	P ⁱ a P p	1	404-404	9	STANDING ALLOWED P.H. PEAK - HIGHT
124	OFPR	. 1	405-405	9	STANDING ALLOWED OFF-PEAK - RIGHT
125	OCOTYP	1	406-405	9	TYPE OF OFF-CENTRE OPERATION
125	חכטאר	1	407-407	9	NUMMER OF LANES INVOLVED IN OFF-CENTRE OPERATION
127	PLTYP	1	408-408	q	PRIORITY LANE TYPE
128	PLWDTH	3	409-411	99 79	PRIORITY LANE WIDTH (N)
129	POM	3	412-414	999	RIGHT OF WAY WIDTH (M)
F	PEN≁⊁NG⇒DATA				• •
130	NPXNG1	2	415-416	99 .	NUMHER OF UNSIGNALIZED PEDESTRIAN CROSSINGS
131	NEXNOS	2	417-418	99	NUMBER OF PEDESTRIAN CROSSINGS WITH SIGNS ONLY
132	HPXNG3	2	419-420	99	NUMBER OF PEDESTRIAN CROSSINGS WITH FLASHING LIGHTS
133	NPX1JG4	2	421-422	99	NUMMER OF PEDESTRIAN CROSSINGS WITH PEDESTRIAN-OPERATED STOP-GO SIGNALS
1	INTEPSECTIONS				
134	NTHTI	· 2	423-424	99	NUMBER OF INTERSECTIONS WITH NO TRAFFIC CONTROL
135	NINTZ	7	425-426	99	NUMBER OF INTERSECTIONS WITH "GIVE WAY TO RIGHT" RULE
136	<u>1113</u>	7	427-428	99	NUMBER OF INTERSECTIONS WITH STOP/GIVE-WAY SIGNS
137.	NINIA	2	429-430	99	NUMBER OF INTERSECTIONS WITH STUP-GO SIGNALS
R	ALL-XINGS	_		'	
336	NHXNGI	2	431-432	99	NUMBER OF RAILWAY LEVEL CROSSINGS WITH NO WARNING DEVICE
139	NRXNGS	Z	433-434	49	NUMHER OF RAILWAY LEVEL CROSSINGS WITH SIGNS/MARKINGS ONLY
140	NRANGJ	Z	435-436	49	NUMBER OF RAILWAT LEVEL CROSSINGS WITH WIG-WAGS OF FLASHING LIGHTS
141	NUXNGA	2	4 30 440	99	NUMBER OF RAILWAT LEVEL CROSSINGS WITH BOOM HARRIERS
174	NYXNUS	2	4J9-440	44	NUTHER OF RALLWAY LEVEL CROSSINGS WITH GATES
143	VDAADT		AA3_66A	0000	
144	AADT.	2	445-450	000099	ANNIAL AVERAGE DATLY TRAFFIC FOR YEAR OF AND TREATER CONTRACT
1.44	UAFETC_CBOWTH	U U			ANNOL AVERAGE DALLE TRAFFIC FOR FER OF ANDE (VEHICLES/DAY)
145	VOANTI		451-454	0000	YEAR) OF TRAFFIC FORFCAST
146	4011	Å	455-460	000000	
147	YRADT2	Ă	461-464	9999	YEAR 2 OF TRAFFIC FORFCAST
148	ADT2	6	465-470	99999	TRAFFIC FORECAST FOR YEAR 2 (VEHICLES/DAY)
149	YRADIS	4	471-474	9999	YEAR 3 OF TRAFFIC FORECAST
150	ADTO	6	475-480	079999	TRAFFIC FORECAST FOR YEAR 3 (VEHICLES/DAY)
7	HAFFIC-COMPOS	ITION			
151	TCCP	3	481-483	Adda	PROPORTION OF AADT WHICH IS CARS
152	TCLT	3	484-485	Adda	PHOPORTION OF AAUT WHICH IS LIGHT COMMERCIALS
153	TCRTK	.3	487-489	V999	PHOPORTION OF AADT WHICH IS HIGID TRUCKS
154	TCST	3	490-492	V999	PROPOPTION OF AADT WHICH IS SEMI-TRAILERS
155	TCHT	3	493-495	Aaud	PROPORTION OF AAUT HHICH IS ROAD THAINS
156	PUSES	4	495-499	0000	NUMHER OF AUSESZWEEKDAY
157	TRAMS	4	500-503	0999	NUMMER OF TRANS/WEEKDAY
	FILLER	7	504-510	904090	

TABLE 1 I SECTIONIZED ROAD INVENTORY - DATA ITEMS FOR NIMPAC

•

• NAASRA ROAD PLANNING HODEL - NIMPAC

ACCIDEN Numbers of accidents	T DATA Largest error of location	N A A Dist- PRP1	S R A HORIZ <80	R O CURVE 80-110	A D VERT <70	D CURVE 70-110	A T A GRA 2-6%	DE >6%	Surf. width	For	m Rou ith nes	gh- s	Speed Limit	AADT	% cars	No int	No RX	No Br
1		1.05km	~ o.oz	0.0%^	0.0%	6.2%/	130.6%	: 0.0	% 6m.	9∎	Rough⊐	59	80k/h	406vpd (63%)	×0	#0	זנ
		2.98km	~ 0.0%	0.0%^	0.0%	5.6%/	\71.9%	. 0. 0	% 6m	9 m	Rough=	59	110k/h	406vpd (63%)	×0	#0][
- <=- 1 Inj. 		5.47km 6.29km 6.80km	~ 0.0%	37.8%^	4.9%	0.0%/	\57.3% \88.2%	: 0.0 : 0.0	% 6m % 6m	9m 9m 9m	Rough= Rough=	59 60	110k/h 110k/h	227 vpd (227 vpd (395 vpd (64%) 64%)	×1 ×0	#0 #0 #0) () () (
-		8.96km 10.40km	~ 0.0%	0.0%	0.0%	9.8%/	\ 1.47 \\ 0.03	. 0.0 . 0.0 . 0.0	% бы % бы % бы	9m 9m	Rough= Rough=	69 69	110k/h 110k/h	395vpd (395vpd ((54%) (54%)	x0 x0	#0 #0) () (
		10.95km 11.88km	~ 0.0% ~ 0.0%	0.0%^	0.0%	0.0%/ 3.7%/	N 1.17 N17.67	(0.0 (0.0	% бња % бља	9т 9т	Rough= Rough=	61 61	110k/h 110k/h	395vpd 395vpd	(54%) (54%)	x0 x0	#0 #0)()(
- - - -	J.																	
-{ 		22.40km	~ 0.0%	0.0%^	0.0%	5.1%/	(\24.1)	60.0	% 6m	9 m	Rough=	55	110k/h	395vpd	(54%)	×0	#0	31
< 2 Inj.	[+/- 0.50]																	
<=~ 1 Inj.	[+/~ 1.73]	26.88km 28.37km	~ 0.0% ~ 0.0%	0.0%^ 0.0%^	0.0%	16.1%/ 2.2%/	\28.2% '\ 0.0%	(0.0 (0.0	% 6m % 6m	9 m 9 m	Rough≠ Rough=	76 62	110k/h 110k/h	395vpd 395vpd	(54%) (54%)	x0 x0	#0 #0	נ נ
< 1 Inj.	[+/- 0.50]		.								_ .			205.04			***	
< 1 Inj.	[+/- 0.50]	30.56km 30.77km 32.20km 34.34km	~ 0.0%	0.0%	0.0%	0.0%/ 5.6%/ 7.0%/	\ 0.07 \\ 0.07 \\ 6.57	< 0.0 < 0.0 < 0.0	7. 5m 7. 6m 7. 6m 7. 6m	9m 9m 9m	Rough= Rough= Rough=	62 62 62	110k/h 110k/h 110k/h	395vpd 395vpd 395vpd	(54%) (54%) (54%) (54%)	x0 x0 x0	#0 #0 #0) () () () (
< 3 Inj.	[+/- 4.62]	07.04KM	0.0%	2413%	0.07		(00.1)		~ 04	711	TOTAIL-	U.	1100,711	050794		~~~		-
		36.83km	~ 0.0%	0.0%^	0.0%	3.0%/	'N 3.27	: 0.0	% 6m	9m	Rough=	48	110k/h	395vpd	(54%)	×0	#0	31
4		42.80km	~ 0.0%	0.0%^	0.0%	3.4%/	135.47	۰.0	% 6m	9 m	Rough=	59	110k/h	395vpd	(547)	×0	#0	31
<=- 1 Inj.	[+/- 4.62]																	
4																		_

-

.

2 - 3 - <=- 1 Inj.	[+/- 1.98]
5 - 7 - 3 - 9 - 1 - 2 -	56.24km ~ 0.0% 0.0% ^ 0.0% 0.0%/\ 0.0% 0.0% 6m 9m Rough= 71 110k/h 395vpd(54%) x0 #0][(57.35km ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 6m 9m Rough= 71 110k/h 395vpd(54%) x0 #0][(57.73km ~ 0.0% 0.0% 0.0% 8.8%/\28.3% 0.0% 6m 9m Rough= 65 110k/h 395vpd(54%) x0 #0][(59.32km ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 0.0% 6m 9m Rough= 65 110k/h 395vpd(54%) x0 #0][(59.32km ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 0.0% 6m 9m Rough= 65 110k/h 395vpd(54%) x0 #0][(60.59km ~ 0.0% 0.0% 0.0% 7.2%/\55.9% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][] 61.70km ~ 0.0% 0.0% 0.0% 0.0%/\100% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][]
3 - 4 - 5 - 6 - 7 - 9 - 0 -	63.70km ~ 0.0% 0.0% 0.0%11.3%/\11.3% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][(65.30km ~ 0.0% 0.0% 0.0%17.0%/\34.0% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][(66.30km ~ 0.0% 0.0% 0.0% 4.8%/\24.2% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][(
1 - 2 - 3 -	73.30km ~ 0.0% 0.0% 0.0% 5.3%/\15.4% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0 30
5 - 6 - 1	75.13km ~ 0.0% 0.0% 0.0% 9.3%/\ 0.0% 0.0% 6m 9m Rough= 68 110k/h 395vpd(54%) x0 #0][(
9 - 9 - 1 - 2 -	77.64km ~ 0.0% 0.0% ^ 0.0% 5.5%/\37.4% 0.0% 6m 9m Rough= 65 110k/h 395vpd(54%) x0 #0][(
5 - <=- 2 Inj. 6	[+/- 4.62]
9	100.76km ~ 0.0% 0.0%^ 0.0% 0.0%/\76.4% 0.0% 6m 9m Rough= 78 110k/h 395vpd(54%) x0 #0] 102.03km ~ 0.0% 0.0%^ 0.0% 0.0%/\100% 0.0% 6m 9m Rough= 78 110k/h 395vpd(54%) x0 #0]
3 - 4 - 5 - 6 - 7 - 8 - 9 - 0 - 1 -	105.25km ~ 0.0% 0.0% 0.0% 1.6%/\98.4% 0.0% 6m 9m Rough≈ 58 110k/h 395vpd(54%) x0 #0] 105.89km ~ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 6m 9m Rough≈ 58 110k/h 395vpd(54%) x0 #0] 106.40km ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 0.0% 6m 9m Rough≈ 58 110k/h 395vpd(54%) x0 #0] 106.75km ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 0.0% 6m 9m Rough≈ 70 110k/h 355vpd(54%) x0 #0] 108.20km ~ 0.0% 0.0% 0.0% 4.0%/\ 0.0% 0.0% 6m 9m Rough≈ 70 110k/h 3°5vpd(54%) x0 #0]

112 - 113 - 114 -	112.17xm ~ 0.0% 0.0% 0.0% 0.0%/\ 0.0% 0.0% 6m 112.81km ~ 0.0% 0.0% 0.0% 0.0%/\ 2.4% 0.0% 6m	Ув Rough= 70 110k/h 395vpd(5 9m Rough= 70 110k/h 395vpd(5	54%) x0 #0 3[0 54%) x0 #0 3[0
115 - 116 - 117 - 118 - 119 - 120 -	117.48km ~ 0.0% 0.0% 0.0% 0.0%/\54.2% 0.0% 6m 117.96km ~ 0.0% 0.0% 25.9% 0.0%/\63.0% 0.0% 6m 118.23km ~ 0.0% 0.0% 0.0% 0.0%/\84.4% 0.0% 6m 118.55km ~ 0.0% 0.0% 0.0% 3.2%/\ 7.9% 0.0% 6m	9m Rough= 70 110k/h 395vpd(5 9m Rough= 70 110k/h 395vpd(5 9m Rough= 63 110k/h 395vpd(5 9m Rough= 63 110k/h 395vpd(5	54%) x0 #0][0 54%) x0 #0][0 54%) x0 #0][0 54%) x0 #0][0
122 - 123 - 124 - 125 - 126 -	123.60km ~ 0.0% 0.0% 0.0%11.8%/\23.5% 0.0% 6m 125.30km ~ 0.0% 0.0% 0.0% 0.0% (0.0%) 0.0% 6m	9m Rough= 63 110k/h 395vpd(5 9m Rough= 63 110k/h 395vpd(5	54%) x0 #0][0 54%) x0 #0][0
127 128 129 130 131 132	$130.34 km \approx 0.0\% 0.0\% 0.0\% 0.0\% 9.7\% / 25.7\% 0.0\% 6m$	9m Rough= 57 110k/h 395vpd(5	54%) x0 #0][0
133 - 135 - 135 - 136 - 137 - 138 -			
140 141 142 143 144 145	139.68km ~ 0.0% 0.0% 7.0% 7.4%/\14.1% 0.0% 6m	9m Rough= 59 110k/h 395vpd(5	54%) x0 #0][0
146 - 147 - 148 - 149 - 150 -	148.66km ~ 0.0% 0.0% 0.0%22.0%/\76.0% 0.0% 6m 150.16km ~ 0.0% 0.0% 0.0% 6.0%/\44.0% 0.0% 6m 151.16km ~ 0.0% 0.0% 6.0%/ 44.0% 0.0% 6m	9m Rough= 53 110k/h 395vpd(5 9m Rough= 54 110k/h 395vpd(5 9 Rough= 54 110k/h 395vpd(5	54%) x0 #0][0 54%) x0 #0][0 54%) x0 #0][0
151 - 152 - 153 - 154 - 155 -	154.15km ~ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 6m	9m Rough= 54 110k/h 395vpd(5	54%) x0 #0][0
156 - 157 - 158 - 159 - 160 -	156.65km ~ 0.0% 0.0% 0.0% 6.9%/\12.7% 0.0% 6m	9m Rough= 63 110k/h 395vpd(5	54%) x0 #0][0
161 162 163 164 165 165 166 166 166 167 168 168			
170 _ 171 _			

ŧ

172																								
174						174	45km	~ 0.0%	: 0 0%^	0.0%	14 5%/\	25 9%	0.0%	6=	9 m	Rough=	52	110k/	'h 39	Svpd(54%)	хÛ	#0	300
175		_	. .													•				•				
176	<=-	1	lnj.	L+/- 0.	. 50 1																			
178	1					177 (61km	~ 0.0%	. o oxn	0.0%	8 2%/\	14 3%	0.0%	6 ш	9 m	Rough=	46	110k/	′h 3 9 9	Svpd (54%)	xì	#0	300
179 180		1	Tri	(+/- 0	רפכ																			
181		-	1113 -	177- 0.																				
182																								
184																								
185																								
187																								
188																								
190																								
191	I.																							
192	1																							
194																								
195																								
197	İ																							
198	i																							
200																								
201						201	c 7 1	~ ^ ^	0 070	0.04	E 77/1	20 JY	0.01	,	o-	D b_	25			. ,,	5445	•		750
202	1					201.1	о (кла	• 0.0/	. 0.04	0.041	15 77.71	29 3%	0.0%	6 11	9m	Kougn=	35	11087	'n 39:	vpd (54%)	0	#0	10
204																								
205																								
207						206.	52 ka	~ 0.0%	0.0%	0.0%	4.4%/\	25.3%	0.0%	6 т	9m	Rough=	27	110k/	'h 39!	vpd (54%)	x 0	#0	10
208						208.	10 km 15 km	~ 0.0%	0.0%~	0.0%	0.0%/\	0.0%	0.0%	6 m.	9m 9m	Rough= Rough=	72	110k/	'h 395 'h 395	ovpd (54%) 54%)	x0 x0	#0 #0	300
210	ļ														-	_	•••				•	~+		
211	< _	1	In.i.	[+/ 0	. 991	211.	02km	~ 0.0%	0.0%^	0.0%	7.2%/\	12.9%	0.0%	6 m	9 m	Rough=	30	110k/	'h 39!	ōvpd (54%)	x 0	#0	300
213		-		• • •																				
214	1					214	516-	~ 0 01	0 070	0.07	0 07/1	0.07	0.07	<u> </u>	o_	Boucha	4.1	11067	/h 301		5441		*^	100
216						614.	JIKE	0.07	. 0.0%	0.04	0 0 17 1	0 07	0.0%	ош	эш	voažu-	-1	TIOR	n 39:	vpa	3447	xu	*0	310
217						210	<u> </u>	~ ^ ^	0 070	0.07	0 07/1		0.0%	٤_	÷-	B	27	1101.7	-		E 4 4 1		-0	150
219						210.	OIRE	0.0/	. 0.0%	0.04	0 0 // 1	20 0%	0.02	0 11	78	Koužu-	32	TIOR	п 39:	vpa	3441	χU	#0	310
220						220	E 11	~ ~ ~ ~		0.07	2 04 1	10.04	0.07	<i>.</i> .	0-	D	~~				-		**	
222	1					220.	SIX#	0.07	. 0.0/~	0.0%	2 34/\	10 8%	0.0%	614	78	KOUgh=	20	110K/	n 39!	vpd (34%1	χU	#U	110
223	1							~ ~ ~		A AN	0.080				~	. .						•		
225	1					223.	9 (K 12	- 0.07	0.0%	0.0%	0 04/1	4 2%	0.0%	¢в	72	Kough≖	40	110K/	n 395	vpd .	5471	Ų	#U	JLO
226	1																							
228	1																							
229	-																							
230	:																							

1																							
232	4																						
:233	1																						
274																							
1000	1																						
1235	-			-																			
1236 .	4																						
237	1																						
238						228 504-	~ n	07	0 070	0.07	0.07/1	0 07	0 07	£ -	۵.	Pought	76	110275	205.md (5471	~0	#0	110
2 7 9]					200.004			0.04	0.0%	0.0/./ (0.02	0.04	Од	7 10	vodău-		1108711	0,000	0.147	~~		
1240]					240 001-	~ ^	~~	0 0 0 0	~ ~~	0.000	A A7	0.08		0	D	70	1101-75	705	E 4 7/ \		**	100
1241]					240.00x	. ~ ~		0.04	0.0%	0.04/1	0.0%	0.0%	õ.	78	Kougn=		1108/1	3320pd (542)	xu	40	150
1242	1					240.08R1	1 ⁻ 0	. 0.2	0.0%	0.0%	0.0%/\	0.0%	0.0%	6 📾	75	Kough=	41	110K/h	395vpd (54%)	хU	ΨU	110
2 2 2	1								_				_							-	_		
2 - 3 -	1					242.83kı	• ~ 0	. 0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	6 m.	9 m	Rough=	64	110k/h	395vpd (54%)	×0	#0][0
1244	1																						
245	-																						
1246	4					246.49kt	• ~ o	. 0%	0.0%	0.0%	0.0%/\	0.02	0.0%	6	9	Rough=	71	110k/h	395vpd (54%)	хÖ	#0	100
247	1									••••							• •		0,0,0,0	•			
248	}					247 00%-	~ ^	0.4	~ ~*~	A AV	0.040	A 47	0.04	,	.	D	00	1101.75	205	E44)		*0	150
2.0	1					441.7781		.0%	0.04	0.0%	0.0.7	0.0%	0.04	02	92	Kougn=	62	TICK/H	332Aba (347)	xu	*0	110
250	1					_ .																	
.200	1					249.99k:	•~ 0	.0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	6 m	9=	Rough=	72	110k/h	395vpd (54%)	хO	#0	360
251	1																						
:252 .	-																						
253	1																						
254	1																						
255	1																						
1254	7					A	~ ~			~ ~ "			~ ~ ~ ~		•	. .				F 4 94 3	~		
1250	1					255.99KI	• - U	.0%	0.02~	0.0%	0.0%/\	0.0%	0.0%	6 🖬	Эm	Kough=	62	110%/h	395vpd (5421	xu	#U	110
1201	1																						
258	1																						
259	-																						
260	-																						
261	4																						
:262	4																						
263	1					263 48k-	. ~ o	02	0 070	0.07	0.07/	0 07	0.07	۲.	<u> </u>	Powela	9 1	110676	205.upd (5471	<u>~</u> 0	#0	110
264	5					200.4081			0.0%	0.04	0.047	0.0%	0104	uш	л	nougn-	01	1100.21	00000000	0.111	~~		
265	1						~ ~					~ ~ ~ ~			-	- .					~		
.265	1/	4	Tal			204.90KI	9 - Q	- 0%	0.0%	0.0%	0.027	0.0%	0.0%	62	9표	Kougn=	52	1108/5	3950001	3441	ΧU	#Q	110
200	1	1	inj.	1+/- (0.501																		
267 .	4																						
268	1																						
269 .	4																						
270 .	-					270.48ks	~ 0	. 0%	0.0%	0.0%	0.0%/\	0.0%	0.02	6 m	9	Rough=	57	110k/h	395vpd (54%)	хO	#0	010
271 .	1							• - ••		010/	••••		****				0.	110000	0,0,0,0	-			
272 .	Ì<=-	ĩ	Tri	$f \neq I = I$	0 001	272 00%-	. ~ n	07		o o•/	0.020	0 0 V	0.0%	~	n _	D = L	c 7	1101.75	205	5473		#0	100
273	1	-			0.331	272.008		.04	0.04	0.0%	0.077	0.0%	0.04	08	85	Rough=	57	110k/h	3950pd (5 4 4 1	xu	#U	100
274	7					272.208	7 ~ 0	.0%	0.0%^	0.0%	0.07/\	0.07	0.0%	6 m.	8=	Rough≡	57	1108/h	395vpd (54%)	xU	40	JLO
	1					272.98ks	• ~ O	.0%	0,0%^	0.0%	0.0%/\	0.0%	0.0%	6 m	8 m.	Rough=	40	110k/h	395vpd(54%)	×0	#0	360
. 215 .	4					274.98k;	•~ 0	.0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	6 🖿	8 m.	Rough=	44	110k/h	395vpd (54%)	×0	#0	3[0
1276 .	1					276.47k:	•~ 0	. 0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	61	8 m.	Rough=	40	110k/h	395vpd (54%)	x 0	#0	01C
277 .	 <=−	1	Inj.	[+/- 4	4.01]											-							
:278 .	4																						
1279 .	4																						
1280 .	4																						
281	1					280 071	. ~ ^	0.	0 070	0.0*	0.04/	0 0 ~	0.04	c .	¢ -	D	= •	1101-71	30E	5441		#0	110
:282	j					100.7/KI 200 17/	. ~ ~	. 07	0.04	0.0%	0.04/1	0.04	0.07	611	- 02	Rough=	21	1108/1	372VPG \	5441		#U	700
283]					282.4 <i>(</i> ki	1 - U	. UZ	0.0%	0.0%	0.07/	0.07	0.0%	6 m	9 W	Kough=	41	1108/2	395vpd (34%)	χŲ	NU N	710
1204]																						
1200	1																						
1603 -	1																						
206 -	1																						
1 287 .	4																						
288 .	1																						
289 .	4																						
290 .	1																						
b	1																						

291

÷

292 293	1																									
294 295	1																									
296	-				29(29)	5.00	km. ^ km: ^	0.0	0.0%		0.0%	0.0%	ハ ハ	0.0%	0.0%	6 m 6 m	9± 9±	Rough≠ Rough=	41 53	110k/h 110k/h	395vpd (395vpd (54%) 54%)	x0 x0	#0 #0	01C 01C	
298	-				29	7.73	km ~	0.0;	0.0%	n c	0.0%	0.0%	N	0.0%	0.0%	6 =	9 m	Rough=	36	110k/h	395vpd (54%)	×0	#0	350	
300	-																									
302	1				30:	2.23	k 🗠	0.07	a.0%	in d	0.0%	0.0%	Λ	0.0%	0.0%	6 m	9 =	Rough=	46	110k/h	395vpd (54%)	×0	#0	360	
304	1				30	3.73	km]	0.0	0.0%		0.0%	0.0%	Ņ	0.0%	0.0%	6 m	9 m	Rough=	38	110k/h	395vpd (54%)	x0	#0	010	
305	1				30	3.23	кт	0.0.	. 0.07	• •		0.0%	~	0.0%	0.0%	-	714	Kough-	37	1108/1	395Vpa(54%)	xu	#0	110	
307 308	- -<=-	1	Fat.		30- 30	6.73) 7.73	հա, ^ հա, ^	0.0	0.0%	\sim	0.0%	0.0%	Λ	0.0%	0.0%	6 m. 6 m.	9 m. 9 m.	Rough= Rough=	69 41	110k/h 110k/h	395vpd(395vpd(54%) 54%)	x0 x0	#0 #0][0	
309 310	1				31	0.23	km ~	0.0;	. 0.0%	in d	0.0%	0.0%	$\overline{\Lambda}$	0.0%	0.0%	6 m	9 ma	Rough=	53	110k/h	395vpd (54%)	×0	#0	100	
311 312	< = -	1	Inj.	[+/- 0.99	3																					
313 314	1				31	3.73	<u>է</u> ու Դ	0.0	0.0%	:^ (0.0%	3.0%	\sim	0.0%	0.0%	6 m	9 т	Rough=	30	110k/h	395vpd (54%)	×0	#0	320	
315 316	1				31	5.73	km `	0.0:	0.0%	(^ (0.0%	0.0%	Л	0.0%	0.0%	6 m	9 m	Rough=	36	110k/h	395vpd (54%)	×0	#0	300	
317 318	}																	-			•					
319	-																•									
321]																									
323														•		,	~	. .	.		205 14		•			
324 325					32	4.23	KDA	0.0	. 0.0/		0.0%	0.0%	~	0.0%	0.04	DR	של	kougn=	31	110K/h	395Vpa (34%)	χU	#U	110	
326 327	4																									
328 329	4																									
330 331	1				33	0.46	km]	0.03	: 0.0%	·^ (0.0%	0.0%	\sim	0.0%	0.0%	6 🖬	9 m	Rough=	36	110k/h	395vpd(54%)	×0	#0	300	
332 333	1				33	3.22	km. ^	- 0.0	(0.0)	(^ (0.0%	0.0%	Л	0.0%	0.0%	6 🖬	9 m.	Rough=	41	110k/h	395vpd (54%)	хO	#0	360	
334 335	1				33	3.40	km L	0.0		(\uparrow)	0.0%	0.0%		0.0%	0.0%	6 m	9m 9m	Rough=	41	110k/h 110k/h	395vpd(54%) 54%)	ж0 х0	#0 #0	03C0	
336		,	T_ /	r./- 4 01	יים בכ ו			- 0.0		· ·	0 07	0.0%	~~~	0.07	0.07	<u> </u>	- · -	Rough	34	1104/5	395und (547)	~0	#0	100	
338		1	1111.	(4)- 4.01	1 33	1.00	K III	0.0	. 0.07	- 、	0.0%	0.0%		0.0%	0.0%		7	Nedgie	3 -	1108/11	5555621	3747	ÂŬ		100	
340	1				34	0.00	km ^	- 0.0	(0.0)	<u>،</u> ^ (0.0%	0.0%	Л	0.0%	0.0%	6 m.	9 m	Rough=	34	110k/h	395vpd (54%)	хO	#0	300	
342	1																									
343	1																									
345 346	1				34	5.72	km -	• 0. 0	. 0.07	<u>،</u> ۲۰	0.0%	0.0%	Л	0.0%	0.0%	б т	9m	Rough≠	35	110k/h	395vpd (54%)	×0	#0	360	
347 348	1				34 34	6.25 6.75	km km	0.0	(0.07 (0.07		0.0%	0.0%		0.0%	0.0%	6 m 6 m	9 m. 9 m.	Rough= Rough=	35 35	110k/h 110k/h	395vpd(395vpd(54%) 54%)	x0 x0	#0 #0)[0][0	
349 350	}				34	7.72	ka ka	0.0	0.0		0.0%	0.07	Ň	0.0%	0.0%	6 m	9 m 0 -	Rough=	27	110k/h	395vpd (54%)	x 0 x0	#0 #0	3CO 3CO	
351]				35	1.22	km '	- 0.0	(0.0)	;~ i	0.0%	0.0%	2	3.6%	0.0%	6 m.	9 m.	Rough=	33	110k/h	395vpd(54%)	xŨ	#0	100	

1352 1353 1354 1355 1356 1356 1357 1358 1360 1361 1362 1363 1364 1364 1365																						
1366 1367 1368 1369 1370	<=	1 Inj		[+/- /	4 013	367.25km 367.75km	~ 0.0% ~ 0.0%	0.0%^ 2.3%^	0.0% 0.0%	0.0%/\ 2.6%/\:	0.0% 11.1%	0.0%	6 ж 6 ж	9m 9m	Rough≖ Rough=	33 33	110k/h 110k/h	395vpd (395vpd (54%) 54%)	x0 x0	#0 #0	01C 01C
1371 1372 1373 1374 1375 1376 1376 1377 1378 1380 1381 1382 1383 1385 1385 1385 1385	<=-	2 Inj 1 Inj		[+/-50	003																	
387 388 390 391 392 393 394 395 395 397 398 397 398 399 400 401 402 403 405	< = -	1 Inj		[+/-	0.50]	386.60km 387.10km	~ 0.0%	0.0%~	0.0%	6 3%/\	0.0%	0.0%	ნლ მლ	9 m 1 9 m 1	Rough= Rough≖	33	110k/h 110k/h	395vpd (395vpd (54%)	×0 ×0 ×0	#0 #0	010
406 407 408 409 410 411	<	2 Inj 1 Inj	-	[+/- [+/-	3.49] 0.50]	407.00km 407.20km	~ 0.0% ~ 0.0%	0.0%	0.0%	0.02/\ 0.02/\	0.0%	0.0%	6 m 6 m	9m 9m	Rough= Rough=	33 33	110k/h 110k/h	395vpd (395vpd (54%) 54%)	×0 ×0	#0 #0)[0][0

4				
4	412.72km ~ 0.0% 7.6	x^ 0.0% 0.0%/\ 0.0% 0.0%	6m 9m Rough= 44 110k/h	395vpd(54%) x0 #0][
1	415.21km ~ 0.0% 0.0	x^ 0.0%12.7%/\ 0.0% 0.0%	6m 9m Rough= 48 110k/h	395vpd(54%) x0 #0]
4	416.71km ~ 0.0% 1.3	x^ 0.0% 2.0%/\ 0.0% 0.0%	6m 9m Rough∓ 33 110k/h	395vpd(54%) x1 #0]
1 = 1 Inj. [+/-3].	19]			
4				
	440 50km ~ 0.0% 0.0	70 0.0% 0.0%/\ 0.0% 0.0%	6 m 9 m Rougha 33 110k/b	395vod/ 54%) v0 #0 3
<=- 2 Inj. [+/- 1.	51] 441.20km ~ 0.0% 0.0	x^ 0.0% 0.0%/\ 0.0% 0.0%	6m 9m Rough= 33 110k/h	395vpd(54%) x0 #0]
	442.60km ~ 0.0% 0.0	x^ 0.0% 0.0%/\ 0.0% 0.0%	4 6m 9m Rough= 33 110k/h	395vpd(54%) x0 #0]
	443.72km ~ 0.0% 0.0	X^ 0.0% 0.0%/\ 0.0% 0.0%	6m 9m Rough= 33 110k/h	395vpd(54%) x0 #0]
<=- 1 Inj. [+/- 3.	445.15km ~ 0.0% 0.0 49] 446.10km ~ 0.0% 0.0	x^{-} 0.0% 0.0%/\ 0.0% 0.0%	6 m 9m Rough= 33 110k/n 6 m 9m Rough= 33 110k/h	- 395vpd(54%) x0 #0] - 395vpd(54%) x0 #0]
	446.58km ~ 0.0% 0.0	X^ 0.0% 0.0%/\ 0.0% 0.07	6m 9m Rough= 40 110k/h	395vpd(54%) x0 #0 3
	447.10RH 010% 010		. om ym Rough- 40 110k/h	393Vpd(34%) x0 #0 j
4				
1	453.00km ~ 0.0% 0 0	%^ 0.0% 2 5%/\16 1% 0.0%	6m 9m Rough= 40 110k/h	395vpd(54%) x0 #0]
1				
-	458 65km ~ 0.0% 4 6	70 0.07 2 87/\ 0 07 0 03	(6 - 9 - Pourb 46 110k/b	395
4			on yn Koogn do Hokyn	0,000put 0447 x0 40 3
1	462.16km ~ 0.0% 0 0	X^ 0.0X 4 0X/\ 9 2X 0.02	6 m 9 m Rough 30 110k/b	395vnd(54%) v0 #0 1
				••••••••••••••••••••••••••••••••••••••
1 = 1 1h3. $1 + 7 = 0$	501			
4				
7				
1				
]				

ļ

• •472 - •473 - •474 -					471.68km 473.19km	~ 0. ~ 0.	0%	0.0%^ 0.0%^	0.0%	7.9%/ 5.0%/	17.2%	0.0%	6 m 6 m	9m 9m	Rough= Rough=	36 33	110k/h 110k/h	3 95v pd (3 95v pd (54%) 54%)	×0 ×0	#0 #0	01C 01C
475 -					476.19km	~ 0.	.0%	0.0%^	0.0%	6.6%/	0.02	0.0%	6 m	9 m.	Rough ≖	42	110k/h	3 95 vpd (54%)	×0	#0	300
+477 _ 478 _					477.70km	~ 0.	0%	0.0%^	0.0%	0.02/	0.02	0.0%	6 .	9 m	Rougha	37	110k/h	395vpd (54%)	хO	#0][O
479 -					479.20km	~ 0.	0%	0.0%^	0.0%	7.0%/	0.07	0.0%	6 ш	9m	Rough=	28	110k/h	395vpd (54%)	×0	#0	300
481 - 1482					481.20km	~ 0.	07	0.0%^	0.0%	8.0%/	0.07	0.0%	6=	9m	Rough=	35	110k/h	3 95vpd (54%)	хO	#0	360
483																						
485 -			_		484.71km	~ 0.	.0%	0.0%^	0.0%	0.0%/	0.02	0.0%	6 m	9≖	Rough=	32	110k/h	395vpd (54%)	x 0	#0	סזנ
-486 - -487 -	<=→	1 In	ij	[+/- 3.49]	486.71km	~ 0.	.0%	0.022	0.0%	0.0%/	0.02	0.0%	6 .	9 m	Rough=	55	110k/h	3 95vpd (54%)	x0	#0	100
-488 _ -489 _					488.44km	~ 0.	0%	0.0%^	0.0%	0.0%/	0.07	0.0%	7 m 6 m	11=	Rough=	39 32	110k/h	395vpd (54%) 54%)	x0 x0	#0 #0	03C 01C
:490 -					OFTOTAL			0.0%	0.0%	2.3/1/	. 0.07			-	Kongu-	JL	1108/1	or of the second				
492																						
-1493 - -1494 -					494.23km	~ 0.	. 0%	0 0%~	0.0%	0.9%/	1.92	0.0%	6=	9m	Rough=	44	110k/h	395vpd(54%)	×0	#0	300
1495 -	<=-	1 F.	ŧ.	(+/- 3 491						• • • •					8			•				
497 -				277- 31493																		
499																						
!500 - !501 -																						
:502 - :503 -																						
·504 -																						
506 -	1				505 76km	~ 0.	. 0%	4 1%^	0.0%	2 5%/	\ 0.0	. 0.0%	6 ш	9 m.	Rough≠	31	110k/h	395vpd (54%)	0	#0	300
507 - 508 -																						
509 - 510 -	<=-	1 F <i>a</i>	it																			
511 - 512																						
513 -	}																					
514 -																						
516 - 517 -	<=-	1 In	ن. ا	[+/- 3.49]																		
:518 - :519 -																						
520																						
521					521.79km	~ 0.	. 0%	0.0%^	0.0%	5.2%/	\ 0.0;	. 0.0%	6=	9m	Rough=	53	110k/h	395vpd (54%)	×0	#0	300
:523 - 1524 -	<=	1 Fa	it		524.30km	~ o.	. 0%	0.0%^	0.0%	0.0%/	\ 0.0:	4 0.0X	6∎	9 m	Rough=	50	110k/h	395vpd (54%)	×0	#0	300
1525 -					525.80km	~ 0.	. 02	0.0%*	0.0X	0.0%/	<u> </u>	« 0.0%	6 m	9	Roughe	52	110k/h	395vpd (54%)	×0	#0	300
527					529 E01-	~ ~	07	0.070	0.0*	6 447	\ 0 71	200 QV	7-	9	Bouete	45	1104/5	395und (54%)	x 1	#0	110
1529		. .			320.30KB	U.		0.04.	0.04	0.94/	· 0.2	.22.74	ſ A	<i>3</i> B	YOURDE	-0	1108/0	9394b94	2			210
1530 -	< = -	1 Ir	L.	1.00]																		
1																						

532 . 533 . 534 .	4						533.00km 534.13km	* ~	0.0%	0.0%^ 0.0%^	0.0%	0.0%/\ 0.0%/\	0.0%	0.0% 0.0%	6m 6m	9 m 9 m	Rough= Rough=	45 45	110k/h 110k/h	395vpd (395vpd (54%) 54%)	×0 ×0	#0 #0	01C 01C
536 .	<=-	1	Inj.	+ ۲	-/- :	3.87]																		
537 . 538 . 539 .							538.00km	~	0.0%	0.0%^	0.0%	1.5%/\	0.0%	0.0%	7 m	10 m	Rough=	45	110k/h	395vpd (54%)	x 0	#0	100
540 . 541 . 542	<=-	1	Inj.	[4	+/-	1.12]																		
543	ļ																							
545	1																							
547	4																							
548 549	4																							
550 551	1																							
552 553	1																							
554 555 -																								
556 557	- < <i>≖−</i> -	2	Inj.	۲-	+/	3.87]																		
558 559	4																							
560. 561	-																							
562 563		2	Inj.	٢.	+/	0 501	562.56km	~	0.0%	0.0%^	0.0%	0.0%/\	0 0%	0.0%	7-	10-	Rougha	45	1106/6	395vnd (54%)	~0	#٥	ηŕο
564 565	<=- <=-	1	Fat. Ini.	-	-/-	0 501	563.92km	~	0.0%	0.0%	0.0%	0.0%/\	0.0%	0.0%	7 m 7 m	10m	Rough=	45	110k/h	395vpd(54%) 54%)	x0	#0 #0	01C0
566 567]	-			.,	0.001	567 41km	~	0.0%	0.072	0.07	0.07/	0.07	0.07	7-	10-	Paugha	45	1104/1	295md (547)	~~	#0	110
568]						549 41ka	~	0.07	0.0%	0.0%	0.07/	0.0%	0.0%	7.	10	Rough-	40		3950pd (5471		*0	750
570	-						557. 401	~	0.0%	0.0%	0.0%	0.0%/	0.0%	0.0%	-	10 m	Kougn-	40	110870	395004(54%)	×0	#0	310
572	1						572.40km	~	0.0%	0.0%	0.0%	0.0%/\	0.0%	0.0%	(m 7m	10m 10m	Rough=	45	110k/h	395vpd(54%)	x0	#0	10
573							573.40km		0.0%	0.0%	0.0%	0.0%/\	0.0%	0.0%	<i>(</i> m	10m	Rough	45	110k/h	395vpd (54%)	×Ų	WU	110
575 576																								
577 578	-																							
579 580	1						579.39km	~	0.0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	7 m.	10 m	Rough≖	45	110k/h	395vpd (54%)	хO	#0	סזנ
581 582	4																							
583 584	1						583.38km	~	0.0%	0.0%^	0.0%	0.0%/\	0.0%	0.0%	7 a	10m	Rough=	45	110k/h	395vpd (54%)	×0	#0	300
585 586	-						585.37km	~	0.0%	0.0%^	0.0%	1.1%/\	0.0%	0.0%	7∎	10 m	Rough=	45	110k/h	395vpd (54%)	x 0	#0][0
587 588	-																							
589 590	-																							
591	-																							

•																				
592 .	ł																			
593 -	1																			
1594 .	1																			
595	<=-	1	Taí	r + / - ·	3 653															
597	<u> </u>	•	1																	
598	4																			
1599 -	+					COO 341-	~ ^ ^*		0.07	0 0K ()		•/ 7	10-	9 - -	45 11	0k /h	295.und (5471 ·		0 10
601	1					600.34Km	0.0%	0.0%	0.02	0.02/1	0.02 0.0	/• ()	IUE	KOUNN-	45 11	UR/II	39300441	54/4/ 3		0 10
602	<=-	1	Inj.	C+/- (0 503	602.33km	~ 0.0%	0.022	0.0%	0.0%/\	0.0% 0.0	% 7 m	10=	Rough≠	45 11	0k/h	395vpd (54%)	x0 #	0][0
603	}																	•		
604.	1																			
юос.]					606.32km	~ 0.0%	0.0%^	0.0%	0.0%/\	0.0% 0.0	% 7 s	10m	Rough=	45 11	0k/h	395vpd (54%)	x0 #	0 300
юб07.	1													-						
608.	{					607.82km	~ 0.0%	0.0%^	0.0%	0.0%/\	0.0% 0.0	% 7=	10⊞	Rough≖	45 11	0k/h	395vpd (54%)	x1 4	10 300
+609 . -610	1																			
:611]																			
612 .	4																			
1613	}																			
1614 ·	1																			
616	1																			
617	1																			
1618	1.																			
1619	>	1	Inj.	L+/	0.853															
1621	1																			
1622	4																			
1623	-								.					n) -	45 1		205	E 1 11 3		
1624 ·	$ _{\mathcal{L}=-}$	•	Ini	5 - 1 -	2 202	624.28km	0.07	0.0%*	0.0%	0.0%/\	0.0% 0.0	17. 7 =	i IOm	Kough-	45 1.	IUM/n	3950001	544)	xu i	.0 110
626	1	1	111.3.	14/-	3.203	625.78km	~ 0.0%	0.0%^	0.0%	0.0%/\	0.0% 0.0)% 7±	10m	Rough=	45 1	10k/h	395vpd (54%)	x0 (#0][O
627	-													D			-			
628 .	{																			
629	1																			
631]																			
632	4																			
633	-					633.00km	~ 0.0%	0.0%^	0.0%	0 8%/\	0.0% 0.0)% 7 .	10m	Rough=	4 1	10k/h	395vpd (54%)	x0 4	40][O
634	1																			
636]																			
:637	4																			
-638	1																			
:640	1																			
1641	-																			
1642	-																			
1643	1																			
1645	1																			
646	4																			
647	{																			
648]																			
650]																			
1651	-																			
ł																				

652 - 653 - 654 - 655 - 656 - 657 - 658 - 659 - 660 -																						
661 - 662 - 663 - 664 - 665 - 666 - 667 - 668 - 667 - 671 - 672 - 673 -	<=-	1	Inj		[+/-	1 123	661.91km 663.41km	~ 0.0% ~ 0.0%	0.0%	0.0%	0.0%/\ 2.0%/\	0.07 0	0.0% 7	7 m. 10 и 7 m. 10 и	a Rough= a Rough=	• 45 • 45	110k/h 110k/h	395vpd (395vpd (54%) 54%)	*0 *0	#0 : #0 :	100
674 - 675 - 676 - 677 - 678 - 679 - 680 - 681 - 681 - 682 - 683 - 683 - 684 -		1	Ing		[+/-	0.753																
685 686 687 688 690 691 692 693 694 695 695 695 695 695 695 695 700		1	Inj	í.	[+/-4	0.50]																
702 703 704 705 706 707 708 709 710 711							702.00km	~ 0.03	4 6X ⁻	` 0.0Z	0 0%/\	.17.5% 0	0.0% (6m 91	Rough=	- 37	110 k/ h	395vpd (54%)	x0	#0]	10

712 _ 713 _ 714 _	712.13km ~ 0.0% 3.2%	~ 0.0% 6.7%/\19.1% 0.0%	6a, 9m Rough= 37 110k/h	294vpd(64%) x2 #0][0
715 <=- 1 Inj [+/- 0.50] 716 - 717 - 718 - 719 - 720 - 721 - 722 - 723 - i				
······································				

Printed: 19/02/88

NELA

APPENDIX E: STATISTICAL TESTS OF COMPARISONS BETWEEN CRASH FREQUENCY AND ROAD PARAMETERS

.

.

Roughness Counter	Proportion of Road (Px)	Ру=1-Рх	No. of Crashes on Given Road Roughness (x)	Total No. of Crashes (n)	Expected No. of Crashes E=Px x n	Z-Statistic (if applic- able)	Probably of No signifi- cant Difference (P)	Statistical Test
<=30	.0327	.9673	8	188	6.15	n/A	P > 10%	Poisson
31-35	.2088	.7912	43	188	39.25	.58	P > 10%	zI
36-40	.0877	.9123	9	188	16.49	N/A	10% > P 75%	Poisson
41-45	.2965	.7035	64	188	55.74	1.24	P > 10%	zI
4650	.732	.9268	10	188	13.76	N/A	P > 10%	Poisson
51-60	.1040	.8960	21	188	19.55	N/A	(1)	-
61-70	.1679	.8321	30	188	31.57	N/A	(1)	-
>70	.0292	.9708	3	188	5.49	N/A	P > 10%	Poisson

TABLE El: ROUGHNESS AND CRASHES - STATISTICAL COMPARISON

Note: (1) Poisson test does not apply since Px > 10%. (2) zI test does not apply since x < 40.

Road Surface Width	Proportion of Road (Px)	Py=1-Px	No. of Crashes on Given Road Width (x)	Total No. of Crashes (n)	Expected No. of Crashes E=Px x n	Z-Statistic (if applic- able)	Probably of No signifi- cant Difference (P)	Statistical Test
6m	.7662	.2338	132	188	144.05	2.08	1% < P < 5%	zI
7m	.2338	.7662	52	188	43.95	1.30	P > 10%	zI

TABLE E2: SURFACE WIDTHS AND CRASHES - STATISTICAL COMPARISON

Road Alignment	Proportion of Road (Px)	Py=1-Px	No. of Crashes on Given Road Type (x)	Total No. of Crashes (n)	Expected No. of Crashes E=Px x n	Z-Statistic (if applic- able)	Probably of No signifi- cant Difference (P)	Statistical Test
Straight Curve	.9930 .0070	.0070 .9930	170 16	188 188	188.68 1.32	14.59 N/A	P < 0.2% P < 0.2%	zI Poisson

.

TABLE E3: ALIGNMENT AND CRASHES - STATISTICAL COMPARISON

Road Grade	Proportion of Road (Px)	Ру=1-Рх	No. of Crashes on Given Road Type (x)	Total No. of Crashes (n)	Expected No. of Crashes E=Px x n	Z-Statistic (if applic- able)	Probably of No signifi- cant Difference (P)	Statistical Test
Level	.8511	.1489	143	188	150.01	3.48	P < 0.2%	zI
Crest	.0275	.9725	9	188	5.17	N/A	P → 10%	Poisson
Slope	.0887	.9113	35	188	16.68	N/A	P < 0.2%	Poisson

•

TABLE E4: ROAD GRADE AND CRASHES - STATISTICAL COMPARISON

APPENDIX F: EXTRACT FROM DEPARTMENT OF MAIN ROADS NSW DOCUMENT ENTITLED "TRAFFIC SECTION. CRASH STATISTICS 1984 AND 1985 NSW"

.

. .

•

4

.

		. E "C M I C?	J			NDM INT CRAS	RSECTION MES		14 TERSECTION CRASHES	AI Cra:	LL SHES
D 142 D 145	aatn RDAC	155C1104	1 GA	L NO STH K 1	TIMAL	RATE 7KM	FATAL	FIJUR Y	TOTAL	TCTAL	RATE ZKN
1	C1 47	1.64	320	-15	2	13.33		2		2	13.33
	COLO	CO70	14 0	16.33	143	3.51	5	77	115	255	15.35
Ľ	2033	LOA	21.3	5.64	4.7	7.01		[5	46	36	15.24
4	9793	1.94	212	1.22	7	5.20		4	11	18	13.63
5	5545	LLA	112	4.33	2.2	5.0L		10	22	44	10.02
<u>د</u>	0017	11.20	353	22+60	112	4.95	1	44	96	208	9.20
?	C151	LGA	213	1.57	1	4.27	1	4	3	10	6-25
	2015	2.262		15++2	57	4.35	_	42	87	154	10.00
,9	2014	0061		13.00	53	4.23	3	24	12	67	5-15
14	2013	1.7.	212	13.00	73	3.85	<u>l</u>	31	4	77	4.07
11	2013	007-	262	16.30	63	5.6.E	7	23	8	68	4 - 17
12	2010	0.00 9	121	18.62	(1	3.60	1	27	20	87	4.67
12	2011	333	115	15.20	58	3.55	1	2!	13	71	4.35
4	2014	0.00	1 - 1	14.57	49	3.25	1	23	12	51	4-17
1:	COLL	OC EF	141	12,15	59	3.25	3	26	3	62	3-42
10	0011	2020		15,70	50	3.13	3	25	15	65	4+14
	5013	CE 78	215	15.27	41	3.02	1	26	16	65	4.01
1.6	2010	00.5.4	111		29	2.92	1	14	4 4	82	6.30
19	011	20.2	320	11410	15	2.67	Z	11	6	4 1	3-12
C	0010	3072	556	14.40	33	2.63	1	11	2	40	2 - 17
	6010	26.51	220	12.30	33	2.43	1	15	1	34	2.55
		9971	100	12.12	32	Z • • •	I	15	10	4 <u>2</u>	3.20
	2413	JC 7	1.0	1	35	2.41		20	15	51	3-42
	2082	1	1			2 - 21	3	37	14	91	2.73
	2017				21	2.07	1	11	1	25	2.15
	0111	1.7.4				2.02	1	+ L 201	÷1	113	3-22
	2032	1 ()	1.55		* 5	1.94		20	55	<u>n</u>	3.93
_ 0	1010	2.2	11.1	1-1.7		1.92	-	20	4.3	51	1-09
	2011	,, -	111			1.90	2	17	13	47	2.01
20	2144		7,11		1	1.20					1.70
<u> </u>	J.77		212	1.3	, v	1.34		•	{	10	2
			100	1.2	1.00	1+42			1	, , ,	2.10
	01/5	1.7.1	15.1		1.0	1.91	1	71	0	30	7 17
	2010	0077	2.2	1/	21	1 31	,	•	2	20	2.31
	01-0	1.11	1	7	17	1 21	1	ś	- -	10	1 87
	05.44	1.04	262	14 34	16	1 1 3		á	6	77	1.07
	(010	201		14 30	10	1.10	,	,	0	18	1.10
20	0555	1.74	757	6 3.5	· ú	1.08	•	ż	5	16	1.66
40	2011		213	-6.7	21	1.01	1	ģ	1	24	1_06
21	6147	1.51		41.51	40	. 76	1	22	13	53	1.78
47	2010	000	257	11.20	12	.97	•	5	9	21	1.64
43	3146	1.5.5	20.2	1 1 1	15	.90		6	i	11	.99
4	0.174	1 7 2	7uc	7 75	7	.90		3	1		1.03
4	1455	1.14	114	13.00	15	Ab	1	ā	4	20	1.11
46	0142	164	35.3	40.52	3.1	.81	i	18	21	54	1 - 12
. 41	0677	LGA	244	5.10	4	.78	-	2	2	6	1.17
48	21.52	LGA	262	35.24	25	.70	1	12	- 9	33	. 93
40	sole	0033	115	15.20	10	.63	-	6	5	15	.94
					-						

MILE	1.64	17 A 1	с т	
				1.45

.

•

AURTH EASTENN DIVISIONAL RANKING OF NUM-INTERSECTION CRASHES. THE YEAR PERIOD: 01/01/04 TO 31/12/05 PAGE 2

		LPCATION	ł			HOPI INTE CRAS	ep Sec T I um ines		INTERSECTION CRASHES	ALL CRASHES		
0 175 F. ACK	HA 121 5040	55C315181	٤(.*	L SAGTH Vit	TOTAL	P.A.T.E /KN	FATAL	I HJURY	TOTAL	TOTAL	RATE 76M	
fG	0147	L CA-	25.2	33.75	21	.62	1	10	4	25	- 74	
51	01-6	Lui	116	14.38	3	• ó 2	•	4			-62	
52	6043	1.7 A	320	34.65	2.2	. 60	3	3	1	2 3	. 67	
£3	CD 43	L GA	177	67.4	40	. 5 9	3	25	4	44	. 64	
54	0083	LGA	24 4	75.13	4 <u>5</u>	.58	1	13	9	55	.70	
55	C149	200	32.0	27.28	16	.58		7	4	20	. 73	
14	0117	101	121	19.75	10	.50	:	5		10	. 50	
57	ċС 12	0601	215	34.13	17	49	2	7	9	26	.76	
58	0151	1 33	262	17.96	a	46	•	3			.46	
59	0544	LGA	32.0	10.77	5	. 46		ŝ	1	6	. 55	
ÉC	CO 1 2	0002	200	23.50	13	. 4 5	1	i i	-	11	- 45	
15	0145	LG4	320	16.47		. 4 7	-	1	1		. 4.8	
12	63.06	1.64		35.31	13	47	7	÷	•	11	- 4.7	
	0144	1 1 4	16.2	12.00			-		,	.;		
14	r 0 1 4	0006	226	18.10	÷			7	د 1			
	C541	1.63	313	21 6 4	3				1	.,,	***	
(.	0010	0044	1 2 1	13 6 3	7 C	. 30	•		2	11	.40	
6.7	0141	1.5	751	41 34	7	- 2 (.1	1			
	01.20	104	1 1 1	25.57	10	- 30	•	11	4		- 39	
	2074		200	277	, , , , , , , , , , , , , , , , , , ,			3		3	• • • •	
70	0074	61.6		71.1		• • • •		19		34	• 3 •	
70	0.016	0000	~ ~ ~	C + C 1	5	- 34		1		3	- 34	
	0141	104		10.27			1	3		9	.33	
	0141			12.21		- 32		2		4	• 37	
72	0361	L GA	244	6.4.34	22	.31 .		11		22	- 31	
74	2016	1252	120	154.20	5	.30	1	3		5	- 30	
75	C1 52	LCA	220	10.51	3	• 2 3		1		3	.28	
76	0524	1	141	12.00	3	+25		1	7	10	. 83	
77	JU74	1.03	· · ·	6.96	.2	.23		2		2	.23	
<u>د ۲</u>	2144	غن ا	11.5	4. 3.	L	.20		1	3	4	- 80	
79	0143	L TA	2 7 2	1 4 . 15	1	.20	1	2		3	.20	
50	2112	ር ቤ አ	122	11.14	3	.17		3		3	-19	
C 1	33.00	ست. ا	25.3	25.95	ş	.19	•	5	. 1	5	.23	
62	0119	1.22	246	6.23	i	-16				i	.16	
23	0544	L 74	244	11.78 .	•	-16		1		2	.16	
24	0306	1.12	Ξ.	14.53	j	-15		ž	1		- 71	
65	01 51	LGA	172	28.34	ž,	-14		ī	-	4	.14	
ci.	01.50	LGA	172	104.99	13	.12		ż		13	.12	
97	C 1 50	LCA	244	14.94	1	-06		-		1	- 04	
37	6014	CUC 7	2 4	14.0.)	i	.06				ī	.06	
źn	0170	154	1.0	11.44	ż	-05		ł		ž	.05	
	0141	1.5.1	353	1.44	-	-00		•	1	ī	.26	
				.00		.00			-	-	.00	